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Autonomous Agents
• An agent is… 

• …a computer system that is capable of 
independent (autonomous) action on behalf of its 
user or owner (figuring out what needs to be 
done to satisfy design objectives, rather than 
constantly being told). 

• Systems like Deep Space 1 and the 
Autonomous Asteroid Exploration Project 
show that it is possible to do this!



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

A Vision: Autonomous 
Space Probes

• When a space probe makes its long flight from Earth to the 
outer planets, a ground crew is usually required to continually 
track its progress, and decide how to deal with unexpected 
eventualities.  

• This is not fiction: NASA’s DS1 did this years ago!

• This is costly and, if decisions are 
required quickly, it is simply not 
practicable. 

• For these reasons, organisations like 
NASA are seriously investigating the 
possibility of making probes more 
autonomous — giving them richer 
decision making capabilities and 
responsibilities.
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So what are Robots?
The word “robot” was first 
used in Karel Capek’s play 
“Rossum’s Universal 
Robots” in 1920

Isaac Asimov coined 
the term “robotics” in 
1942. 
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So what are Robots?
“…a programmable, 
multifunction manipulator 
designed to move material, 
parts, tools, or specialized 
devices through variable 
programmed motions for the 
performance of a variety of 
tasks…” 

Robot Institute of America 
(1980) 

“…[a] physical agent that performs tasks by manipulating the physical 
world…” Russell and Norvig (2003).
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Robots, Teleoperation 
and Autonomy

• Many autonomous vehicles are not really 
autonomous 
• They are teleoperated. 

• Autonomous Robots make their own decisions
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What is an Agent?
• The main point about agents is they are 

autonomous: capable independent action. 
• Thus: 

• It is all about decisions 
• An agent has to choose what action to perform. 
• An agent has to decide when to perform an action.

“... An agent is a computer system that is situated in some 
environment, and that is capable of autonomous action in that 
environment in order to meet its delegated objectives...”
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Agent and Environment

Effectors (Action)

Sensors 
(Percepts)

Environment

The fundamental question is what action(s) 
to take for a given state of the environment



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

What is mobile 
robotics?

• In mobile robotics this becomes three questions: 

• Where am I ? 
• Where am I going ? 
• How do I get there ? 

• The robotics part of this course is about answering those 
questions.

?
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Autonomy
• There is a spectrum of autonomy 

• Autonomy is adjustable 
• Decisions handed to a higher authority when this is 

beneficial

Simple Machines
(no autonomy)

People
(full autonomy)
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Simple (Uninteresting) 
Agents

• Thermostat 
• delegated goal is maintain room temperature 
• actions are heat on/off 

• UNIX biff program 
• delegated goal is monitor for incoming email 

and flag it 
• actions are GUI actions. 

• They are trivial because the decision 
making they do is trivial.
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Intelligent Agents

• We typically think of as intelligent agent as 
exhibiting 3 types of behaviour: 
• Pro-active (goal-driven); 
• Reactive (environment aware) 
• Social Ability.
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Proactiveness
• Reacting to an environment is easy 

• e.g., stimulus → response rules 

• But we generally want agents to do things for us. 
• Hence goal directed behaviour. 

• Pro-activeness = generating and attempting to 
achieve goals; not driven solely by events; taking 
the initiative. 
• Also: recognising opportunities.



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Reactivity
• If a program’s environment is guaranteed to be fixed, a 

program can just execute blindly. 
• The real world is not like that: most environments are dynamic 

and information is incomplete. 

• Software is hard to build for dynamic domains: program 
must take into account possibility of failure 
• ask itself whether it is worth executing! 

• A reactive system is one that maintains an ongoing 
interaction with its environment, and responds to changes 
that occur in it (in time for the response to be useful).
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Social Ability
• The real world is a multi-agent environment: we 

cannot go around attempting to achieve goals without 
taking others into account. 
• Some goals can only be achieved by interacting with others. 
• Similarly for many computer environments: witness the 

INTERNET. 

• Social ability in agents is the ability to interact with 
other agents (and possibly humans) via cooperation, 
coordination, and negotiation. 
• At the very least, it means the ability to communicate. . .
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Abstract Architectures 
for Agents

• Assume the world may be in any of a finite set E of discrete, instantaneous 
states:  

• Agents are assumed to have a repertoire of possible actions available to 
them, which transform the state of the world.  

• Actions can be non-deterministic, but only one state ever results from and action.  

• A run, r, of an agent in an environment is a sequence of interleaved world 
states and actions: 

r : e0
↵0�! e1

↵1�! e2
↵2�! e3

↵3�! · · · ↵u�1�! eu

Ac = {↵,↵0, . . .}

E = {e, e0, . . .}
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Abstract Architectures 
for Agents (1)

• When actions are deterministic each state has only 
one possible successor. 

• A run would look something like the following:

North

North
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Abstract Architectures 
for Agents (2)

• When actions are deterministic each state 
has only one possible successor. 

• A run would look something like the following:

East

North
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Abstract Architectures for 
Agents

• Maecenas aliquam maecenas ligula nostra, 
accumsan taciti. Sociis mauris in integer 

• El eu libero cras interdum at eget habitasse 
elementum est, ipsum purus pede 

• Aliquet sed. Lorem ipsum dolor sit amet, 
ligula suspendisse nulla pretium, rhoncus

North

North

We could illustrate 
this as a graph...
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Abstract Architectures for 
Agents

• Maecenas aliquam maecenas ligula nostra, 
accumsan taciti. Sociis mauris in integer 

• El eu libero cras interdum at eget habitasse 
elementum est, ipsum purus pede 

• Aliquet sed. Lorem ipsum dolor sit amet, 
ligula suspendisse nulla pretium, rhoncus

North

North

When actions are non-
deterministic a run (or 
trajectory) is the same, but 
the set of  possible runs is 
more complex.
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Runs
• In fact it is more complex still, because all of the runs 

we pictured start from the same state.  
• Let: 

• We will use r,r′,... to stand for the members of 
• These sets of runs contain all runs from all starting 

states.

R be the set of all such possible finite sequences (over E and Ac);
RAc

be the subset of these that end with an action; and

RE
be the subset of these that end with a state.

R
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Environments
• A state transformer function represents behaviour of the 

environment:  

• Note that environments are... 
• history dependent. 
• non-deterministic.  

• If              there are no possible successor states to r, so we say 
the run has ended. (“Game over.”)  

• An environment Env is then a triple                         where E is set 
of states, e0 ∈ E is initial state; and τ is state transformer function.

⌧ : RAc ! }(E)

⌧(r) = ;

Env = hE, e0, ⌧i
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Agents
• We can think of an agent as being a 

function which maps runs to actions: 

• Thus an agent makes a decision about 
what action to perform based on the history 
of the system that it has witnessed to date.  

• Let Ag be the set of all agents. 

Ag : RE ! Ac



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Systems
• A system is a pair containing an agent and 

an environment. 
• Any system will have associated with it a set 

of possible runs; we denote the set of runs of 
agent Ag in environment Env by: 

• Assume                  contains only runs that 
have ended.

R(Ag,Env)

R(Ag,Env)
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Systems

• Maecenas aliquam maecenas ligula nostra, 
accumsan taciti. Sociis mauris in integer 

• El eu libero cras interdum at eget habitasse 
elementum est, ipsum purus pede 

• Aliquet sed. Lorem ipsum dolor sit amet, 
ligula suspendisse nulla pretium, rhoncus

Formally, a sequence

(e0,↵0, e1,↵1, e2, . . .)

represents a run of an agent Ag in environment Env = hE, e0, ⌧i if:

1. e0 is the initial state of Env

2. ↵0 = Ag(e0); and

3. for u > 0,

eu 2 ⌧((e0,↵0, . . . ,↵u�1)) and

↵u = Ag((e0,↵0, . . . , eu))



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Why the notation?
• Well, it allows us to get a precise handle on some ideas 

about agents.  
• For example, we can tell when two agents are the same. 

• Of course, there are different meanings for “same”. Here 
is one specific one.  

• We won’t be able to tell two such agents apart by 
watching what they do. 

Two agents are said to be behaviorally equivalent with

respect to Env i↵ R(Ag1, Env) = R(Ag2, Env).
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Deliberative Agents
• Maecenas aliquam maecenas ligula nostra, 

accumsan taciti. Sociis mauris in integer 
• El eu libero cras interdum at eget habitasse 

elementum est, ipsum purus pede 
• Aliquet sed. Lorem ipsum dolor sit amet, 

ligula suspendisse nulla pretium, rhoncus

North

North

Potentially the agent will reach a different 
decision when it reaches the same state by 
different routes.

West
North

East

West
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Purely Reactive Agents
• Some agents decide what to do without reference to their history 

— they base their decision making entirely on the present, with 
no reference at all to the past.  

• We call such agents purely reactive: 

• A thermostat is a purely reactive agent. 

action : E ! Ac

action(e) =

⇢
o↵ if e = temperature OK
on otherwise.



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Reactive Agents
• Maecenas aliquam maecenas ligula nostra, 

accumsan taciti. Sociis mauris in integer 
• El eu libero cras interdum at eget habitasse 

elementum est, ipsum purus pede 
• Aliquet sed. Lorem ipsum dolor sit amet, 

ligula suspendisse nulla pretium, rhoncus

North

North

A reactive agent will always do the 
same thing in the same state.

West
North

West
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Purely Reactive Robots
• A simple reactive program for a robot might 

be:  
• Drive forward until you bump into something. 

Then, turn to the right. Repeat. 
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Agent

Agents with State

see action

next state

Environment

32
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Perception

• The see function is the agent’s ability to observe its 
environment, whereas the action function represents the 
agent’s decision making process.

• Output of the see function is a percept:

• ...which maps environment states to percepts.

• The agent has some internal data structure, which is 
typically used to record information about the 
environment state and history. 

• Let I be the set of all internal states of the agent.

see : E ! Per

33
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Actions and Next State 
Functions

• The action-selection function action is now defined 
as a mapping from internal states to actions:

• An additional function next is introduced, which maps 
an internal state and percept to an internal state:

• This says how the agent updates its view of the 
world when it gets a new percept. 

action : I ! Ac

next : I ⇥ Per ! I

34
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Agents with State

• Maecenas aliquam maecenas ligula nostra, 
accumsan taciti. Sociis mauris in integer 

• El eu libero cras interdum at eget habitasse 
elementum est, ipsum purus pede 

• Aliquet sed. Lorem ipsum dolor sit amet, 
ligula suspendisse nulla pretium, rhoncus

1. Agent starts in some initial internal state i0.

2. Observes its environment state e, and generates a percept see(e).

3. Internal state of the agent is then updated via next function, becoming
next(i0, see(e)).

4. The action selected by the agent is action(next(i0, see(e))).

This action is then performed.

5. Goto (2).
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A Robot with state
• per is a bool that indicates “against 

an object” 
• i is an integer, “against object for i 

steps”. 
• see updates per each step, 

indicating if the robot is against an 
object. 

• next is as follows:
Agent

see action

next state

Environment

next(i) =

⇢
i+1 if per = true

0 otherwise.

percepts actions
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A Robot with state
• Now the robot can take more sophisticated 

action. 

• For example, backing up if it cannot turn away from 
the wall immediately. 

• This is an example of a common situation in 
robotics. 

• Trading memory and computation for 
sensing.
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What is mobile 
robotics?

• Last time we boiled the challenges of mobile robotics down to: 

• Where am I ? 
• Where am I going ? 
• How do I get there ? 

• Now we’ll start talking about how to answer these questions.

?
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The pieces we need
• Locomotion and Kinematics 

• How to make the robot move, tradeoff between manoeverability and ease of 
control. 

• Perception
• How to make the robot ``see''. Dealing with uncertainty in sensor input and 

changing environment. Tradeoff between cost, data and computation. 

• Localisation and Mapping 
• Establish the robot's position, and an idea of what it's environment looks 

like. 

• Planning and navigation 
• How the robot can find a route to its goal, how it can follow the route.



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

General control 
architecture

Localisation

Perception Motion 
Control

Cognition

Environment Model
Local Map

Position
Global Map

Real World
Environment

Path
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General control 
architecture

Localization / Map 
Building

Information 
Extraction Path Execution

Cognition Path 
Planning

Environment Model
Local Map

Position
Global Map

Real World
Environment

Sensing Action

Raw Data Actuator Commands

Path

M
ot

io
n 

C
on

tr
ol

Pe
rc

ep
tio

n
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What makes it 
particularly hard

• Changing environment. 
• Things change. 
• Things get in the way. 

• No compact model available. 
• How do you represent this all? 

• Many sources of uncertainty. 
• All information comes from sensors which have errors. 
• The process of extracting useful information from sensors has errors
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• We start with what the robot can ``see''. 

• (These are not a particularly likely set of features.)

The basic operations

• There are several forms 
this might take, but it 
will depend on: 

• What sensors the robot 
has 

• What features can be 
extracted.
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• A map then says, for example, how these 
features sit relative to one another.

Mapping features

10 m

1mile

3 
m

ile
s

250 miles
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Localisation
• A robot localises by identifying features 

and the position in the map from which it 
could see them.

Lanser et al (1996)
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Navigation

• Navigation is then a combination of finding 
a path through the map…

10 9 8 7 8

11 10 6 7

5 6

1 2 4 5

0 1 2 3 4

S

G

10

obstacle cell

cell with 
distance value

…avoiding things 
that get in the way!
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How do we put these 
together?

• A system architecture 
specifies how these 
pieces fit together. 

• Consider these to be 
refinements of the “agent 
with state” from above. 
• Breaking down next and 

action into additional 
pieces. 

• Adding in new aspects of 
state i.

Agent
see action

next state

Environment

percepts actions
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Approach: Classical/
Deliberative

• Complete modelling 
• Function based 
• Horizontal decomposition

Localisation / Map Building

Perception

Motion Control

Cognition / Planning

Sensors

Actuators
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Approach: Behaviour 
Based

• Sparse or no modelling 
• Behaviour based 
• Vertical decomposition 
• Bottom up

Coordination / 
Fusion

e.g. fusion via vector 
summation

Communicate Data

Actuators

Discover new area

Detect goal position

Avoid Obstacles 

Follow right/left wall

ΣSensors
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Approach: Hybrid
• A combination of the previous two approaches. 
• Exactly the best way to combine them nobody 

knows. 
• Typical approach is: 

• Let ``lower level'' pieces be behaviour based 
• Localisation 
• Obstacle avoidance 
• Data collection 

• Let more ``cognitive'' pieces be deliberative 
• Planning 
• Map building



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Summary
• Last time we talked about what the main 

challenges of mobile robotics are. 
• These lectures started to describe how 

we can meet these challenges. 
• We covered the main things we need 

to be able to autonomously control a 
robot. 

• Along the way we looked at how 
notions of agency --- and what this 
means for autonomy --- can help. 

• In the next lecture, we will start to look at 
Lego EV3 components and the Lejos 
environment


