

COMP329 Robotics and Autonomous Systems Lecture 12: Kinematics

Dr Terry R. Payne Department of Computer Science

Localisation

Environment Model Local Map

Perception

2

Locomotion & Kinematics

- Two aspects to motion:
 - Locomotion
 - Kinematics
- Locomotion:

• Kinematics:

- Mathematical model of motion.

• What kinds of motion are possible?

• What physical structures are there?

Models make it possible to predict motion.

Kinematics

- So far we have looked at different kinds of motion in a qualitative way. • One way to program robots to move is *trial and error*.

 - A somewhat better way is to establish mathematically how the robot **should** move, this is kinematics.
- Rather *kinematics* is the business of figuring how a robot will move if its motors work in a given way.
- Inverse-kinematics then tells us how to move the motors to get the robot to do what we want.
- We'll look at a few tiny bits of the kinematics world.
 - Original Source: M. Wooldridge, S.Parsons, D.Grossi updated by Terry Payne, Autumn 2016 & 2017 4

Formal Model

•We will assume, as people usually do, that the robot's location, or pose is fixed in terms of three coordinates:

 (x_I, y_I, θ)

 (x_G, y_G, θ_G)

• Given that the robot needs to navigate to a new location:

- ... it can determine how x, y and θ need to change.
 - BUT it can't control these directly.

5

 Y_I

Kinematic Model

 All a robot has access to are the speeds of its wheels:

• The steering angle of the steerable wheels:

 And the speed with which those steering angles are changing.

Together these determine the motion of the robot:

 $\beta_1, \ldots \beta_m$

 $\mathcal{X}I$ $f(\dot{\varphi_1},\ldots\dot{\varphi_n},\beta_1,\ldots\beta_m,\beta_1,\ldots\beta_m) =$ y_I

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016 & 2017

6

• For Reverse Kinematics, this model is not what we want:

 $f(\dot{arphi_1},\ldots\dot{arphi_n},eta_1,\ldotseta_m,\dot{eta_1},\ldots\dot{eta_r})$

•We want to know how to set $\dot{\varphi_i}$ etc to get a given:

•We can get what we want from the forward kinematic model:

Reverse Kinematics

$${}_{n})=\left[egin{array}{c} \dot{x_{I}}\ \dot{y_{I}}\ \dot{ heta}\end{array}
ight]$$

 $\dot{arphi_n}$ β_1 $f^{-1}(\dot{x_I},\dot{y_I},\dot{ heta})$ β_m β_1 eta_m _

Three Problems in Kinematics

- **1**. Transformation between frames.
- 2. Reversing the kinematic model.

3. Deriving robot motion from robot structure.

Representing the robot's position

- The robot knows how it moves relative to its centre of rotation.
- This is not the same as knowing how it moves relative to the world

9

- Two systems of coordinates:
- Initial Frame: $\{X_I, Y_I\}$ Robot Frame: $\{X_R, Y_R\}$
- Where X_R is rotated from X_I by θ radians

• Robot Position:

 $\xi_I = [x_I, y_I, \theta_I]^T$

• Mapping between frames:

$$\dot{\xi_R} = R(\theta)\dot{\xi_I}$$

= $R(\theta)\left[\dot{x_I}, \dot{y_I}, \right]$

where

$$R(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \\ 0 & 0 \end{bmatrix}$$

• $R(\theta)$ is the **Orthogonal Rotation Matrix**

In other words

meaning that $\dot{x}_R = \dot{x}_I \cos(\theta) + \dot{y}_I \sin(\theta) + \dot{\theta}_I 0$ $\dot{y}_R = -\dot{x}_I \sin(\theta) + \dot{y}_I \cos(\theta) + \dot{\theta}_I . 0$ $\theta_R = \dot{x}_I \cdot 0 + \dot{y}_I \cdot 0 + \theta_I \cdot 1 = \theta_I$

In other words

$$\begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix} = R(\theta) \begin{bmatrix} \dot{x}_{I} \\ \dot{y}_{I} \\ \dot{\theta}_{I} \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta) \\ -\sin(\theta) \\ 0 \end{bmatrix}$$

meaning that

 $\dot{x}_{R} = \dot{x}_{I}\cos(\theta) + \dot{y}_{I}\sin(\theta)$ $\dot{y}_{R} = \dot{y}_{I}\cos(\theta) - \dot{x}_{I}\sin(\theta)$ $\dot{\theta}_{R} = \dot{\theta}_{I}$

- rotation.
 - This is (part of) the forward kinematic model
 - But this isn't what we want!!!
- - That is, we want the *reverse* of this model.

In other words, given how the robot moves in the world, we can calculate how the robot moves relative to its centre of

We want to be able to calculate how the robot moves in the world, given how it moves relative to its centre of rotation.

where $R(\theta)^{-1}$ is the inverse of $R(\theta)$.

• Often $R(\theta)^{-1}$ is hard to compute, but luckily for us **in this case** it isn't.

• We have: $R(\theta)^{-1} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$

which we can use to establish $\dot{x}_I, \dot{y}_I, \theta_I$

Reverse Kinematics

• We want the *reverse kinematic* model: $\begin{bmatrix} \dot{x}_I \\ \dot{y}_I \\ \dot{\theta}_I \end{bmatrix} = R(\theta)^{-1} \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \\ \dot{\theta}_R \end{bmatrix}$

To do this we

$$\begin{bmatrix} \dot{x}_{I} \\ \dot{y}_{I} \\ \dot{\theta}_{I} \end{bmatrix} = R(\theta)^{-1} \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix}$$

meaning that: $\dot{x}_I = \dot{x}_R \cos(\theta)$ $\dot{y}_I = \dot{x}_R \sin(\theta)$ $\dot{\theta}_I = \dot{x}_R.0 + \theta$

Reverse Kinematics

$$(heta) - \dot{y}_R \sin(heta) + \dot{ heta}_R.0$$

 $(heta) + \dot{y}_R \cos(heta) + \dot{ heta}_R.0$
 $\dot{y}_R.0 + \dot{ heta}_R.1$
15 Original Source: M. Woold

• To do this we compute:

 $\begin{bmatrix} \dot{x}_I \\ \dot{y}_I \\ \dot{\theta}_I \end{bmatrix} = R(\theta)^{-1}$

meaning that: $\dot{x}_I = \dot{x}_R \cos(\theta) - \dot{y}_R \sin(\theta)$ $= \dot{x}_R \sin(\theta) + \dot{y}_R \cos(\theta)$ \dot{y}_I

 $\dot{\theta}_I$ $= \dot{\theta}_R.$

Reverse Kinematics

pute:

$$= R(\theta)^{-1} \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix}$$

Down to the structure of the robot

•We can now identify the motion of the robot, in the global frame, if we know:

$\dot{x}_R, \dot{y}_R, \dot{\theta}$

• but how do we tell what these are?

Down to the structure of the robot

- We compute them from what we can measure, like the speed of the wheels.
- Some assumptions (constraints) on the motion of the robot:
 - Movement on a horizontal plane
 - Point contact of the wheels; wheels not deformable
 - Pure rolling, so v=0 at contact point; no slipping, skidding or sliding
 - No friction for rotation around contact point
 - Steering axes orthogonal to the surface
 - Wheels connected by rigid frame (chassis)
- These won't always be true, why?

 $\varphi \cdot r$ 11

Consider differential drive.

- Wheels of diameter r rotate at $\dot{\phi}$ radians per second
 - Left wheel: $\dot{\varphi}_1$
 - Right wheel: $\dot{\varphi}_2$
- Each wheel contributes: $\frac{r\varphi}{2}$

to motion of centre of rotation.

Motion in the x direction.

Total speed is the sum of two contributions.

• Example 1:

- Assume each wheel has a diameter r=1
- Each wheel will move a full rotation
 - i.e. will move 2π radians
- As $\dot{\phi}_{1} = \dot{\phi}_{2}$, the robot will move only along the x axis (i.e. forward)
- This is because there is no lateral movement (i.e. along the y axis) differential drive.
- Wheels of diameter r rotate at $\dot{\phi}$ radians per second
 - Left wheel: $\dot{\varphi}_{1}$
 - Right wheel: $\dot{\varphi}_2$
- The Robot centre (P) moves: x

$$= \frac{r\dot{\varphi}_1}{2} + \frac{r\dot{\varphi}_2}{2}$$
$$= \frac{1 \times 2\pi}{2} + \frac{1 \times 2\pi}{2}$$
$$= 2\pi$$

• i.e. the circumference of the wheel!

• Example 2:

- Assume each wheel has a diameter r=1
- Only the left wheel moves a full rotation
 - Right wheel is stationary
- The robot will now move around the right wheel
- Centre of the Robot moves: $x = \frac{r\varphi_1}{2} + \frac{r\varphi_2}{2}$

 $=\pi$

• However, we have not calculated the change θ in angle or movement in the *v* axis

 $=\frac{1\times 2\pi}{2}+0$

•What if wheels move in counter directions?

• Now, motion in the θ direction.

- Rotation due to *left* wheel (going forward) **is:** $\omega_1 = \frac{r\dot{\varphi}_1}{2l}$
 - l is the distance from P to a wheel.
- Whereas rotation due to the right wheel (going backward) is: $\omega_2 =$

Combining these components we have:

$$\dot{\xi}_{I} = \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix} = \begin{bmatrix} \frac{\tau\varphi_{1}}{2} + \\ 0 \\ \frac{\tau\varphi_{1}}{2l} - \end{bmatrix}$$

 And we can combine these with $R(\theta)^{-1}$ to find motion in the global frame.

- Suppose that the robot is positioned such that:
 - $\theta = \pi/2$
 - r = l = 1

We can compute its velocity

$$\dot{\xi}_{R} = \begin{bmatrix} \frac{r\dot{\varphi_{1}}}{2} + \frac{r\dot{\varphi_{2}}}{2} \\ 0 \\ \frac{r\dot{\varphi_{1}}}{2l} - \frac{r\dot{\varphi_{2}}}{2l} \end{bmatrix} = \begin{bmatrix} \frac{1\times4}{2} + \frac{1\times2}{2} \\ 0 \\ \frac{1\times4}{2\times1} - \frac{1\times2}{2\times1} \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

 If the robot engages its wheels *unevenly*, such that:

•
$$\omega_2 = 3$$

y in the global reference frame

$$\dot{\xi_I} = R(\theta)^{-1} \dot{\xi_R} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 0 \\ 0 \end{bmatrix}$$

25

- Suppose that the robot is positioned such that:
 - $\theta = \pi/2$
 - r = l = 1

Thus, the robot will move: Along the y axis of the global reference frame Speed 3 / Rotating speed 1

If the robot engages its wheels *unevenly*, such that:

•
$$\omega_1 = 4$$

•
$$\omega_2 = 3$$

$\dot{\xi_I} = R(\theta)^{-1} \dot{\xi_R} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$

More Complex Scenarios

- - For example, ensuring a rigid chassis.
- applicability of the model
 - For example, ensuring wheels don't slip.
- Some constraints can be relaxed by using other wheels
 - Eq. castor wheel or Swedish wheel, or using a steering wheel
 - But these introduce additional parameters!

Making sure the assumptions hold imposes constraints on robot

Knowing what the assumptions are imposes constraints on the

- The sliding constraint means that a standard wheel has no lateral motion.
 - Zero motion line through the axis.
- Has to move along a circle whose centre is on the zero motion line

Robot Mobility

- A differential drive robot has just one line of zero motion.
- Thus its rotation is not constrained
 - It can move in any circle it wants.
- Makes it very easy to move around.
- In general, the manoeuvrability of a robot depends on the number of independent kinematic constraints.
 - Q: How can we formalise this idea?
 - A: Degrees of mobility and manoeuvrability.

Robot Mobility

- - $\delta_m = 3 \text{number of independent kinematic constraints}$
 - This number is also the number of *independent* fixed or steerable standard wheels.
 - The independence is important.
- **Differential drive** has two standard wheels, but they are on the same axis.
 - So not both independent.
 - Number of constraints is 1.
- So $\delta_m = 2$ for a differential drive robot
 - Can alter \dot{x} and $\dot{\theta}$ just through wheel velocity.

• Formally we have the notion of a *degree of mobility*

- **A bicycle** has two independent wheels, so two constraints.
 - $\delta_{\rm m} = 1$
 - Can only alter \dot{x} using wheel velocity.

Steerability and manoeuvrability

- Steering has an impact on how the robot moves.
 - The *degree of steerability* δ_s is then the number of independent steerable wheels.
 - Note that a steerable standard wheel will both reduce the degree of mobility and increase the degree of steerability.
 - The degree of maneuverability is $\delta_M = \delta_m + \delta_s$
 - where δ_m tells us how many degrees of freedom a robot can manipulate.
- see on).

• Two robots with the same $\delta_{\rm M}$ aren't necessarily equivalent

Robot manoeuvrability

- **Differential drive** has no steering wheels.
 - $\delta_s = 0$
 - $\delta_{\rm m} = 2$
- Thus, $\delta_{M} = \delta_{m} + \delta_{s} = 2$

• A bicycle has one steering wheel

•
$$\delta_s = 1$$

• $\delta_{\rm m} = 1$

• Thus, $\delta_{M} = \delta_{m} + \delta_{s} = 2$

Common Configurations

31

Robot manoeuvrability

- $\delta_M = 2$ is an indication of how easy it is for a robot to move around.
- Compare with the number of DOF in the environment.
 - 3 for the environments we care about.
 - Differential drive and bicycle both have $\delta_M = 2$, but you drive them very differently.
- A bicycle, has a $\delta_M = 2$ yet can position itself anywhere in the plane.
 - But a bicycle only has one DOF that it can control directly (x).
 - **Differential DOF** is always equal to δ_m
- A general inequality:
 - $\mathsf{DDOF} \leq \delta_M \leq \mathsf{DOF}$
- A robot with DDOF = DOF is called *holonomic*

Summary

• This lecture took a brief look at kinematics

- The business of relating what robots do in the world to what their motors need to be told to do.
- We did a little maths, but most of the discussion was qualitative.
- The Autonomous Mobile Robotics book goes more into the mathematical detail of establishing kinematic constraints.

Next time we'll look at more advanced sensors and perception

