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Reactive Architectures
• There are many unsolved (some would say insoluble) problems 

associated with symbolic AI.  
• These problems have led some researchers to question the viability of the whole 

paradigm, and to the development of reactive architectures.  
• Although united by a belief that the assumptions underpinning mainstream AI are in 

some sense wrong, reactive agent researchers use many different techniques.  

• In this chapter, we look at alternative architectures that better 
support some classes of agents and robots 
• At the end, we then examine how hybrid architectures exploits the best aspects 

of deliberative and reactive ones 
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General Control Architecture

•So far, we have viewed the control 
architecture of an agent as one that: 

• Perceives the environment  
• Revises its internal state, identifying beliefs and desires 
• Selects actions from its intention and plan 
• Acts, possibly changing the environment 

•Intention Reconsideration is important 
in highly dynamic environments
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Agent Control Loop as Layers
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The classic “Sense/Plan/Act” approach breaks it down serially like this
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Behaviours

•Behaviour based control sees things differently 
• Behavioural chunks of control each connecting sensors to actuators 
• Implicitly parallel 
• Particularly well suited to Autonomous Robots
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Behaviours
•Range of ways of combining behaviours. 

•Some examples: 
• Pick the ``best'' 
• Sum the outputs 
• Use a weighted sum 

•Flakey redux used a fuzzy combination 
which produced a nice integration of 
outputs.
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Subsumption Architecture
•A subsumption architecture is a hierarchy of 

task-accomplishing behaviours. 
• Each behaviour is a rather simple rule-like structure.  
• Each behaviour ‘competes’ with others to exercise control 

over the agent.  
• Lower layers represent more primitive kinds of behaviour, (such 

as avoiding obstacles), and have precedence over layers 
further up the hierarchy.  

•The resulting systems are, in terms of the 
amount of computation they do, extremely 
simple.  
• Some of the robots do tasks that would be impressive if they 

were accomplished by symbolic AI systems. 
7

Rodney Brooks “subsumption 
architecture” was originally 
developed open Genghis
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Brooks Behavioural Languages
•Brooks proposed the following three 

theses: 
1. Intelligent behaviour can be generated without 

explicit representations of the kind that 
symbolic AI proposes.  

2. Intelligent behaviour can be generated without 
explicit abstract reasoning of the kind that 
symbolic AI proposes.  

3. Intelligence is an emergent property of certain 
complex systems. 
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Brooks Behavioural Languages
• He identified two key ideas that have informed his 

research: 
1. Situatedness and embodiment: ‘Real’ intelligence is situated in the world, 

not in disembodied systems such as theorem provers or expert systems.  
2. Intelligence and emergence: ‘Intelligent’ behaviour arises as a result of an 

agent’s interaction with its environment.  Also, intelligence is ‘in the eye of 
the beholder’; it is not an innate, isolated property.  

• Brooks built several agents (such as Genghis) based on 
his subsumption architecture to illustrate his ideas.

9



Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Subsumption Architecture
• It is the piling up of layers that gives the approach of its power. 

• Complex behaviour emerges from simple components. 
• Since each layer is independent, each can independently be: 

• Coded / Tested / Debugged 

• Can then assemble them into a complete system.
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Abstract view of a Subsumption Machine
•Layered approach based on levels of competence 

• Higher level behaviours inhibit lower levels 

•Augmented finite state machine: 
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Emergent Behaviour 
Putting simple behaviours together leads to synergies
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Emergent behaviour
•Important but not well-understood phenomenon  

• Often found in behaviour-based/reactive systems  

•Agent behaviours “emerge” from interactions of rules with 
environment.  
• Sum is greater than the parts. 
• The interaction links rules in ways that weren’t anticipated. 

•Coded behaviour: In the programming scheme  

•Observed behaviour: In the eyes of the observer  
• There is no one-to-one mapping between the two!  

•When observed behaviour “exceeds” programmed 
behaviour, then we have emergence. 
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Emergent Flocking

Flocking is a classic example of emergence, e.g. 
Reynolds “Boids”, or Mataric ’́s “nerd herd”.

Each agent uses the following three rules:
1. Don’t run into any other robot
2. Don’t get too far from other robots
3. Keep moving if you can

When run in parallel on many agents, the result 
is flocking
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ToTo
•Maja Mataric ́’s Toto is based on the subsumption 

architecture 
• Can map spaces and execute plans without the need for a symbolic 

representation. 
• Inspired by “…the ability of insects such as bees to identify shortcuts 

between feeding sites…”   

•Each feature/landmark is a set of sensor readings 
• Signature  

•Recorded in a behaviour as a triple: 
• Landmark type  
• Compass heading 
• Approximate length/size  

•Distributed topological map. 
14
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ToTo
•Whenever Toto visited a particular 

landmark, its associated map behaviour 
would become activated  
• If no behaviour was activated, then the landmark was 

new, so a new behaviour was created  
• If an existing behaviour was activated, it inhibited all 

other behaviours  

•Localization was based on which 
behaviour was active.  
• No map object, but the set of behaviours clearly 

included map functionality.
15
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Steel’s Mars Explorer System

•Steels’ Mars explorer system 
• Uses the subsumption architecture to achieve 

near-optimal cooperative performance in 
simulated ‘rock gathering on Mars’ domain 

• Individual behaviour is governed by a set of 
simple rules. 

• Coordination between agents can also be 
achieved by leaving “markers” in the 
environment.
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Objective 
To explore a distant planet, and in 
particular, to collect sample of a precious 
rock. The location of the samples is not 
known in advance, but it is known that 
they tend to be clustered. 
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Steel’s Mars Explorer System
1. For individual (non-cooperative) agents, the lowest-level 

behaviour, (and hence the behaviour with the highest 
“priority”) is obstacle avoidance. 

2. Any samples carried by agents are dropped back at the 
mother-ship. 

3. If not at the mother-ship, then navigate back there. 
• The “gradient” in this case refers to a virtual “hill” radio signal that slopes up to 

the mother ship/base. 

4. Agents will collect samples they find. 

5. An agent with “nothing better to do” will explore randomly.  
This is the highest-level behaviour (and hence lowest level 
“priority”).
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if true then move randomly
5

if detect a sample then pick 
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4

  if carrying a sample and not at 
the base then travel up gradient

3

    if carrying a sample and at the 
base then drop sample

2

 if detect an obstacle then change 
direction
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Steel’s Mars Explorer System
•Existing strategy works well when samples are 
distributed randomly across the terrain. 

•However, samples are located in clusters 
•Agents should cooperate with each other to locate clusters 

•Solution to this is based on foraging ants. 
•Agents leave a “radioactive” trail of crumbs when returning 
to the mother ship with samples. 

•If another agent senses this trail, it follows the trail back to the source of the 
samples 
•It also picks up some of the crumbs, making the trail fainter. 
•If there are still samples, the trail is reinforced by the agent returning to the 
mother ship (leaving more crumbs) 
•If no samples remain, the trail will soon be erased.
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  if sense crumbs then pick up 1 
crumb and travel down gradient

4.5

  if carrying samples and not at 
the base then drop 2 crumbs and 

travel up gradient.

3’
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Situated Automata
•Approach proposed by Rosenschein and Kaelbling.  

• An agent is specified in a rule-like (declarative) language.  
• Then compiled down to a digital machine, which satisfies the declarative specification.  

• This digital machine can operate in a provable time bound.  
• Reasoning is done off line, at compile time, rather than online at run time.  

• The theoretical limitations of the approach are not well 
understood.  
• Compilation (with propositional specifications) is equivalent to an NP-complete 

problem.  
• The more expressive the agent specification language, the harder it is to compile it. 
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Situated Automata

•An agent is specified by perception 
and action 
• Two programs are used to synthesise agents: 

1.RULER specifies the perception component 
• (see opposite) 

2.GAPPS specifies the action component 
• Takes a set of goal reduction rules and a top-level goal 

(symbolically specified) and generates a non-symbolic program
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RULER takes as its input three 
components… 

“…[A] specification of the semantics of the 
[agent’s] inputs (“whenever bit 1 is on, it is 
raining”); a set of static facts (“whenever it is 
raining, the ground is wet”); and a 
specification of the state transitions of the 
world (“if the ground is wet, it stays wet until 
the sun comes out”).  The programmer then 
specifies the desired semantics for the 
output (“if this bit is on, the ground is wet”), 
and the compiler … [synthesises] a circuit 
whose output will have the correct 
semantics… All that declarative “knowledge” 
has been reduced to a very simple circuit…”


Kaelbling, L.P. (1991) A Situated Automata 
Approach to the Design of Embedded Agents.  

SIGART Bulletin, 2(4): 85-88
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Limitations of Reactive Systems

•Although there are clear advantages of Reactive Systems, 
there are also limitations! 

• If a model of the environment isn’t used, then sufficient information of the local environment is 
needed for determining actions 

• As actions are based on local information, such agents  inherently take a “short-term” view 
• Emergent behaviour is very hard to engineer or validate; typically a trial and error approach is 

ultimately adopted 
• Whilst agents with few layers are straightforward to build, models using many layers are 

inherently complex and difficult to understand.
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Hybrid Architectures
•Many researchers have argued that neither a completely deliberative 

nor completely reactive approach is suitable for building agents. 

• They have suggested using hybrid systems, which attempt to 
marry classical and alternative approaches. 

•  An obvious approach is to build an agent out of two (or more) 
subsystems:  
• a deliberative one, containing a symbolic world model, which develops plans and 

makes decisions in the way proposed by symbolic AI; and  
• a reactive one, which is capable of reacting to events without complex reasoning. 
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Hybrid Architectures
•Often, the reactive component is given some kind of precedence over 

the deliberative one. 

• This kind of structuring leads naturally to the idea of a layered 
architecture, of which InterRap and TouringMachines are examples. 
• In such an architecture, an agent’s control subsystems are arranged into a hierarchy… 
• …with higher layers dealing with information at increasing levels of abstraction.  

•A key problem in such architectures is what kind control framework to 
embed the agent’s subsystems in, to manage the interactions 
between the various layers.
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Hybrid Architectures
• Horizontal layering. 

• Layers are each directly connected to 
the sensory input and action output. 

• In effect, each layer itself acts like an 
agent, producing suggestions as to 
what action to perform. 

• Vertical layering. 
• Sensory input and action output are 

each dealt with by at most one layer 
each.

24
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Ferguson - TouringMachines

•The TouringMachines architecture 
consists of perception and action 
subsystems 
• These interface directly with the agent’s 

environment, and three control layers, 
embedded in a control framework, which 
mediates between the layers.
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Ferguson - TouringMachines
•The reactive layer is implemented as a set of situation-

action rules, a` la subsumption architecture.  
• The planning layer constructs plans and selects actions to execute in order 

to achieve the agent’s goals. 
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rule-1: kerb-avoidance

if

is-in-front(Kerb, Observer) and

speed(Observer) > 0 and

separation(Kerb, Observer) < KerbThreshHold

then

change-orientation(KerbAvoidanceAngle)
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Ferguson - TouringMachines
•The modelling layer contains symbolic representations 

of the ‘cognitive state’ of other entities in the agent’s 
environment.  
• The three layers communicate with each other and are embedded in a 

control framework, which use control rules. 
• Such control structures have become common in robotics.
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censor-rule-1:

if

entity(obstacle-6) in perception-buffer

then

remove-sensory-record(layer-R, entity(obstacle-6))
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Real World Example: Stanley
•Won the 2005 DARPA Grand Challenge 

• Used a combination of the subsumption 
architecture with deliberative planning 

• Consists of 30 different independently operating 
modules across 6 layers
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Global Services Layer

User Interface Layer

Vehicle Interface Layer

Planning and Control layer

Perception layer

Sensor interface layer

The key challenge… was not one of action, but one of perception…
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Question 2.a
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Q2.a answer
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The Touring Machines architecture is an example of a hybrid architecture that combines reactive behaviour with 
that of deliberative, or pro-active behaviour.  It consists of three layers, each of which operate in parallel.  Each has 
access to the perceptual sub-system, which is responsible for converting the percepts obtained from sensor input 
into predicates that can be used for reasoning.  In addition, each layer can result in the generation of actions that 
can then be executed.  A control subsystem is responsible for monitoring the incoming percepts held in the 
perceptual sub-system, and then determining which of the actions (if any) should be executed from the different 
layers; i.e. it determines which layer is responsible for controlling the agent.  In particular, the control subsystem 
can suppress sensor information going to certain layers, or it can censor actions generated by the different layers. 
The reactive layer is responsible for responding to changes in the environment (in a similar way to Bookes 
subsumption architecture).  A set of situation-action rules are defined, which then fire if they map to sensor input. 
 For example, if the agent is controlling an autonomous vehicle and it detects a kerb unexpectedly in front of the 
vehicle, it can stop (or slow down) and turn to avoid the kerb. 
The planning layer is responsible for determining the actions necessary to achieve the agent's goals.  Under 
normal operation, this layer determines what the agent should do.  This is done by making use of a set of planning 
schema, relating to different goals, and then performing the necessary actions.  Note that no low level planning is 
performed. 
The modelling layer represents the various entities in the world.  This is responsible for modelling the world, 
including other agents, and for determining the agents goals, or planning goals that resolve any conflicts with other 
agents if such conflicts are detected.  Whenever a goal is generated, it is passed onto the planning layer, which 
then determines the final actions.

Although several of the details here are from your notes, much more description was 
originally given in the lecture, and is also available from the course text book.
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Summary
•This lecture has looked at two further 

kinds of agent:  
• Reactive agents; and 
• Hybrid agents.  

•Reactive agents build complex 
behaviour from simple components.  

•Hybrid agents try to combine the speed 
of reactive agents with the power of 
deliberative agents. 
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Class Reading (Chapter 5): 

“A Robust Layered Control System for a 
Mobile Robot,”, Rodney A. Brooks. IEEE 
Journal of Robotics and Automation, 2(1), 
March 1986, pp. 14–23. (also MIT AI Memo 
864, September 1985) 

A provocative, fascinating article, 
packed with ideas.  It is interesting to 
compare this with some of Brook’s 
later - arguably more controversial - 
articles


