
COMP310
Multi-Agent Systems

Dr Terry R. Payne
Department of Computer Science

Chapters 6/7 - Ontologies & Communication

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Social Behaviour
•Previously we looked at:

• Deductive Agents
• Practical Reasoning, and BDI Agents
• Reactive and Hybrid Architectures

•We said:
• An intelligent agent is a computer system capable of flexible autonomous action in some environment.
• Where by flexible, we mean:

• reactive
• pro-active
• social

• This is where we deal with the “social” bit, showing how agents communicate and
share information.

2

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent Communication
•In this lecture, we cover macro-aspects of intelligent agent technology,

and those issues relating to the agent society, rather than the individual:
• communication:

• speech acts; KQML & KIF; FIPA ACL

• ontologies:
• the role of ontologies in communication
• aligning ontologies
• OWL

• There are some limited things that one can do without communication,
but they are…, well…, limited!!!
• Most work on multiagent systems assumes communication.

3

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Speech Acts
•Austin’s 1962 book “How to Do Things with Words” is

usually taken to be the origin of speech acts

•Speech act theories are pragmatic theories of language,
that is theories of how language use:
• they attempt to account for how language is used by people every day to

achieve their goals and intentions.

•Most treatments of communication in (multi-)agent systems
borrow their inspiration from speech act theory...
• ...doubtless because the “action” part can be tied closely to existing ideas

about how to model action.

•Austin noticed that some utterances are rather like
‘physical actions’ that appear to change the state of the
world.

4

John Langshaw Austin

in 1962, published the
book:

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 20185

“...This morning the British Ambassador in
Berlin handed the German Government a final
note stating that, unless we hear from them by
11 o'clock that they were prepared at once to
withdraw their troops from Poland, a state of
war would exist between us. I have to tell you
now that no such undertaking has been
received, and that consequently this country is
at war with Germany...”

Neville Chamberlain 11.15 am, September 3rd 1939

Chamberlain’s speech
let to war!

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Speech Acts
•Paradigm examples are:

• declaring war;
• naming a child;
• “I now pronounce you man and wife” :-)

•But more generally, everything we utter is
uttered with the intention of satisfying some goal
or intention.

•A theory of how utterances are used to achieve
intentions is a speech act theory.
• Proposed by John Searle, 1969.

6

John R. Searle

in 1969, published the
book:

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Speech Acts: Searle
• In his 1969 book Speech Acts: an Essay in the

Philosophy of Language he identified:
• representatives:

• such as informing, e.g., ‘It is raining’

• directives:
• attempts to get the hearer to do something e.g., ‘please make the tea’

• commisives:
• which commit the speaker to doing something, e.g., ‘I promise to...’

• expressives:
• whereby a speaker expresses a mental state, e.g., ‘thank you!’

• declarations:
• such as declaring war or naming.

7

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The door is closed...
request 
 speech act = “please close the door”

inform 
 speech act = “the door is closed!”

inquire 
 speech act = “is the door closed?”

Each of the above speech acts result from
the same propositional content (“...the
door is closed...”), but with different
performatives

Speech Acts: Searle
•There is some debate about whether

this (or any!) typology of speech acts
is appropriate.

•In general, a speech act can be seen
to have two components:
• a performative verb:

• (e.g., request, inform, . . .)

• propositional content:
• (e.g., “the door is closed”)

8

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Plan Based Semantics
•How does one define the semantics of

speech acts?
• When can one say someone has uttered, e.g., a request or

an inform?

•Cohen & Perrault (1979) defined semantics of
speech acts using the precondition-delete-
add list formalism of planning research.
• Just like STRIPS planner

•Note that a speaker cannot (generally) force a
hearer to accept some desired mental state.

9

The semantics for “request”

request(s, h, φ)
precondition:
• s believes h can do φ

(you don’t ask someone to do something 
unless you think they can do it)

 
• s believe h believe h can do φ

(you don’t ask someone unless  
they believe they can do it)

• s believe s want φ
(you don’t ask someone 

unless you want it!)

post-condition:  
• h believe s believe s want φ

(the effect is to make them  
aware of your desire)

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

KQML and KIF
•We now consider agent communication languages (ACLs)

• ACLs are standard formats for the exchange of messages.

•One well known ACL is KQML, developed by the DARPA-funded
Knowledge Sharing Effort (KSE).
• The ACL proposed by KSE was comprised of two parts:

• the message itself: the Knowledge Query and Manipulation Language (KQML); and
• the body of the message: the Knowledge interchange format (KIF).

10

“… [developing] protocols for the exchange of represented
knowledge between autonomous information systems…”

Tim Finin, 1993

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

KQML and KIF
• KQML is an ‘outer’ language, that defines various acceptable

‘communicative verbs’, or performatives.
• Example performatives:

• ask-if (‘is it true that. . . ’)
• perform (‘please perform the following action. . . ’)
• tell (‘it is true that. . . ’)
• reply (‘the answer is . . . ’)

• KIF is a language for expressing message content, or domain
knowledge.
• It can be used to writing down ontologies.
• KIF is based on first-order logic.

11

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

KQML & Ontologies
• In order to be able to communicate, agents need to agree on the

words (terms) they use to describe a domain.
• Always a problem where multiple languages are concerned.

• A formal specification of a set of terms is known as a ontology.
• The DARPA Knowledge Sharing Effort project has associated with it a large effort at

defining common ontologies
• software tools like ontolingua, etc, for this purpose.

• We’ve previously discussed the use of ontologies and semantics…

12

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Blocksworld
•The environment is represented by an

ontology.

13

Blocksworld Ontology

On(x,y) object x on top of object y

OnTable(x) object x is on the table

Clear(x) nothing is on top of object x

Holding(x) arm is holding x

Stack(x, y)
pre Clear(y) ^Holding(x)
del Clear(y) ^Holding(x)
add ArmEmpty ^On(x, y)

UnStack(x, y)
pre On(x, y) ^ Clear(x) ^ArmEmpty
del On(x, y) ^ArmEmpty
add Holding(x) ^ Clear(y)

Recap:

The ontology spec
ified the

entities o
r the pred

icates we

could use, and
 defined the

actions a
nd their meaning

(semantics)

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontologies
• The role of an ontology is to fix the meaning of the terms

used by agents.

• How do we do this? Typically by defining new terms in
terms of old ones.
• Let’s consider an example.

14

“… An ontology is a formal definition of a body of knowledge. The most
typical type of ontology used in building agents involves a structural
component. Essentially a taxonomy of class and subclass relations coupled
with definitions of the relationships between these things …”

Jim Hendler

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontologies
• Alice:

• Did you read “Prey”?

• Bob:
• No, what is it?

• Alice:
• A science fiction novel. Well, it is also a bit of a

horror novel. It is about multiagent systems
going haywire.

15

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontologies
•What is being conveyed about “Prey” here?

1. It is a novel
2. It is a science fiction novel
3. It is a horror novel
4. It is about multiagent systems

•Alice assumes that Bob knows what a “novel”
is, what “science fiction” is and what “horror”
is.

•She thus defines a new term “Prey” in terms
of ones that Bob already knows.

16

Types of objects

Classes

collections of things with similar
properties

Instances
specific examples of classes

Relations
Describe the properties of objects
and connect them together

Note that we also have these types of
objects in languages such as Java, or
modelling frameworks such as ER
Diagrams. Such languages and
frameworks also support inheritance.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontologies
•Part of the reason this interaction works is that Bob has knowledge

that is relevant.
• Bob knows that novels are fiction books

• “novel” is a subclass of “fiction book”

• Bob knows things about novels: they have
• authors,
• publishers,
• publication dates, and so on.

•Because “Prey” is a novel, it inherits the properties of novels. It has
an author, a publisher, a publication date.
• Instances inherit attributes from their classes.

17

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontology Inheritance

•Classes also inherit.
• Classes inherit attributes from their super-classes.

• If “novel” is a subclass of “fiction book”, then “fiction book” is a superclass of “novel”

• Fiction books are books.
• Books are sold in bookstores.
• Thus fiction books are sold in bookstores.

18

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontologies
•A lot of knowledge can be captured using these notions.

• We specify which class “is-a” sub-class of which other class.
• We specify which classes have which attributes.
• An axiomatic theory can also be included to support inference

• if socrates is [an instance of a] man, and all men are mortal…
• … we can infer that socrates is mortal!

•This structure over knowledge is called an ontology.
• A knowledge base is an ontology with a set of instances.

•A huge number of ontologies have been constructed.
19

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

An ontology of threats

20

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontologies
•In general there are multiple

ontologies at different levels of detail.
• Application ontology

• Like the threat ontology (see opposite)

• Domain ontology
• Upper ontology

• Contains very general information about the world.

•The more specific an ontology, the
less reusable it is.

21

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Multiple Ontologies
•Application and domain ontologies

will typically overlap
• Illustrated by the challenges of facilitating

interoperability between similar ontologies.
• Different knowledge systems can be integrated

to form merged knowledge bases

•But in many cases, all that is needed
is to be understood!

22

Ontologies as perspectives on
a domain

A single domain may have an intended
representation in the real world, that is not
perfectly represented by any single formal
ontology. Many separate ontologies then
emerge, based on different contexts…

Ontology Alignment Evaluation
Initiative

A test suite of similar ontologies used to test
out alignment systems that link different
ontologies representing the same domain.

The conference test suite consists of 21
ontology pairs.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Modelling and Context
•The problem with modelling ontologies is that different

designers have different contexts, and requirements

23

The Architect

When modelling a bridge,
important characteristics
include:

tensile strength
weight
load
etc

The Military

When modelling a bridge,
important characteristics
include:

what munitions are
required to destroy it!Pat Hayes, 2001 in

conversation

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ontologies, Alignments and Correspondences

•Different ontological models exist for overlapping domains
• Modelled implicitly, or explicitly by defining entities (classes, roles etc),

typically using some logical theory, i.e. an Ontology

•Alignment Systems align similar ontologies

24

Alignment

Correspondence

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Aligning Agents’ Ontologies

•Traditional alignment is a centralised process
• submit two ontologies to a single system

•Agent alignment is inherently decentralised!

25

“… as agents can differ in the ontologies they assume, the resulting semantic
heterogeneity can impede meaningful communication. One solution is to align the
ontologies; i.e. find correspondences between the ontological entities to resolve this
semantic heterogeneity. However, this raises the question: how can agents align
ontologies that they do not want to disclose?…”

Terry Payne & Valentina Tamma, 2014

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Correspondence Inclusion Dialogue
• Correspondence Inclusion Dialogue (CID)

• Allows two agents to exchange knowledge about correspondences
to agree upon a mutually acceptable final alignment AL.

• This alignment aligns only those entities in each agents’ working
ontologies, without disclosing the ontologies, or all of the known
correspondences.

• Assumptions
1. Each agent knows about different correspondences from different

sources

2. This knowledge is partial, and possibly ambiguous; i.e. more than one
correspondence exists for a given entity

3. Agents associate a utility (Degree of Belief) κc to each unique
correspondence

26

join

matched-close

join

matched-close

ob
je
ct

ob
je
ct

accept

reject
accept

endassert

endassert

reject

endassert

endassert

assert

assert

join

join

ob
je
ct

ob
je
ct

Alice
&
Bob

3ABBob
2B

Alice
2A

Alice
1A

Bob
1B

Alice
5A

Alice
4A

Bob
6B

Alice
6A

Bob
4B

object

object

Bob
5B

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Picking the right correspondences
• Quality vs Quantity

• Do we maximise coverage
• Preferable when merging the whole ontology

• Do we find the “best” mappings
• Preferable when aligning specific signatures

27

article

publication

draft

paper

0.5

0.6

0.7

⟨article,paper,≣⟩

⟨article,draft,≣⟩
⟨publication,paper,≣⟩

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

OWL - Web Ontology Language
•A general purpose family of ontology

languages for describing knowledge
• Originated from the DARPA Agent Markup

Language Program
• Followup to DARPA Control of Agent Based Systems (CoABS)

•Based on description logics
• Various flavours with different expressivity /

computability
• Different syntaxes: XML, Turtle, Manchester Syntax…
• Underpins the Semantic Web

28

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

OWL Example
NS1:geographicCoordinates rdf:nodeID='A179'/>
 <NS1:mapReferences>North America</NS1:mapReferences>
 <NS1:totalArea>9629091</NS1:totalArea>
 <NS1:landArea>9158960</NS1:landArea>
 <NS1:waterArea>470131</NS1:waterArea>
 <NS1:comparativeArea>about half the size of Russia; about three-tenths the size of Africa; about half the size of South America (or
slightly larger than Brazil); slightly larger than China; about two and a half times the size of Western Europe
 </NS1:comparativeArea>
 <NS1:landBoundaries>12034</NS1:landBoundaries>
 <NS1:coastline>19924</NS1:coastline>
 <NS1:contiguousZone>24</NS1:contiguousZone>
 <NS1:exclusiveEconomicZone>200</NS1:exclusiveEconomicZone>
 <NS1:territorialSea>12</NS1:territorialSea>
 <NS1:climate>mostly temperate, but tropical in Hawaii and Florida, arctic in Alaska, semiarid in the great plains west of the
Mississippi River, and arid in the Great Basin of the southwest; low winter temperatures in the northwest are ameliorated occasionally in
January and February by warm chinook winds from the eastern slopes of the Rocky Mountains
 </NS1:climate>
 <NS1:terrain>vast central plain, mountains in west, hills and low mountains in east; rugged mountains and broad river valleys in
Alaska; rugged, volcanic topography in Hawaii
 </NS1:terrain>

29

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

OWL and Services

•OWL-S is an upper level service
ontology developed to describe
agent based (or semantic web)
services
• Profile used for discovery

• input / outputs etc

• Process model provided a planning formalism
• Grounding linked to the syntactic messaging

30

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

KQML / KIF
•After that digression, we can return to the KQML/KIF show.

• KQML is an agent communication language. It provides a set of
performatives for communication.

•KIF is a language for representing domain knowledge.
• It can be used to writing down ontologies.
• KIF is based on first-order logic.

•Given that, let’s look at some examples.

31

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

KQML/KIF Example

32

(stream-about
 :sender A
 :receiver B
 :language KIF
 :ontology motors
 :reply-with q1
 :content m1
)

A asks B for information
about motor 1, using the
ontology (represented in

KIF) about motors.

(tell
 :sender B
 :receiver A
 :in-reply-to q1
 :content
 (= (torque m1) (scalar 12 kgf))
)
(tell
 :sender B
 :receiver A
 :in-reply-to q1
 :content
 (= (status m1) normal)
)
(eos
 :sender B
 :receiver A
 :in-reply-to q1
)

B responds to A’s query q1.
Two facts are sent:

1) that the torque of motor 1
is 12kgf; and

2) that the status of the
motor is normal.

The ask stream is terminated
using the eos performative.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Problems with KQML
• The basic KQML performative set was fluid

• Different implementations were not interoperable

• Transport mechanisms for messages were not precisely
defined
• Again - interoperability

• Semantics of KQML were not rigorously defined
• Ambiguity resulted in impairing interoperability!

• There were no commissives in the language
• Without the ability to commit to a task, how could agents coordinate behaviour

• The performative set was arguably ad-hoc and overly large
33

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

FIPA ACL
•More recently, the Foundation for

Intelligent Physical Agents (FIPA) started
work on a program of agent standards
• the centrepiece is an ACL.

•Basic structure is quite similar to KQML:
• The number of performatives was reduced to 20.
• A formal semantics has been defined  

for the language, using the language SL
• SL can represents beliefs, desires  

and uncertain beliefs, as well as actions

34

FIPA ACL example

(inform
 :sender agent1
 :receiver agent5
 :content (price good200 150)
 :language sl
 :ontology hpl-auction
)

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 201835

FIPA ACL Performatives
performative passing requesting negotiation performing error

info info actions handling
accept-proposal x
agree x
cancel x x
cfp x
confirm x
disconfirm x
failure x
inform x
inform-if x
inform-ref x
not-understood x
propose x
query-if x
query-ref x
refuse x
reject-proposal x
request x
request-when x
request-whenever x
subscribe x

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

“Inform” and “Request”
• “Inform” and “Request” are the two basic performatives in FIPA. Others are

macro definitions, defined in terms of these.

• The meaning of inform and request is defined in two parts:
• pre-condition: what must be true in order for the speech act to succeed.
• “rational effect”: what the sender of the message hopes to bring about.

36

FIPA “Inform” Performative
The content is a statement. The pre-condition is that the
sender:

• holds that the content is true;

• intends that the recipient believe the content;

• does not already believe that the recipient is aware of
whether content is true or not

The speaker only has to believe that what he says is true.

FIPA “Request” Performative
The content is an action. The pre-condition is that the sender:

• intends action content to be performed;

• believes recipient is capable of performing this action;

• does not believe that recipient already intends to perform
action.

The last of these conditions captures the fact that you don’t
speak if you don’t need to.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Communication in AgentSpeak
•AgentSpeak agents communicate using a simpler structure to KQML/

ACL

•Messages received typically have the form
<sender, performative, content>

• sender: the AgentSpeak term corresponding to the agent that sent the message
• i.e. an agentID

• performative: this represents the goal the sender intends to achieve by sending the
message
• tell, achieve, askOne, tellHow etc

• content: an AgentSpeak formula or message body
• varies depending on the performative

37

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Messages in Jason
•Messages are passed through the use of internal actions that are pre-

defined in Jason
• The most typically used are:

.send(receiver, performative, content)

.broadcast(performative, content)

• where receiver, performative and content relate to the elements in the message

•The .send action sends messages to specific agents
• The receiver can be a single agentID, or a list of agentIDs

•The .broadcast action sends the message to all agents registered in the
system

38

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Handling messages in Jason
•In the internal Jason architecture

• messages are delivered into the agents “mailbox”
• This is done automatically by the customisable checkMail method
• Passes them onto the AgentSpeak interpreter

• One message is processed during each reasoning cycle
• A customisable message selection function (SM) selects the next message

to process
• A selection process (SocAcc) determines if the message should be

rejected
• For example, ignoring messages from a certain agent
• Think of this as a spam filter

• If the message goes through, Jason will interpret it
according to precise semantics
• by generating new events pertaining to the goal and belief bases, and in

turn, triggering plans
39

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Performatives in Jason
•Sharing Beliefs  

(Information Exchange)
• tell and untell

• The sender intends the receiver (not) to believe the
literal in the content to be true and that the sender
believes it

• Sharing Plans (Deliberation)
• tellHow and untellHow

• The sender requests the receiver (not) to include
within their plan library the plan in the message content

• askHow
• The sender wants to know the receiver’s applicable

plan for the triggering event in the message content

•Delegate an Achievement Gaol  
(Goal Delegation)
• achieve and unachieve

• The sender requests the receiver (not) to try and
achieve a state-of-affairs where the content of the
message is true  

•Delegate a Test Goal  
(Information Seeking)
• askOne and askAll

• The sender wants to know whether the receiver
knows (askOne) if the content is true (i.e. is there a
single answer) or for all answers (askAll).

40

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Semantics of tell / untell

41

Information Exchange
Cycle # sender (s) actions recipient (r) belief base recipient (r) events

1 .send (r, tell, open(left_door))

2 open(left_door)[source(s)] ⟨+open(left_door) [source(s)],⊤⟩

3 .send (r, untell, open(left_door))

4 ⟨-open(left_door) [source(s)],⊤⟩

•Note that events are represented internally as a tuple: ⟨event, intention⟩
• This associates an event with an intention that generated it

•With communication, there is no intention responsible for the event
• Thus, we indicate this with the ⊤ symbol

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Semantics of achieve / unachieve

42

Goal Delegation
Cycle # sender (s) actions recipient (r) intentions recipient (r) events

1 .send (r, achieve, open(left_door))

2 ⟨+!open(left_door) [source(s)],⊤⟩

3 !open(left_door)[source(s)]

3 .send (r, unachieve, open(left_door)) !open(left_door)[source(s)]

4 <<< intention has been removed >>>

• Note that the intention is adopted after the goal is added.
• With unachieve, the internal action .drop_desire(open(left_door)) is executed.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Semantics of askOne / askAll

43

Information Seeking
Cycle # sender (s) actions recipient (r) actions sender (s) events

1 .send (r, askOne, open(Door))

2 .send(s, tell, open(left_door))

3 ⟨+open(left_door)[source(r)],⊤⟩

4 .send (r, askAll, open(Door))

5 .send(s, tell, [open(left_door), open(right_door)])

6
⟨+open(left_door)[source(r)],⊤⟩

⟨+open(right_door)[source(r)],⊤⟩

r’s belief base

open(left_door)

open(right_door)

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Semantics of Deliberation
•.send(receiver, tellHow,“@p ... : ... <- ...”)

• adds the plan to the plan library of the receiver with its plan label @p
• .send(r, tellHow, “@pOD +!open(Door): not locked(Door) <- turn_handle(Door); push(Door); ?

oopen(Door).”)

•.send(receiver, untellHow, @p)
• removes the plan with the plan label @p from the plan library of receiver

• .send(r, untellHow, “@pOD”)

•.send(receiver, askHow, Goal-addition-event)
• requires receiver to pass all relevant plans to the triggering event in the content

• .send(r, askHow, “+!open(Door)”)

44

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Handling performatives
•Jason implements plans for each of the performatives

• More elegant than hard coding within the interpreter
• Allows the agent developer to introduce new performatives when necessary

• Existing performatives can be overridden

• The goal !kqml_received is created whenever a message is received
• Predefined plans can be found in Jason Distribution in

• src/asl/kqmlPlans.asl

45

/* ---- achieve performatives ---- */

@kqmlReceivedAchieve
+!kqml_received(KQML_Sender_Var, achieve, KQML_Content_Var, KQML_MsgId)
 <- .add_annot(KQML_Content_Var, source(KQML_Sender_Var), CA);
 !!CA.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Creating performatives
•Defining the tell_rule performative

• This simple example illustrates how a new
performative for sharing rules could be written
• It is based on the example code tell_rule in the Jason

Distribution

• Two agents are defined:
• receiver, which implements the plan for the new

performative tellRule
• sender, that sends two messages using tellRule

• No environment is used in this multi-agent
system (MAS)

46

//tell_rule.mas2j

/*
This example shows how to customise the
KQML to add a new performative,
identified by "tellRule", used by one agent
to send rules like "a :- b & c" to another
agent.
*/

MAS tell_rule {

	 infrastructure: Centralised

	 agents:
	 	 receiver;
	 	 sender;

	 aslSourcePath:
	 	 "src/asl";
}

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Creating performatives

47

// Agent receiver in project tell_rule

/* Initial beliefs */
b.
c.

/* Plans */
+!test : a <- .print("Yes, a is true").
+!test <- .print("Don't know if a is true").

// customisation of KQML performative tellRule
+!kqml_received(A,tellRule,Rules,_)
 <- .print(“Received rule(s) ”, Rules, “ from ”, A);
 for (.member(R, Rules)) {
 +R[source(A)];
 }
 // get all rules and print them
 .relevant_rules(_,LR);
 .print("Rules: ",LR).

// Agent sender in project tell_rule

/* Initial goals */
!start.

/* Plans */
+!start : true
 <- // ask the receiver to achieve the goal test

.send(receiver,achieve,test);
// send a list with a single rule

 	 .send(receiver,tellRule, [{a :- b & c}]);
// ask the receiver to achieve the goal test

 .send(receiver,achieve,test).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Jade
•The FIPA ACL provides a language for writing

messages down.
• It says nothing about how they are passed between agents.

•Several software platforms have been
developed to support ACL-based
communication.
• One of the most widely used is JADE.

•Provides transparent (from the perspective of
the agent designer) transport of ACL messages

48

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Jade
•In JADE, agents are Java threads running in a “container”.

•All containers register with the main container

49

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

JADE Main Container
• The main container does the following:

• Maintains the container table which lists all the containers and their
contact information.

• Maintains a list of all the agents in the system (including location and status).
• Hosts the agent management system (AMS) which names agents as well

as creating and destroying them.
• Hosts the directory facilitator which provides a yellow pages allowing

agents to be identified by the services they provide.

• See http://jade.tilab.com/ for more details.
50

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Alternative Semantics
• There is a problem with the “mental state” semantics that have

been proposed for the FIPA ACL.
• This also holds for KQML.

• How do we know if an agent’s locutions conform to the
specification?
• As Wooldridge pointed out, since the semantics are in terms of an agent’s

internal state, we cannot verify compliance with the semantics laid down by
FIPA.

• In practice, this means that we cannot be sure that a agent is being sincere.
• Or, more importantly, we cannot detect if it is being insincere.

51

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Alternative Semantics
•Singh suggested a way to deal with this.

• Rather than define the conditions on a locution in terms of an agent’s mental state, base it on
something external to the agent.

•Move from a “mentalistic” semantics to a social semantics.
• How?

• Take an agent’s utterances as commitments.
• But what does it mean to say that “if an agent utters an inform then it is committing to the truth

of the proposition that is the subject of the utterance”?

•Doesn’t stop an agent lying, but it allows you to detect when it does.

52

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Summary
•This lecture has discussed some

aspects of agent ontologies and
communication between agents.
• It has focussed on the interpretation of locutions/

performatives as speech acts, and some
suggestions for what performatives one might use.
• Examples of communication were also given in AgentSpeak /

Jason (Chapter 6 of Bordini et al.)

• There is much more to communication that this. . .
• . . . but this kind of thing is required as a “transport layer” to

support the kinds of thing we will talk about later.

53

Class Reading (Chapter 7):

Agent Communication Languages:
Rethinking the Principles”, Munindar P.
Singh. IEEE Computer: 1998, pp40-49.

This is an overview of the state of the
art in agent communication (as of
1998), and an introduction to the key
challenges, particularly with respect to
the semantics of agent
communication.

