PROBLEM SOLVING EXAMINATIONS

Multiagent Systems

TIME ALLOWED : Two and a Half Hours

INSTRUCTIONS TO CANDIDATES

This is a mock paper - solutions are available
If you attempt to answer more questions than the required number of questions (in any section), the marks awarded for the excess questions answered will be discarded (starting with your lowest mark).

1. Consider the environment $E n v_{1}=\left\langle E, e_{0}, \tau\right\rangle$ defined as follows:

$$
E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}
$$

$$
\begin{aligned}
\tau\left(e_{0} \xrightarrow{\alpha_{0}}\right) & =\left\{e_{1}, e_{2}\right\} \\
\tau\left(e_{1} \xrightarrow{\alpha_{2}}\right) & =\left\{e_{3}\right\}
\end{aligned}
$$

$$
\tau\left(e_{2} \xrightarrow{\alpha_{2}}\right)=\left\{e_{4}, e_{5}\right\}
$$

There are two agents, $A g_{1}$ and $A g_{2}$, with respect to this environment:

$$
\begin{array}{l|l}
A g_{1}\left(e_{0}\right)=\alpha_{0} \\
A g_{1}\left(e_{1}\right)=\alpha_{1} & A g_{2}\left(e_{0}\right)=\alpha_{0} \\
A g_{2}\left(e_{2}\right)=\alpha_{2}
\end{array}
$$

(a) Given these definitions draw a graph of the possible runs for the two agents $A g_{1}$ and $A g_{2}$ with respect to $E n v_{1}$.

Agent $A_{g_{2}}$

Given the environment in the previous question, assume that the utility function and probabilities of the various runs are defined as follows:

$$
\left.\begin{array}{c|l}
\substack{\qquad\left(e_{0} \xrightarrow{\alpha_{0}} e_{1} \mid A g_{1}, E n v_{1}\right)=0.5} & P\left(e_{0} \xrightarrow{\alpha_{0}} e_{1} \mid A g_{2}, E n v_{1}\right)=0.1 \\
P\left(e_{0} \xrightarrow{\alpha_{0}} e_{2} \mid A g_{1}, E n v_{1}\right)=0.5 & P\left(e_{0} \xrightarrow{\alpha_{0}} e_{2} \mid A g_{2}, E n v_{1}\right)=0.9 \\
P\left(e_{1} \xrightarrow{\alpha_{1}} e_{3} \mid A g_{1}, E n v_{1}\right)=1.0 & P\left(e_{2} \xrightarrow[\longrightarrow]{\alpha_{2}} e_{4} \mid A g_{2}, E n v_{1}\right)=0.4 \\
& P\left(e_{2} \xrightarrow{\alpha_{2}} e_{5} \mid A g_{2}, E n v_{1}\right)=0.6
\end{array}\right\}
$$

Assume the utility function u_{1} is defined as follows:

$$
\begin{array}{l|l}
u_{1}\left(e_{0} \xrightarrow{\alpha_{0}} e_{1}\right)=(4) & u_{1}\left(e_{0} \xrightarrow{\alpha_{0}} e_{2}\right)=3 \\
u_{1}\left(e_{1} \xrightarrow{\alpha_{1}} e_{3}\right)=7 & \\
u_{1}\left(e_{2} \xrightarrow{\alpha_{2}} e_{4}\right)=3 & u_{1}\left(e_{2} \xrightarrow{\alpha_{2}} e_{5}\right)=2
\end{array}
$$

(b) Determine the expected utility of both agents, and explain which agent is optimal with respect to $E n v_{1}$ and u_{1}. Include an explanation of your calculations in your solution.
(6 marks)
Agents Ag.

$$
\begin{aligned}
\xrightarrow[(1.0 \times 0.5)]{\alpha_{1}} & =0.5 \\
& e_{3} \\
& =(4 \times 0.5)+(3 \times 0.5)+(7 \times 0.5) \\
& =2+1.5+3.5=7
\end{aligned}
$$

$A_{\text {gent }} A_{g 2}$

$$
\begin{aligned}
& \quad E \cup\left(A_{g_{2}}, E_{n v_{1}}\right)= \\
& =(4 \times 0.1)+(3 \times 0.9)+(3 \times 0.36) \\
& +(2 \times 0.54) \\
& = \\
& =0.4+2.7+1.08+1.08 \\
& = \\
& =5.26
\end{aligned}
$$

\therefore Agent, is optimal as its expected utility (7) is greater the that of Agent $2(5.26)$
2. In the context of cooperative games, consider the following marginal contribution net:

$$
\begin{array}{rr}
a \wedge b \rightarrow 6 & \text { Rule 1 } \\
b \rightarrow 4 & \text { Rule 2 } \\
c \rightarrow 5 & \text { Rule 3 } \\
b \wedge \neg c \rightarrow 3 & \text { Rule 4 }
\end{array}
$$

Let ν be the characteristic function defined by these rules. Give the values of the following, and in each case, justify your answer with respect to the rule or rules of the above marginal contribution net:
a) $\nu(\{\varnothing\}) \quad$ No rules, $\therefore \quad \gamma=0$
(2 marks)
b) $\nu(\{a\})$

Nodules,
$\checkmark=0$
(2 marks)
c) $\nu(\{a, b\})$ Rule p 1

$$
\text { Rule } 2 b \in\{a, b\}
$$

$$
\text { Rule } 4<\notin\{a, b\}
$$

d) $\nu(\{b, c\})$

Rules 2\&3
(2 marks)
$\therefore \quad V=4+5=9$
e) $\nu(\{a, b, c\})$ Rules 1, $2,3=6+4+5=15$

Consider the coalition game with agents $A g=\{a, b, c\}$ and characteristic function ν defined by:

$$
\begin{aligned}
\nu\{\varnothing\} & =0 \\
\nu\{a\} & =12 \\
\nu\{b\} & =18 \\
\nu\{c\} & =6 \\
\nu\{a, b\} & =60 \\
u\{b, c\} & =48 \\
\nu\{a, c\} & =72 \\
\nu\{a, b, c\} & =120
\end{aligned}
$$

f) Compute the Shapley values for the agents a, b, and c. You should show the relevant steps in your answer that are used to derive the answer. ($\mathbf{9}$ marks, $\mathbf{3}$ for each agent) Let $\delta_{i}(S)$ be the marginal contribution that agent iadds to S. Such that $v(S \cup\{i\})-\gamma(s)$
The shapley value for $i \varphi_{i}=\frac{\sum_{r \in R} \sigma_{i}\left(S_{i}(r)\right)}{\left|A_{g}\right|!}$
For agent a

$$
\begin{aligned}
& \delta_{a}(\phi)=\gamma(\{a\})-\gamma(\phi)=12-0=12 \quad\{a, b, c\} ;\{a, c, b\} \\
& \begin{array}{lll}
\delta_{a}(\{b\})=r(\{a, b\})-\gamma(\{a b)=60-18=42 & \{b, a, c\} \\
\delta_{a}(\{a, c)=\gamma(\{a, c\})-\gamma(\{c c\})=72-6=66 & \{c, a, b\}
\end{array} \\
& \delta_{a}(\{b, c,\})=\gamma(\{a, b, c\})-\gamma(\{b, c\})=120-48=72 \quad\{b, c, a\},\{c, b, a\} \\
& \varphi_{a}=\frac{12+12+42+66+72+72}{3!}=\frac{276}{6}=46
\end{aligned}
$$

$$
\begin{aligned}
& \text { For agent } b \\
& \begin{array}{ll}
\delta_{b}(\phi)=\gamma(\{b\})-\gamma(\phi)=18-0=18 & \mathrm{bac}, b c a \\
\delta_{b}(\{a\})=\gamma(\{a, b\})-\gamma\{\{a\})=60-12=48 & \mathrm{abc} \\
\delta_{b}(\{c\})=\gamma(\{b, c\})-\gamma(\{c\})=48-6=42 & \mathrm{cba} \\
\delta_{b}(\{a, c\})=\gamma(\{a, b, c\})-\gamma(\{a, c\})=120-72=48 & a c b, c a b
\end{array} \\
& \therefore \varphi_{b}=\frac{18+18+48+42+48+48}{3!}=\underbrace{222}_{6}=37 \\
& \text { For ague } c \\
& \delta_{c}(\phi)=\gamma(\{c\})-\gamma(\phi)=6-0=6 \quad a b c, b a c \\
& \left.\delta_{c}(\{a\})=\gamma(\{a, c\})-\gamma(a, 3)\right)=72-12=60 \quad \text { ac } \\
& \delta_{c}(\{b\})=\gamma(\{b, c\})-\gamma(\{b\})=48-18=30 \mathrm{bca} \\
& \delta_{c}(\{a, b\})=\gamma(\{a, b, c\})-\gamma(\{a, b\})=120-60=60 \quad a b c, b a c
\end{aligned}
$$

3. Several friends made plans to go to see a movie, and each voted on a genre. The preference schedule is shown below:

Votes	3	2	5	3
First Choice	action	romance	comedy	drama
Second Choice	drama	drama	action	romance
Third Choice	comedy	comedy	drama	action
Forth Choice	romance	action	romance	comedy

Given this preference schedule, calculate the winner (and in each case show the working) using:
a) Plurality voting First Choice

$$
\begin{aligned}
& \text { Action }=3 \\
& \text { Romance }=2 \\
& \text { Comedy }=5 \\
& \text { Drama }=3
\end{aligned}
$$

b) Borda count

If $k=|\Omega|$ outcomes
First choice $k-1$
Second choice $k-2$

$$
\begin{aligned}
& \text { Action }=(3 \times 3)+0+(5 \times 2)+(3 \times 1)=22 \\
& \text { Romance }=(0)+(2 \times 3)+(0)+(3 \times 2)=0+6+0+6=12 \\
& \text { Comedy }=(3 \times 1)+(2 \times 1)+(5 \times 3)+0=3+2+15+0=20 \\
& \text { Drama }=(3 \times 2)+(2 \times 2)+(5 \times 1)+(3 \times 3)=6+4+5+8=24
\end{aligned}
$$

4. The following figure shows an Abstract Argumentation system.

(a) Calculate the Admissible sets of this argumentation system.

(b) Determine the Preferred Extensions of this argumentation system.

$$
\{b, d, f\}
$$

(c) Determine the Grounded Extensions of this argumentation system.

$\{b, d, f\}$
5. (a) Identify with explanation the pure strategy Nash Equilibrium outcomes) in the game of chicken, defined by the following payoff matrix:

(b) Give an example of a game which has no pure strategy Nash equilibria, but has a mixed strategy Nash equilibrium.
(5 marks)

(c) Define and give an example of dominant strategy equilibrium.

$$
\begin{aligned}
& \text { A dominant stably for one agent } \\
& \text { reals in a better out come irrespective } \\
& \text { of the strategy of the other agent } \\
& \text { Ey D dominativin C for both ayahs }
\end{aligned}
$$

