
COMP329
Robotics and
Autonomous Systems

Dr Terry R. Payne
Department of Computer Science

Lecture 6: Behaviour Based Robots

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

General control architecture

2

Localisation

Perception Motion Control

Cognition

Environment Model
Local Map

Position
Global Map

Real World
Environment

Path

Our control loop diagram implies an ordering over the operations

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Behaviours

3

The classic “Sense/Plan/Act” approach breaks it down serially like this

Localisation / Map Building

Perception

Motion Control

Cognition / Planning

Sensors

Actuators

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Behaviours

•Behaviour based control sees things differently
• Behavioural chunks of control each connecting sensors to motors
• Implicitly parallel

4

Coordination / Fusion
e.g. fusion via vector

summation

Communicate Data

Actuators

Discover new area

Detect goal position

Avoid Obstacles

Follow right/left wall

ΣSensors

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Behaviours
•Range of ways of combining behaviors.

•Some examples:
• Pick the ``best''
• Sum the outputs
• Use a weighted sum

•Flakey redux used a fuzzy combination
which produced a nice integration of
outputs.

5

Coordination / Fusion
e.g. fusion via vector

summation

ActuatorsΣ

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Subsumption Architecture
•A subsumption architecture is a hierarchy of

task-accomplishing behaviours.
• Each behaviour is a rather simple rule-like structure.
• Each behaviour ‘competes’ with others to exercise control

over the agent.
• Lower layers represent more primitive kinds of behaviour, (such

as avoiding obstacles), and have precedence over layers
further up the hierarchy.

•The resulting systems are, in terms of the
amount of computation they do, extremely
simple.
• Some of the robots do tasks that would be impressive if they

were accomplished by symbolic AI systems.
6

Rodney Brooks “subsumption
architecture” was originally
developed open Genghis

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Brooks Behavioural Languages

•Brooks proposed the following three theses:
1. Intelligent behaviour can be generated without explicit

representations of the kind that symbolic AI proposes.
2. Intelligent behaviour can be generated without explicit

abstract reasoning of the kind that symbolic AI
proposes.

3. Intelligence is an emergent property of certain complex
systems.

7

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Brooks Behavioural Languages

•He identified two key ideas that have informed his research:
1. Situatedness and embodiment: ‘Real’ intelligence is situated in the world,

not in disembodied systems such as theorem provers or expert systems.
2. Intelligence and emergence: ‘Intelligent’ behaviour arises as a result of an

agent’s interaction with its environment. Also, intelligence is ‘in the eye of
the beholder’; it is not an innate, isolated property.

•Brooks built several agents (such as Genghis) based on his
subsumption architecture to illustrate his ideas.

8

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Subsumption Architecture
• It is the piling up of layers that gives the approach of its power.

• Complex behaviour emerges from simple components.
• Since each layer is independent, each can independently be:

• Coded / Tested / Debugged

• Can then assemble them into a complete system.

9

Coordination / Fusion
e.g. fusion via vector

summation

Communicate Data

Actuators

Discover new area

Detect goal position

Avoid Obstacles

Follow right/left wall

ΣSensors

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Real World Example: Stanley
•Won the 2005 DARPA Grand Challenge

• Used a combination of the subsumption
architecture with deliberative planning

• Consists of 30 different independently operating
modules across 6 layers

10

Global Services Layer

User Interface Layer

Vehicle Interface Layer

Planning and Control layer

Perception layer

Sensor interface layer

The key challenge… was not one of action, but one of perception…

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Subsumption Architecture
• The resulting systems are, in terms of the amount of

computation they do, extremely simple.

• However, some of the robots achieve quite impressive
tasks.

• Steels' Mars explorer system, using the subsumption
architecture, achieves near-optimal cooperative
performance in simulated “rock gathering on Mars” domain.

11

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Steel’s Mars Explorer System
•Steels’ Mars explorer system, using

the subsumption architecture,
achieves near-optimal cooperative
performance in simulated ‘rock
gathering on Mars’ domain
• Individual behaviour is governed by a set of

simple rules.
• Coordination between agents can also be

achieved by leaving “markers” in the
environment.

12

Objective
To explore a distant planet, and in particular, to
collect sample of a precious rock. The location
of the samples is not known in advance, but it
is known that they tend to be clustered.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Steel’s Mars Explorer System
1. For individual (non-cooperative) agents, the lowest-level

behavior, (and hence the behavior with the highest “priority”)
is obstacle avoidance.

2. Any samples carried by agents are dropped back at the
mother-ship.

3. If not at the mother-ship, then navigate back there.
• The “gradient” in this case refers to a virtual “hill” radio signal that slopes up to

the mother ship/base.

4. Agents will collect samples they find.

5. An agent with “nothing better to do” will explore randomly.
This is the highest-level behaviour (and hence lowest level
“priority”).

13

if true then move randomly
5

if detect a sample then pick
sample up

4

 if carrying a sample and not at
the base then travel up gradient

3

 if carrying a sample and at the
base then drop sample

2

 if detect an obstacle then change
direction

1

Lo
w

 .
..

P

ri
o

ri
ty

..

.
H

ig
h

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Steel’s Mars Explorer System
•Existing strategy works well when samples are
distributed randomly across the terrain.

•However, samples are located in clusters
•Agents should cooperate with each other to locate clusters

•Solution to this is based on foraging ants.
•Agents leave a “radioactive” trail of crumbs when returning
to the mother ship with samples.

•If another agent senses this trail, it follows the trail back to the source of the
samples
•It also picks up some of the crumbs, making the trail fainter.
•If there are still samples, the trail is reinforced by the agent returning to the
mother ship (leaving more crumbs)
•If no samples remain, the trail will soon be erased.

14

 if sense crumbs then pick up 1
crumb and travel down gradient

4.5

 if carrying samples and not at
the base then drop 2 crumbs and

travel up gradient.

3’

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Emergent Behaviour
•Putting simple behaviours together leads to synergies

15

Forward motion with a
slight bias to the right

Obstacle
Avoidance

Wall Following

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Abstract view of a Subsumption Machine

•Layered approach based on levels of competence
• Higher level behaviours inhibit lower levels

•Augmented finite state machine:

16

ActuatorsBehaviour ModelSensors

Reset

SuppressionInhibition

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Toto
•Maja Mataric ́’s Toto is based on the subsumption architecture

• Can map spaces and execute plans without the need for a symbolic
representation.

• Inspired by “…the ability of insects such as bees to identify shortcuts between
feeding sites…”

•Each feature/landmark is a set of sensor readings
• Signature

•Recorded in a behaviour as a triple:
• Landmark type
• Compass heading
• Approximate length/size

•Distributed topological map.
17

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

ToTo
•Whenever Toto visited a particular

landmark, its associated map behaviour
would become activated
• If no behaviour was activated, then the landmark was

new, so a new behaviour was created
• If an existing behaviour was activated, it inhibited all

other behaviours

•Localization was based on which
behaviour was active.
• No map object, but the set of behaviours clearly

included map functionality.
18

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Behaviours in LeJOS
• LeJOS has the Behavior class which provides support for

implementing behaviour-based systems.
• Not quite a subsumption architecture, but clearly inspired by it.

• At any time, only one behaviour can be active and in control of the robot
• Each behaviour has a fixed priority
• Each behaviour can determine whether it should take control
• The active behaviour has higher priority then any other behaviour that may take control

• We'll look at a simple use of it to create a controller for the EV3.
• We’ll build on the notion of a “standard robot”, which will be illustrated later

19

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Behaviours in LeJOS
•The Behaviour API consists of just one

interface and one class:
• Behavior interface---implemented by all behaviours

• Arbitrator class---regulating priorities between
behaviours

•This enables a very general and flexible
approach to behaviours in LeJOS.
• Even though the implementation of each behaviour

vary, all behaviors are treated in the same way
• Both Behavior and Arbitrator are located in the

lejos.subsumption package
20

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Behaviour
•Each behaviour is implemented in its own class, which must

implement the Behavior interface

•The Behavior interface requires a class to implement three methods:
• boolean takeControl()

• returns true if the behaviour thinks it should take control.

• void action()
• the code executed when the behaviour is in control.

• void suppress()
• called to terminate the code in the action() method.

•Unlike the full subsumption architecture there is no ``inhibit''.
21

Note the spelling of the Behavior class, which follows the US spelling!!!

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Writing the action() method

•Typical example of an action
• suppressed is a flag set by the method

suppress()

•Recommended design patterns
• action() should quit quickly when suppress()

is called.
• action() should leave the robot “clean” (i.e. no

motors running)

22

public void action(){
 suppressed = false;
 while(!suppressed){
 // do my thing
 }

}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Writing the suppress() method

•With action() method as given
above, the method suppress() could
be as simple as:
• Since this will immediately disable the loop in

action()

23

public void suppress(){
 suppressed = true;
}

public void action(){
 suppressed = false;
 while(!suppressed){
 // do my thing
 }

}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Arbitrator
•The Arbitrator class allows us to select between

competing behaviours
• Behaviors that think they should be in control.

• Arbitrator(Behavior[] behaviors, boolean returnWhenInactive)

• with parameters:
• Array of behaviors: lower index = lower priority
• returnWhenInactive: if true the program exits when there is no behaviour wanting to take

control.

• Method: public void start()

•Arbitrator picks the first one that thinks it should be in
control.
• Despite this picture, which comes from the LeJOS website, I think that the

higher indexed behaviours are considered before lower indexed ones…
24

List of behaviours is ordered

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Code Example:
Forward/Avoid

•The code examples on the website include…
• ForwardBehaviour.java: moves the robot forward
• AvoidBehaviour.java: reacts to an obstacle

•Uses the StandardRobot and RobotMonitor
classes we will visit when looking at
Threading.
• yield() is being used here to allow other threads to run

--- effectively a sleep() that doesn't have a fixed
duration.
• Not clear if this is the best way to solve the problem here….

25

import lejos.robotics.subsumption.Behavior;

public class ForwardBehaviour implements Behavior{
 public boolean suppressed;
 private SimpleRobot robot;

 public ForwardBehaviour(SimpleRobot r){
 robot = r;
 }

 public void suppress(){
 suppressed = true;
 }

 // Start driving and then yield (for a non-busy wait).
 // If suppressed, then stop the motors and quit.
 public void action(){
 suppressed = false;
 robot.startMotors();

 while(!suppressed){
 Thread.yield();
 }
 robot.stopMotors();
 }

 // Take control if the robot hits something
 public boolean takeControl(){
 return true;
 }
}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Code Example:
Forward/Avoid

•The code examples on the website
include…
• ForwardBehaviour.java: moves the robot forward
• AvoidBehaviour.java: reacts to an obstacle

•The Arbitrator will let the
AvoidBehaviour method take over
when an obstacle is detected
• Note that this code doesn't allow the behaviour to

be suppressed
26

import lejos.robotics.subsumption.Behavior;

public class AvoidBehaviour implements Behavior{
 public boolean suppressed;
 private SimpleRobot robot;

 public AvoidBehaviour(SimpleRobot r){
 robot = r;
 }
 public void suppress(){
 suppressed = true;
 }
 // Back up, turn and then quit safely by stopping the

 // motors. Since this is meant to be a short, high
 // priority behaviour, it doesn't do being suppressed.

 public void action(){
 robot.reverseMotors();
 try{
 Thread.sleep(2000);
 } catch(Exception e){}
 robot.turnMotors(true);

 try{
 Thread.sleep(2000);
 } catch(Exception e){}
 robot.stopMotors();
 }

 // Take control if the robot hits something
 public boolean takeControl(){
 return (robot.isLeftBumpPressed() ||

robot.isRightBumpPressed());
 }
}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

How we combine them…

27

import lejos.robotics.subsumption.Arbitrator;
import lejos.robotics.subsumption.Behavior;

public class ForwardAvoid {

public static void main(String[] args) {
// Which robot are we controlling?
SimpleRobot me = new SimpleRobot();

// Setup the monitor
// This isn't necessary for the behavior-based control.
RobotMonitor rm = new RobotMonitor(me, 300);
rm.start();

// Set up an arbitrator
Behavior b1 = new ForwardBehaviour(me);
Behavior b2 = new AvoidBehaviour(me);
Behavior[] bArray = {b1, b2};
Arbitrator arb = new Arbitrator(bArray, true);
arb.go();

}
}

The SimpleRobot class provides a basic robot
with abstract controls. The RobotMonitor class
is a headed class that gives status information of
the various sensors on the robot.

The Arbitrator is created by passing an ordered
array of behaviours, with the lowest priority ones
(in this case, ForwardBehaviour) being earlier
in the array. The Arbitrator is initialised by
calling the method go()

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Summary
•This lecture looked at behaviour

based robots.
• We looked at the basic principle of the

subsumption architecture and emergent
behaviour

• We looked that LeJOS support for programming
this way.

•The next lecture will look at Maps,
mapping, and models

28

