REVISION EXAMINATIONS

Multiagent Systems

TIME ALLOWED : Two and a Half Hours

INSTRUCTIONS TO CANDIDATES

This is a mock paper containing four questions - solutions are available.
If you attempt to answer more questions than the required number of questions (in any section), the marks awarded for the excess questions answered will be discarded (starting with your lowest mark).

1. In the following linear sequential pairwise elections, candidates are shown, and the outcomes (i.e. the candidate that would win a pairwise election) is given, where $\Omega=\left\{\omega_{a}, \omega_{b}, \omega_{c}, \omega_{d}\right\}$:

$$
\begin{aligned}
\left\{\omega_{a}, \omega_{b}\right\} & \longrightarrow \omega_{a} \\
\left\{\omega_{a}, \omega_{c}\right\} & \longrightarrow \omega_{c} \\
\left\{\omega_{a}, \omega_{d}\right\} & \longrightarrow \omega_{a} \\
\left\{\omega_{b}, \omega_{c}\right\} & \longrightarrow \omega_{b} \\
\left\{\omega_{b}, \omega_{d}\right\} & \longrightarrow \omega_{d} \\
\left\{\omega_{c}, \omega_{d}\right\} & \longrightarrow \omega_{c}
\end{aligned}
$$

(a) Draw the majority graph that would represent these outcomes.
(3 marks)

(b) Give an agenda that would result in the outcome ω_{a} in a linear pairwise election, if such an agenda exists. If not, explain why.

$$
\begin{aligned}
& \frac{\left(\omega_{b}, \omega_{c}, \omega_{d}, \omega_{a}\right)}{\omega_{b}, \omega_{c}} \\
& \rightarrow \omega_{b} v \omega_{d} \\
& \rightarrow \omega_{d} u s \omega_{a}
\end{aligned}
$$

(c) Give an agenda that would result in the outcome ω_{c} in a linear pairwise election, if such an agenda exists. If not, explain why.
(3 marks)

$$
\frac{\left(\omega_{a}, \omega_{b}, \omega_{c}, \omega_{d}\right)}{\omega_{a} \text { vs } \omega_{b}} \begin{aligned}
& \rightarrow \omega_{a} \backsim \omega_{c} \\
& \rightarrow \omega_{c} v_{s} \omega_{d} \\
& \rightarrow \omega_{c}
\end{aligned}
$$

(d) Define a condorcet winner. Is there a condorcet winner in this linear sequential pairwise election? If so, what is it and why? If not, why not?
(4 marks)
A condorcet winner is the winner of a linear sequential pairwise election for all possible agendas.
In the above majority graph, there is no overall winner, and this no condorcet cine?
(e) If you wanted to change this setting so that ω_{a} was a condorcet winner, what one pairwise election would you change, and why?
(2 marks)
If the outcome of the painnice election
$\left(\omega_{a}, \omega_{c}\right)$ was changed so that w_{a} was the winder, then the result would be the majority graph shown opposite.

Note that no other candidate can beat w_{a}

(f) The Gibbard-Satterthwaite Theorem seems to be a very negative result in social choice theory. Explain what you understand by the Gibbard-Satterthwaite Theorem and its implications, and explain the implications of computational complexity with respect to this result.
(5 marks) The pareto property (or pareto condition) states that an outcome is Pare to efficient if it is the core that if every voter ranks out tome w_{i} overs w_{j}, then w_{i} will be more preferred in the ford ranking than w_{j} The Hubbard. Sattertharaite Theorem states that the only non-mamipulable robing method that satisfies the Pareto condition is a dictatorship.
However, this only states that manipulation in possible in principal, bot suss
nothing about how it can be achie vel in practice, which can be computationally
complex. Misrepresentation is where an agent compleat. Misrepresentation is where an ages misrepresents its true preferences, given knowledge of the other voters preferences, to change the final outcome.
(g) Arrow's theorem is a fundamental impossibility result in social choice theory. Explain what you understand by Arrow's theorem, and its implications.
(5 marks)
This theorem states that for elections with more thar two candidates, the only voting procedure satifgning the Pareto condition and the Independence of Irrelevant Alternatives condition is a dictatorship.
The independure of irrelevant Alternatives (Int) condition states the following:
Assume that, in the final outcome of a voting game, an outcome ω_{i} is preferred over $\left.\omega_{j}\left(i e \omega_{i}\right\rangle^{*} \omega_{j}\right)$.
If some voter that prefers wive- wy than changes its preferences, but in sud a way the wi in preferred over wi (ie the preference order of the other outcomes change in some cray), then li f states that this should not affect the final ort come.
This result is a negative result, as it slates that voting procedures are flawed and, when there are wore then two candidates, do not satisfy "good" conditions.'
2. In Searle's theory of Speech Acts, a speech act consists of two components, a performative verb and propositional content. Briefly explain what the following two KQML expressions mean:
(a) (ask-if

```
:sender A
    :receiver B
    :language OWL
    :ontology pizza
    :reply-with q1
    :content ( (margherita isa Pizza)
        (margherita hasTopping mozzarella) )
```

)
 The performative "ask-if" poses the question (from agent A to agent B) if it is true that there is an instance of the class Pizza that called "margherita" that hes mozzarella as a topping.
(b) (tell

```
    :sender A
    :receiver B
    :language OWL
    :ontology pizza
    :reply-with q1
    :content (not (hawaiian isa ItalianPizza))
```

)
(4 marks)
The performative "tell" tells agent B that the class hawaiian is not a subclass of Italian Pizza

Note that for both questions you should be able to identify what the performative means (ar at least indicate what it could mean) and rebate it to the content.

The Java Agent Development Environment provides a software framework to support the development of agents, whereby each agent is created in a threaded object known as a container. Each container is registered with the main container, which provides various services, including the Agent Management System and the Directory Facilitator.
(c) Briefly describe the role of the Agent Management System.
(4 marks) This is the component that creates and records the location of ann agent, as well as associating a name with thin agent. The location may inchole an IP address and a port code, and allows an agent to be found just by using its name. It is also responsible for destroying agents.
(d) Briefly describe the role of the Directory Facilitator.

This provide a yellow-pages based discovery service, to allow agents to locate other agents based on the services that they provide.

It is often useful to distinguish ontologies based on their role (i.e. how they are going to be used). Briefly describe the role of each of the following:
(e) Upper Ontology
(3 marks)
An upper ontology contains concepts that are very geneal
and that car be used to derabe the world. It Nf: ives very general concepts (eg "thing", "non-liumg thing") that are common across all domains. Often, upper ontalogies are used to support semantic interoperability between Domain Ontologies
(f) Domain Ontology
(3 marks)
A domain ontology is an ontology that describes a particular domain or part of the world. For excample a medical domain ontology could describe concepts relating to medical temindogy.
(g) Application Ontology
(3 marks)
Ar application ontology defines the concepts used by a specific application,
building on the concepts defined in a domain ontology.
3. In the context of cooperative games, consider the following marginal contribution net:

$$
\begin{array}{rr}
a \wedge c \rightarrow 8 & \text { Rule 1 } \\
b \wedge \neg a \rightarrow 5 & \text { Rule 2 } \\
c \wedge \neg a \rightarrow 2 & \text { Rule 3 } \\
c \rightarrow 5 & \text { Rule 4 } \\
b \wedge \neg c \rightarrow 3 & \text { Rule 5 } \\
d \rightarrow 9 & \text { Rule 6 } \\
d \wedge c \rightarrow 4 & \text { Rule 7 }
\end{array}
$$

Let ν be the characteristic function defined by these rules. Give the values of the following, and in each case, justify your answer with respect to the rule or rules of the above marginal contribution net:
a) $\nu(\{\varnothing\})$ Note this intechrically incorrect and should be $\gamma(\phi)$ No rules apply, and therefore $\gamma(\phi)=0$
(2 marks)
b) $\nu(\{a, c\})$
(2 marks)
This matches rule 1 and rule 4

$$
\therefore r(\{a, c\})=8+5=13
$$

c) $\nu(\{b, c, d\})$
(2 marks)
This matches rules $2,3,4,6$ and role 7

$$
\therefore r(\{b, c, d\})=5+2+5+9+4=25
$$

d) $\nu(\{b, c\})$
(2 marks)
This matches rules 2,3 and rule 4

$$
\therefore r(\{b, c\})=5+2+5=12
$$

e) $\nu(\{a, b, c, d\})$
(2 marks)
This matches roles $1,4,6$ and role 7

$$
\therefore r(\{a, b, c, d\})=8+5+9+4=26
$$

The following figure shows an induced sub-graph for a coalition game with agents $A g=$ $\{a, b, c\}$.

(f) Compute the Shapley values for the agents a, b, and c . You should show the relevant steps in your answer that are used to derive the answer. ($\mathbf{9}$ marks, $\mathbf{3}$ for each agent) The shupley value for each agent is determined by using the syonmetiry axiom, to share the value of each edge between its two nodes, and the additivity axiom to treat each edge as a separate gone.
The shupley value (for subgraphs with no cycles) can be derived as follows:

$$
\varphi_{i}=1 / 2 \sum_{j \neq i} W_{i, j}
$$

$$
\begin{aligned}
& \varphi_{a}=1 / 2(6+8)=7 \\
& \varphi_{b}=1 / 2(6+2)=4 \\
& \varphi_{c}=1 / 2(8+2)=5
\end{aligned}
$$

4. Twenty three friends make plans to go to see a movie, and decide to use a Social Choice Function to decide on a genre. Each friend can be considered as an agent, such that we have $n=23$ agents. The set of outcomes can be defined as

$$
\Omega=\{\text { action, romance, comedy, drama, horror }\}
$$

The preference schedule is shown below, and states how many votes are given for each preference order:

Votes	4	7	3	9
First Choice	action	romance	comedy	drama
Second Choice	drama	drama	action	horror
Third Choice	comedy	horror	drama	action
Forth Choice	romance	action	horror	romance
Fifth Choice	horror	comedy	romance	comedy

Given this preference schedule, calculate the winner (and in each case show the working) using:
a) Plurality voting

Plurality voting
We simply count the marks)
as first choice. Thus, we of votes that place an outcome as first choice. Thur, we have
action: 4 votes action: 4 votes romance: 7 votes commedy: 3 votes Drama wins drama: 9 votes horror: Ovotes
b) Alternative vote

In this coss, we proceed in rounds, where at the end of each round, the outcome with the least number of votes is eliminated, until we have an out come with a majority

Drama wins

Total weber of votes:23
votes needed for majority: 12
Round I: we elianiate horror Round 2: we eliminate comedy Round 3: we can either eliminate action or romance (Note that the methorl for resolving, ties is undefined in tho alternative vote system).

In this case we elicirinate action
c) The following payoff matrix (A) is for the "chicken":

The following payoff matrix (B) is for the "matching pennies":

j| | defect | | coop | |
| :---: | :---: | :---: | :---: | :---: |
| defect | | -1 | | 1 |
| | 1 | | -1 | |
| coop | | 1 | | -1 |
| | -1 | | 1 | |

The following payoff matrix (C) is for some other, unnamed game:

For each of these payoff matrices:
(i) Identify all (pure strategy) Nash Equilibria;
A : $C D$ and $D C$
B : None
C : DD
(i) Identify all Pareto optimal outcomes;
A: $C C, C D, D C$
B : all of them
Note that in my revision artes
entitled mochloger, Q5, it toten,
C:DD
that nore of the Matiohing
Pennies are pareto optimal.
Thi was a typo
(iii) Identify all outcomes that maximise social welfare.

$$
\begin{aligned}
& A: C C, C D, D C \\
& B: A l l \text { (thi is a zero sum gane) } \\
& C: D D
\end{aligned}
$$

