
COMP329 
Robotics and 
Autonomous Systems

Dr Terry R. Payne 
Department of Computer Science

Lecture 4: LeJOS and EV3



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Today’s Aims
•Before the labs start, we will take a look at the 

basics of programming our EV3 robots. 
• There will be three elements: 

• Programming robots in the abstract. 
• The EV3 Environment 
• The LeJOS API 

•The EV3 is the robot we will use for the labs and 
the projects. 
• LeJOS is the language we will use to program the EV3. 

•The COMP329 RoboSim environment 
• Provides prototyping environment when Robotics Lab is closed

2



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Basic Control Loop

•Even robots with arms 
and legs move them by 
turning motors on and off.

3

while(true){

read sensors

update internal datastructures

make decisions

set power on motors

}

Agent

see action

next state

percepts actions



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Basic Control Loop
•We'll get into more detail about how 

exactly sensors work later in the 
course. 
• For now, just think of them as generating a value. 

•We won't get into more detail about 
how motors work. 
• Just think of a motor command as setting the 

power on the motors. 
• Setting the voltage on a particular port.

4

while(true){

read sensors

update internal datastructures

make decisions

set power on motors

}



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Remember Timescales
•Even slow processors work faster 

than the robot. 
• The code opposite does not allow the robot time 

to move 

•You need to use sensors to  
determine when to activate/deactivate 
the motors 
• Assuming this and that are suitable values

5

while(true){

switch motors on

:

do stuff

:

switch motors off

}

while(true){

read sensors

:

do stuff

:

if sensors say "this"{

switch motors on

}

if sensors say "that"{

turn motors off

}

}



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Our Robot
•The Lego EV3 brick is a small computer 

• powered by a Li-Ion rechargeable battery 
• intended for robot control. 

• 32-bit ARM9 CPU running Linux, running at 300 MHz 
• 16 Mbytes non-volatile flash storage  

• for storing programs 

• 64 Mbytes RAM 
• for runtime memory 

•Speaker & Simple Display 
• 178×128 pixel monochrome LCD

6



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

The Brick Schematics
•Input 

• 4 ports (1 to 4) for sensors. 
• 6 input buttons (left, right, up, down, centre, escape) 

•Output 
• 4 ports (A, B, C and D) for actuators/motors. 
• 178×128 pixel monochrome LCD 

• Connectivity 
• 1 USB port (for downloading programs on the brick) 
• Bluetooth connection (for communication with computer) 
• Micro SD card (storing programs and booting OS)

7



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Motors and Locomotion
•These are the basic actuators of the 

EV3 kit. 

•These are servomotors 
• Motor plus feedback 
• A sensor measures information about rotation and 

supplies it back to the brick. 
• The motor can be controlled very precisely. 

•We will use these to provide locomotion. 
• Other uses involve robotic arms, or active sensor 

support
8



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensors - Touch
•Detects when the orange button is 

pressed. 
• Returns a Boolean 

• TRUE = sensor is pressed 
• FALSE = sensor is not pressed 

•Mechanically the sensors work better if 
there is a bumper that presses the sensor. 

•Our robot has two bumpers: 
• left and right.

9



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensors - Infrared
•Standard range sensor. 

• We will talk more about how sonar work in a later lecture. 
• Reports distance to object. 

•Works effectively for objects in close proximity: 
• Effective range is 5 - 50cm 
• Precision of ±3cm 

•Sensitive to the kind of objects it is detecting 
and subject to errors due to specular reflection.   

•Our robot has one infrared sensor.
10



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensors - Light/Colour

•Emits light and measures the 
reflection. 
• Analyses the colour of the reflection. 
• Can distinguish between a number of different 

colours.

11



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Overall…

•Might not seem much, BUT: 
• Has pretty much the same capabilities as any 

mobile robot. 
• Can do all the mobile robot things I mentioned 

last time. 

•Just as fun and frustrating.

12



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

LeJOS
•Lego Java Operating Systems 

• Spanish pronounciation: 
• “Lay-Hoss" 

• A small JVM is booted from the Micro SD card 
and allows Java programs to be executed. 

• Runs Java 1.7 

•Some standard Java things are 
missing. 
• Original LeJOS VM was called “Tiny VM” 

•However LeJOS has lots of useful 
robot-specific stuff. 

• Java-based, so OO. 
• The robot-specific things are implemented as 

classes + objects. 

•Classes to represent, for example: 
• Buttons 
• Motors 
• Sensors 

•Access to these devices is then 
through method calls.

13



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

LeJOS

•In many ways LeJOS is just like other robot 
programming languages. 

•Provides function calls that interface with with 
the robot hardware. 
• This means no robot programming language can be 

completely general… 
• …aspects of the language are specific to the hardware.

14



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Hello World
•The completely standard program runs: 

•However, without waiting, the message will flick by too fast to see. 
• The method Button.waitForAnyPress() is needed to stop the program from 

ending and clearing the display.

15

import lejos.hardware.Button; 

public class HelloWorld { 
    public static void main (String[] args) { 
        System.out.println(“Hello World”); 
        Button.waitForAnyPress(); 
    } 
}



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Using Motors

16

• Note that motors have to be 
connected to ports B and C for this to 
have any effect. 
• This is the case for our EV3 robot 

• Robot control programs are very 
sensitive not only to the robot chassis, 
but also to the way the robot is wired.

import lejos.hardware.Button; 
import lejos.hardware.lcd.LCD; 
import lejos.hardware.motor.Motor; 

public class SimpleDriver { 
    public static void main (String[] args) { 
        System.out.println(“Press any button to start”); 
        Button.waitForAnyPress(); 
        LCD.clear(); 
        Motor.B.forward(); 
        Motor.C.forward(); 
        System.out.println(“Press any button to stop”); 
        Button.waitForAnyPress(); 
        Motor.B.stop(); 
        Motor.C.stop(); 
    } 
}

This is a simple version! 

Better to use the regulated class 

(used in the lab example)



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Using Sensors

17

• To use a touch sensor we need to 
introduce a couple more objects. 
• The touch sensors themselves; and 
• The sensor port they are connected to. 

• A basic loop is used in which sensors are 
read and a decision made based on the 
sensor state.

import lejos.hardware.Button; 
import lejos.hardware.lcd.Font; 
import lejos.hardware.ev3.LocalEV3; 
import lejos.hardware.sensor.EV3TouchSensor; 
import lejos.robotics.SampleProvider; 
import lejos.hardware.motor.Motor; 

public class SimpleSensor { 
	 public static void main(String[] args) { 
	 	 EV3TouchSensor leftBump = new EV3TouchSensor(LocalEV3.get().getPort("S2")); 
	 	 EV3TouchSensor rightBump = new EV3TouchSensor(LocalEV3.get().getPort("S1")); 
	 	 SampleProvider leftTouch= leftBump.getMode("Touch"); 
	 	 SampleProvider rightTouch= rightBump.getMode("Touch"); 

	 	 float[] leftSample = new float[leftTouch.sampleSize()]; 
	 	 float[] rightSample = new float[rightTouch.sampleSize()]; 
	 	  
	 	 while (!Button.ESCAPE.isDown()) { 
	 	 	 leftTouch.fetchSample(leftSample, 0); 
	 	 	 if (leftSample[0] == 1.0) { 
	 	 	 	 Motor.B.forward(); 
	 	 	 	 Motor.C.forward(); 
	 	 	 } 
	 	 	 rightTouch.fetchSample(rightSample, 0); 
	 	 	 if (rightSample[0] == 1.0) { 
	 	 	 	 Motor.B.stop(); 
	 	 	 	 Motor.C.stop(); 
	 	 	 } 
	 	 } 
	 	 leftBump.close(); 
	 	 rightBump.close(); 
	 } 
} 



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Development Cycle
•Another difference between the 

programs you have written before 
and robot programs. 
• You do the usual: 

• Write 
• Compile + Link 
• Debug 

• as before. 

•However, there is one more step… 
• …before running the program you have to 

download it onto the robot. 
• Through USB or Bluetooth.

18



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Development Cycle
• If you use Eclipse, the 

download step is mainly hidden. 
• But… 
• The robot must be turned on. 
• And the USB cable must be plugged in 

if you are using it. 
• You may also notice that compilation 

produces a .nxj file rather than a .class 
file. 

• If you use don't use Eclipse, 
you have to run commands to: 
• Compile 
• Link 
• Download 

• from the command line.

19

All this will be explained in the Practical Sessions



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Summary
•This lecture took a look at some of the 

issues in programming robots. 
• It presented a mixture of high-level concepts and 

practical advice. 
• The lecture also presented some information on 

LeJOS, which you will use to program the EV3 
robots. 

•In the next lecture, we will look at 
agents 
• Including the agent control loop!

20

Beginning Robotics 
Programming in 
Java with LEGO 
Mindstorms

T E C H N O L O G Y  I N  A C T I O N ™

—
Wei Lu

Available from Springer - check electronic availability 
through the library (Shibboleth) 

https://link.springer.com/book/10.1007%2F978-1-4842-2005-4


