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Locomotion & Kinematics
•Two aspects to motion: 

• Locomotion 
• Kinematics 

•Locomotion: 
• What kinds of motion are possible? 
• What physical structures are there? 

•Kinematics: 
• Mathematical model of motion. 
• Models make it possible to predict motion.
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Kinematics
• So far we have looked at different kinds of motion in a qualitative way. 

• One way to program robots to move is trial and error. 
• A somewhat better way is to establish mathematically how the robot should move, this is 

kinematics. 

• Rather kinematics is the business of figuring how a robot will move if its 
motors work in a given way. 

• Inverse-kinematics then tells us how to move the motors to get the robot 
to do what we want. 

• We'll look at a few tiny bits of the kinematics world.
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Formal Model
•We will assume, as people usually do, that 

the robot's location, or pose is fixed in terms 
of three coordinates: 

•Given that the robot needs to navigate to a 
new location: 

•…it can determine how x, y and θ need to 
change. 
• BUT it can't control these directly.
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Kinematic Model
•All a robot has access to are the speeds of 

its wheels: 

•The steering angle of the steerable wheels: 

•And the speed with which those steering 
angles are changing. 

•Together these determine the motion of 
the robot:
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•For Reverse Kinematics, this model is not what we 
want: 

•We want to know how to set      etc to get a given: 

•We can get what we want from the forward 
kinematic model:

Reverse Kinematics
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Three Problems in Kinematics

1. Transformation between frames. 

2. Reversing the kinematic model. 

3. Deriving robot motion from robot structure.
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Representing the robot’s position
•The robot knows how it moves relative to its centre of rotation. 

• This is not the same as knowing how it moves relative to the world
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Robot Frame:  {XR, YR} 

Where XR is rotated from 
XI by θ radians
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Frame Transformation
•Robot Position: 

•Mapping between frames: 

where 

• R(θ) is the Orthogonal Rotation Matrix
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Frame Transformation
•In other words 

meaning that
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Frame Transformation
•In other words 

meaning that
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Frame Transformation
• In other words, given how the robot moves in the world, we 

can calculate how the robot moves relative to its centre of 
rotation. 
• This is (part of) the forward kinematic model 
• But this isn't what we want!!! 

• We want to be able to calculate how the robot moves in the 
world, given how it moves relative to its centre of rotation. 
• That is, we want the reverse of this model.
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Reverse Kinematics
• We want the reverse kinematic model: 

where R(θ)-1 is the inverse of R(θ). 

• Often R(θ)-1 is hard to compute, but luckily for us in this case it isn't. 

• We have: 

which we can use to establish 
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Reverse Kinematics

•To do this we compute: 

meaning that:
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Reverse Kinematics

•To do this we compute: 

meaning that:
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ẋR

ẏR
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Down to the structure of the robot

•We can now identify the motion of the 
robot, in the global frame, if we know: 

• but how do we tell what these are?
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Down to the structure of the robot
•We compute them from what we can measure, like the speed of the wheels. 

•Some assumptions (constraints) on the motion of the robot: 
• Movement on a horizontal plane 
• Point contact of the wheels; wheels not deformable 
• Pure rolling, so ν=0 at contact point; no slipping, skidding or sliding  
• No friction for rotation around contact point 
• Steering axes orthogonal to the surface  
• Wheels connected by rigid frame (chassis) 

•These won't always be true, why?
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Differential Drive
•Consider differential drive. 

• Wheels of diameter r rotate at 𝜑̇ radians per second 
• Left wheel: 𝜑̇1 

• Right wheel: 𝜑 ̇2 

• Each wheel contributes: 

to motion of centre of rotation. 

•Motion in the x direction. 
• Total speed is the sum of two contributions.
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Differential Drive
•Example 1: 

• Assume each wheel has a diameter r=1 
• Each wheel will move a full rotation 

• i.e. will move 2π radians 

• As 𝜑̇1 =  𝜑̇2 , the robot will move only along the x axis (i.e. forward) 

• This is because there is no lateral movement (i.e. along the y axis) differential drive. 

• Wheels of diameter r rotate at 𝜑̇ radians per second 
• Left wheel: 𝜑̇1 

• Right wheel: 𝜑̇2 

• The Robot centre (P) moves: 

• i.e. the circumference of the wheel!
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Differential Drive
•Example 2: 

• Assume each wheel has a diameter r=1 
• Only the left wheel moves a full rotation 

• Right wheel is stationary 

• The robot will now move around the right wheel 
• Centre of the Robot moves: 

• However, we have not calculated the change θ 
in angle or movement in the y axis
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Differential Drive
•What if wheels move in counter directions? 

• Now, motion in the 𝜃 direction. 

•Rotation due to left wheel (going forward) 
is: 

• l is the distance from P to a wheel. 

•Whereas rotation due to the right wheel 
(going backward) is:

22

θ

P

YR

XR

XI

YI

φ, r

!1 =
r'̇1

2l

!2 =
�r'̇2

2l



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016 & 2017

Differential Drive

•Combining these components we 
have: 

•And we can combine these with 
R(θ)-1 to find motion in the global 
frame.
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Differential Drive
•Suppose that the robot is 

positioned such that: 
• θ = π/2 

• r = l = 1  

• If the robot engages its 
wheels unevenly, such that: 
• ω1 = 4 
• ω2 = 3
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Differential Drive
•Suppose that the robot is 

positioned such that: 
• θ = π/2 

• r = l = 1  

• If the robot engages its 
wheels unevenly, such that: 
• ω1 = 4 
• ω2 = 3
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Along the y axis of the global reference frame 
Speed 3 / Rotating speed 1



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016 & 2017

More Complex Scenarios
•Making sure the assumptions hold imposes constraints on robot  

• For example, ensuring a rigid chassis. 

•Knowing what the assumptions are imposes constraints on the 
applicability of the model 
• For example, ensuring wheels don't slip. 

•Some constraints can be relaxed by using other wheels 
• Eg. castor wheel or Swedish wheel, or using a steering wheel 
• But these introduce additional parameters!
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Robot Mobility
•The sliding constraint 

means that a standard 
wheel has no lateral 
motion. 
• Zero motion line through the 

axis. 

•Has to move along a 
circle whose centre is 
on the zero motion line
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Robot Mobility
•A differential drive robot has just one line of zero motion. 

• Thus its rotation is not constrained 
• It can move in any circle it wants. 

•Makes it very easy to move around. 

• In general, the manoeuvrability of a robot depends on the number of 
independent kinematic constraints. 
• Q: How can we formalise this idea? 
• A: Degrees of mobility and manoeuvrability.
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Robot Mobility
•Formally we have the notion of a degree of mobility 

• This number is also the number of independent fixed or steerable 
standard wheels. 

• The independence is important.
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• Differential drive has two standard 
wheels, but they are on the same axis. 
• So not both independent. 
• Number of constraints is 1. 

• So δm = 2 for a differential drive robot 
• Can alter ẋ and θ̇ just through wheel 

velocity. 

• A bicycle has two independent 
wheels, so two constraints. 
• δm = 1 
• Can only alter ẋ using wheel velocity. 
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Steerability and manoeuvrability
•Steering has an impact on how the robot moves. 

• The degree of steerability δs is then the number of independent steerable 
wheels. 
• Note that a steerable standard wheel will both reduce the degree of mobility and increase the 

degree of steerability. 

• The degree of maneuverability is δM = δm + δs 
• where δm tells us how many degrees of freedom a robot can manipulate. 

• Two robots with the same δM  aren't necessarily equivalent 
(see on).
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Robot manoeuvrability
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• Differential drive has 
no steering wheels. 

• δs = 0 

• δm = 2 

• Thus, δM = δm + δs = 2 

• A bicycle has one 
steering wheel 

• δs = 1 

• δm = 1 

• Thus, δM = δm + δs = 2

Common Configurations
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Robot manoeuvrability
• δM = 2 is an indication of how easy it is for a robot to move around. 

•Compare with the number of DOF in the environment. 
• 3 for the environments we care about. 
• Differential drive and bicycle both have δM = 2, but you drive them very differently. 

•A bicycle, has a δM = 2 yet can position itself anywhere in the plane. 
• But a bicycle only has one DOF that it can control directly (x). 
• Differential DOF is always equal to δm 

•A general inequality: 
•   DDOF ≤ δM ≤ DOF 

•A robot with DDOF = DOF is called holonomic
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Summary
•This lecture took a brief look at kinematics 

• The business of relating what robots do in the world to 
what their motors need to be told to do. 

• We did a little maths, but most of the discussion was 
qualitative. 

• The Autonomous Mobile Robotics book goes more 
into the mathematical detail of establishing kinematic 
constraints.   

•Next time we'll look at more advanced 
sensors and perception
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