

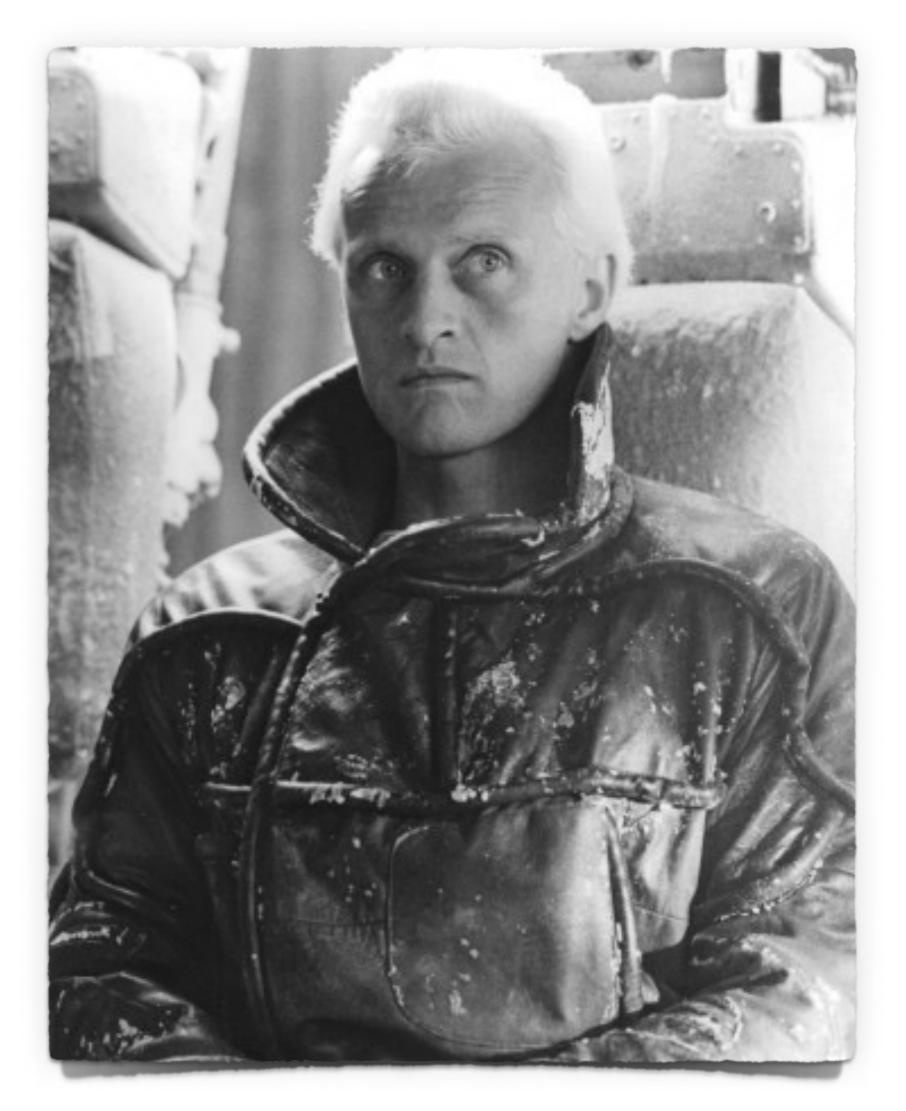
COMP329 Robotics and Autonomous Systems Session: 2017-2018

Dr Terry R. Payne Department of Computer Science

What is a robot?

Robert Tombs Macron, Corbyn, Brexit and the populist surge

Helen Lewis on the rise of Robert Icke Kate Mossman Give Bono a break


Nison Phillips Battle of the Wednesday witches

Laurence Scott The cult of 7 Ine Cultor Roger Federer 9 771364 743162

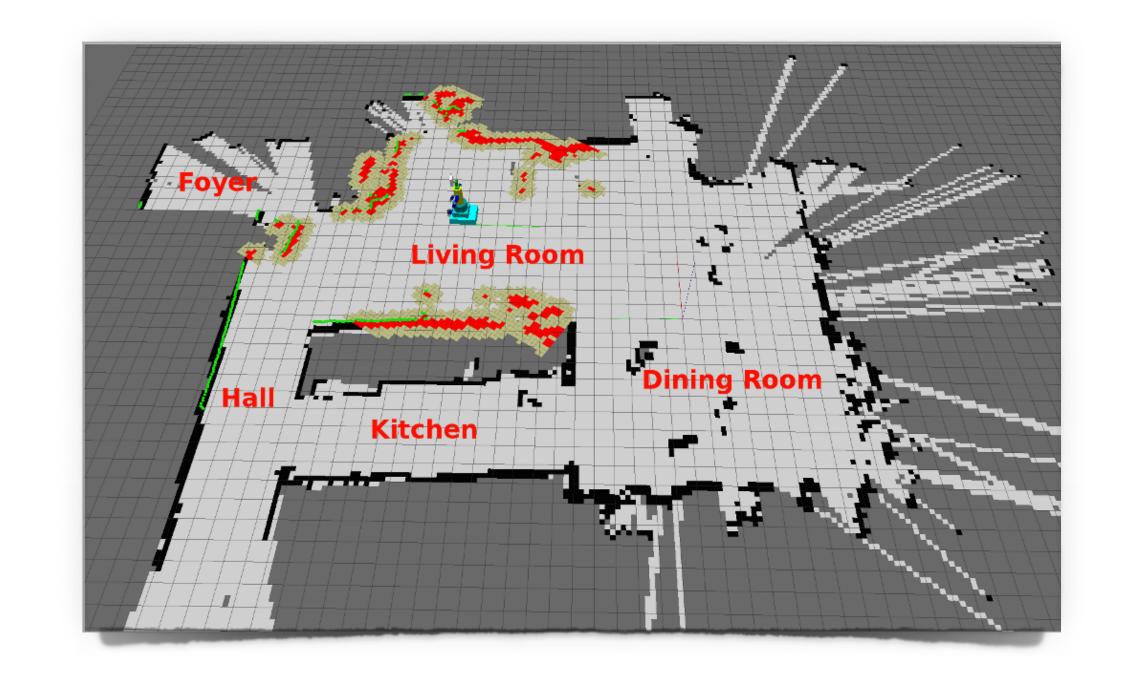
What is a robot?

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Boston Dynamics

Module Aims

- Complements the concepts taught in COMP310
 - Agents as rational decision makers
 - Deliberative vs Reactive Agents
 - Hybrid Systems
- Greater focus on how agent frameworks facilitate autonomy
 - Introduces agent development frameworks such as AgentSpeak


Two Strands

Principles of Robotics

- Sensors & Actuators
- Locomotion & Kinematics
- Path Planning & Obstacle Avoidance
- Localisation & SLAM
 - Simultaneous Location and Mapping

Principles of Autonomous Agents

- Agent control loop and modelling runs
- Subsumption Model & BDI Architectures

General Admin

• Lecturer: Dr Terry Payne

- Ashton Building
- Email: T.R.Payne@liverpool.ac.uk
 - Surgery: Mon/Tues/Thur (email for appointment)

Course Notes

- Available from the web site as pdfs
 - Lectures will be screen cast and available from the web sites

Web Site and Resources

- General information
 - http://www.csc.liv.ac.uk/people/trp/COMP329.html

COMP329: 2016-2017 Robotics and Autonomous Systems

Administration

Assessment: 100% CA

• Tues: 12.00 - 13.00 (ELEC-201)

• Wed: 12.00 - 13.00 (BROD-107)

• Thurs: 09.00 - 11.00 (Lab 5 Holt-109)

• Thurs: 11.00 - 13.00 (Lab 5 Holt-109)

• Thurs: 14.00 - 16.00 (Lab 5 Holt-109)

Assessment Weightings: 100% from 2

• Fri: 09.00 - 11.00 (Lab 5 Holt-109)

• Fri: 11.00 - 13.00 (Lab 5 Holt-109)

• Fri: 13.00 - 14.00 (CTH-LTD)

- Resources (this page): Course Module Web Page

• Lecture Times:

Practical Labs

pages

- Syllabus: COMP310
- Autonomous Agents: COMP329-2017-Lecture2.pdf Announcements: At lectures & on my teaching
 - Intro to LeJOS & NXT: COMP329-2017-Lecture4.pdf
 - Code: HelloWorld.java, SimpleDriver.java, SimpleSensor.java Locomotion: COMP329-2017-Lecture5.pdf

Lecture Sets (pdf

Robotics

- Kinematics: COMP329-2017-Lecture6.pdf
- Perception / Odometry: COMP329-2017-Lecture6b.pdf Code: SimplePilot.java, SimplePose.java

• About the course: COMP329-2017Introduction.pdf

- Perception: COMP329-2017-Lecture7.pdf
- Maps & Mapping: COMP329_Lecture8.pdf
- Localization: COMP329 Lecture9.pdf
- Threads & Multitasking in Robots: COMP329_Lecture10.pdf • Code: StandardRobot.java, RobotMonitor.java, RunMonitor.java
- Behavior Based Robots: COMP329 Lecture11.pdf Code: ForwardBehavior.java AvoidBehavior.java ForwardAvoid.java
- Navigation: COMP329_Lecture12.pdf
- Navigation in Lejos: COMP329_Lecture13.pdf Code: RunNavigator.java, PathFinder.java, PathFollower.java
- Bluetooth, Listeners, etc: COMP329_Lecture14.pdf Code: CommToConsole.java DriveWTListen.java LTouchListener.java
- myButtonListen.java SimpleDriveWBL.java Autonomous Systems
- Agent Based Systems: COMP329-2017-Lecture16.pdf
- Practical Reasoning & BDI: COMP329-2017-Lecture17.pdf
- AgentSpeak & Jason Intro: COMP329-2017-Lecture19.pdf
- AgentSpeak & Jason Advanced: COMP329-2017-Lecture20.pdf Code: mars.zip
- The Jason Interpreter: COMP329_Lect21.pdf
- Communication in Jason: COMP329_Lect22.pdf
- LeJOS and Jason: COMP329_Lect23.pdf

· Book Resources (pdf)

- Programming Multi-Agent Systems in AgentSpeak Using Jason (pdf)
- see also the Jason SourceForge site
- Introduction to Autonomous Robots (1st Edition pdf)

Lab

- · Lab 1: COMP329_lab01.pdf
- · Lab 2: COMP329_lab02.pdf
- · Lab 3: COMP329_lab03.pdf
- · Lab 4: COMP329_lab04.pdf

Assignment 1

• Details: To design of a robot that is able to navigate an arena, build a map of the arena, and communicate the map to the computer via Rluotooth

Iodule Description

- 1) To introduce the student to the concept of an autonomous agent;
- 2) To introduce the key approaches developed for decision-making in autonomous systems:

assignments

- 3) To introduce a contemporary platform for programming agents and multiagent systems;
- 4) To introduce the key issues surrounding the development of autonomous robots;
- 5) To introduce a contemporary platform for experimental robotics.

earning Outcomes:

.

t the end of the module, the student will be able to demonstrate

- 1) explain the notion of an agent, how agents are distinct from other software paradigms (e.g., objects), and judge the characteristics of applications that lend themselves to an agent-oriented solution;
- 2) identify the key issues associated with constructing agents capable of intelligent autonomous action;
- describe the main approaches taken to developing such agents;
- 4) use a contemporary agent programming platform (e.g., AgentSpeak) for developing significant software or hardware-based agents;
- b) Identify key issues involved in building agents that must sense and act within the physical world;
- 6) program and deploy autonomous robots for specific tasks.

7

Module Delivery

Lectures / Labs

- Lectures in Holt 223
- Supervised Lab Sessions in Robot Lab
 - Four Robot Bays for testing
 - Eight PCs (+ spare)
- Lab Capacity for Assessed Work
 - 8 groups max at any time, with groups taking turns using the bays
- RoboSym Robot Simulator
 - Java libraries to support prototyping solutions without the need for EV3

- Assessment
 - Groups of 3 students
 - 2 Assignments worth 50% each
 - Joint Demonstration
 - Individual Report

		9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16
Μ	Ion			COMP329 - Robotics & Autonomous Systems [LECTURE] COMP329/LEC/A	COMP329 /01 GHOLT- H223 S1 01-S1 12												
Т	ue	COMP329 - Robotics & Autonomous Systems [LECTURE] COMP329/LEC/B,	COMP329 /01 GHOLT- H223 S1 01-S1 12									-	cs &] 01	<u>MP329</u> <u>GHOLT-</u> <u>H109</u> (Lab5) -S1 12		
v	Ved	COMP329 - Ro [LAB] COMP329/LAB+/		onomous Syste	ems <u>COMP329</u> 0 <u>LT-H109 (Lab5)</u> S1 01-S1 12	Auto	nomou	• Robotics & us Systems [L B+/03 GHO	AB] COMP329 LT-H109 (Lab5) S1 01-S1 12								
т	'hu	COMP329 - Robotics & Autonomous Systems [LAB] COMP329/LAB+/05 GHOLT-H109 (Lab5) S1 01-S1 12						COMP329 - Robotics & Autonomous Systems [LECTURE] COMP329/LEC/0	CHOIT	_	& COMP329						
	Fri																

5:30 17:00 17:3

Assessment Details

- Two assignments (combined weight 100%) to be carried out in teams • The first assignment will be published end of Week 2
 - Provisional deadline: 3rd Nov (week 6)
 - The second assignment will be published end of Week 7
 - Provisional deadline: 10th Dec (week 11)
 - Each assignment is worth 50%
- Each assignment includes a demo component (organised on the Wednesday after submission deadline)
 - Teams are decided by the lecturer and are non-negotiable
 - The individual mark for each assignment will depend on:
 - Team Report / Individual Report / Demo Performance and Q&A / Peer Review

• PART 1: Robotics

• Principles of robotics

- Modelling paradigms
- Perception & Odomotory
- Locomotion & Kinematics
- Path planning and obstacle avoidance
- Mapping and localisation
- the EV3 platform, and the LeJOS programming language.

Module Structure

- PART II: Autonomous systems
 - Principles of agent theory
 - **Beliefs Desires Intention**
 - Subsumption Architecture
 - Robots viewed as agents (autonomous) systems), and
 - the Jason programming language, agent coordination.

Module Aims

Module Aims

- To introduce the student to the concept of an autonomous agent
- To introduce the key approaches developed for decision-making in autonomous systems;
- To introduce a contemporary platform for programming agents and multiagent systems;
- To introduce the key issues surrounding the development of autonomous robots; • To introduce a contemporary platform for experimental robotics.
- Assessed through the two coursework assignments

- Explain the notion of an agent, how agents are distinct from other software paradigms (e.g., objects), and judge the characteristics of applications that lend themselves to an agent-oriented solution
- Identify the key issues associated with constructing agents capable of intelligent autonomous action
- Describe the main approaches taken to developing such agents
- Use a contemporary agent programming platform (e.g., AgentSpeak) for developing significant software or hardware-based agents
- Identify key issues involved in building agents that must sense and act within the physical world
- Program and deploy autonomous robots for specific tasks

Module Objectives

• At the end of the module, the student will be able to demonstrate:

Soft Skills

• You will be able to practice how to work in groups:

- discussing solutions together
- distributing tasks and managing time
- giving and keeping deadlines
- respecting each others ideas
- spanning over several weeks
 - planning ahead
 - keeping track of design challenges and choices made
- Don't underestimate the challenge of either of these aspects.

• You will be able to practice how to manage a computer science project

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Course Texts

- Much of this module is based on Michael Wooldridge's book:
 - An Introduction to MultiAgentSystems
 - Wiley 2009
 - http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/IMAS2e.html

• Other books worth checking...

- Introduction to Autonomous Mobile Robots by Roland Siegwart, Illah R. Nourbakhsh and Davide Scaramuzza
- Autonomous Robots: From Biological Inspiration to Implementation and Control by George A Bekey
- Programming Multi-agent Systems in AgentSpeak Using Jason by Rafael H. Bordini, Jomi Fred Hubner and Michael Wooldridge

An Introduction to **MultiAgent Systems** AICHAEL WOOLDRIDGE

LEY SERIES IN AGENT TECHNOL programming multi-agent systems in AgentSpeak using Tase

SECOND EDITION

Autonomous Mobile Robots

• The obvious...

- Switch off all mobile phones during lectures
- Do not sign the register on behalf of others
- Attend lectures and attempt the exercises set this will help you do the continuous assessments
- Ask questions if there is anything that you do not understand

And respect your fellow students...

- There are people here who want to learn!
- If you want to talk or mess around, then fine...
- ...BUT do it somewhere else!

Finally

