COMP329

Robotics and Autonomous Systems
Lecture 12: Kinematics
Dr Terry R. Payne
Department of Computer Science

General control architecture

Locomotion \& Kinematics

- Two aspects to motion:
- Locomotion
- Kinematics
- Locomotion:
- What kinds of motion are possible?
- What physical structures are there?
- Kinematics:
- Mathematical model of motion.
- Models make it possible to predict motion.

Kinematics

- So far we have looked at different kinds of motion in a qualitative way.
- One way to program robots to move is trial and error.
- A somewhat better way is to establish mathematically how the robot should move, this is kinematics.
- Rather kinematics is the business of figuring how a robot will move if its motors work in a given way.
- Inverse-kinematics then tells us how to move the motors to get the robot to do what we want.
- We'll look at a few tiny bits of the kinematics world.

Formal Model

- We will assume, as people usually do, that the robot's location, or pose is fixed in terms of three coordinates:

```
(x
```

- Given that the robot needs to navigate to a new location:

```
(xG, 和, 㿟)
```

- ...it can determine how x, y and θ need to
 change.
- BUT it can't control these directly.

Kinematic Model

- All a robot has access to are the speeds of its wheels:

```
\varphi}\mp@subsup{\dot{\varphi}}{1}{},\ldots\mp@subsup{\varphi}{n}{
```

-The steering angle of the steerable wheels:

```
\beta},\ldots,\mp@subsup{\beta}{m}{
```

- And the speed with which those steering angles are changing.

$\dot{\beta}_{1}, \ldots \dot{\beta}_{m}$

- Together these determine the motion of the robot:

$$
f\left(\dot{\varphi_{1}}, \ldots \dot{\varphi_{n}}, \beta_{1}, \ldots \beta_{m}, \dot{\beta_{1}}, \ldots \dot{\beta_{m}}\right)=\left[\begin{array}{c}
\dot{x_{I}} \\
\dot{y}_{I} \\
\dot{\theta}
\end{array}\right]
$$

Reverse Kinematics

- For Reverse Kinematics, this model is not what we want:

$$
f\left(\dot{\varphi_{1}}, \ldots \dot{\varphi_{n}}, \beta_{1}, \ldots \beta_{m}, \dot{\beta_{1}}, \ldots \dot{\beta_{m}}\right)=\left[\begin{array}{c}
\dot{x_{I}} \\
\dot{y_{I}} \\
\dot{\theta}
\end{array}\right]
$$

- We want to know how to set $\dot{\varphi}_{i}$ etc to get a given:

$$
\dot{x}_{I}, \dot{y_{I}}, \dot{\theta}
$$

- We can get what we want from the forward kinematic model:

Three Problems in Kinematics

1. Transformation between frames.
2. Reversing the kinematic model.
3. Deriving robot motion from robot structure.

Representing the robot's position

- The robot knows how it moves relative to its centre of rotation.
- This is not the same as knowing how it moves relative to the world

Two systems of coordinates:
Initial Frame: $\left\{X_{I}, Y_{I}\right\}$
Robot Frame: $\left\{X_{R}, Y_{R}\right\}$
Where X_{R} is rotated from
X_{I} by θ radians

Frame Transformation

- Robot Position:

$$
\xi_{I}=\left[x_{I}, y_{I}, \theta_{I}\right]^{T}
$$

- Mapping between frames:

$$
\begin{aligned}
\dot{\xi_{R}} & =R(\theta) \dot{\xi_{I}} \\
& =R(\theta)\left[\dot{x_{I}}, \dot{y_{I}}, \dot{\theta_{I}}\right]^{T}
\end{aligned}
$$

where

$$
R(\theta)=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- $R(\theta)$ is the Orthogonal Rotation Matrix

Frame Transformation

- In other words

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right] } & =R(\theta)\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{y}_{I} \\
\dot{\theta}_{I}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{y}_{I} \\
\dot{\theta}_{I}
\end{array}\right]
\end{aligned}
$$

Orthogonal
Rotation Matrix

meaning that $\dot{x}_{R}=\dot{x}_{I} \cos (\theta)+\dot{y}_{I} \sin (\theta)+\dot{\theta}_{I} .0$

$$
\begin{aligned}
& \dot{y}_{R}=-\dot{x}_{I} \sin (\theta)+\dot{y}_{I} \cos (\theta)+\dot{\theta}_{I} \cdot 0 \\
& \dot{\theta}_{R}=\dot{x}_{I} \cdot 0+\dot{y}_{I} \cdot 0+\dot{\theta}_{I} \cdot 1=\dot{\theta}_{I}
\end{aligned}
$$

Frame Transformation

- In other words

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right] } & =R(\theta)\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{y}_{I} \\
\dot{\theta}_{I}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{y}_{I} \\
\dot{\theta}_{I}
\end{array}\right]
\end{aligned}
$$

Orthogonal
Rotation Matrix

$$
R(\theta)=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

meaning that

$$
\begin{aligned}
\dot{x}_{R} & =\dot{x}_{I} \cos (\theta)+\dot{y}_{I} \sin (\theta) \\
\dot{y}_{R} & =\dot{y}_{I} \cos (\theta)-\dot{x}_{I} \sin (\theta) \\
\dot{\theta}_{R} & =\dot{\theta}_{I}
\end{aligned}
$$

Frame Transformation

- In other words, given how the robot moves in the world, we can calculate how the robot moves relative to its centre of rotation.
- This is (part of) the forward kinematic model
- But this isn't what we want!!!
- We want to be able to calculate how the robot moves in the world, given how it moves relative to its centre of rotation.
- That is, we want the reverse of this model.

Reverse Kinematics

- We want the reverse kinematic model:
where $R(\theta)^{-1}$ is the inverse of $R(\theta)$.

$$
\left[\begin{array}{l}
\dot{x}_{I} \\
\dot{y}_{I} \\
\hat{\theta}_{I}
\end{array}\right]=R(\theta)^{-1}\left[\begin{array}{l}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right]
$$

- Often $R(\theta)^{-1}$ is hard to compute, but luckily for us in this case it isn't.
- We have: $\quad R(\theta)^{-1}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
which we can use to establish $\dot{x_{I}}, \dot{y}_{I}, \dot{\theta_{I}}$

Reverse Kinematics

- To do this we compute:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{y}_{I} \\
\dot{\theta}_{I}
\end{array}\right] } & =R(\theta)^{-1}\left[\begin{array}{c}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right]
\end{aligned}
$$

meaning that: $\dot{x}_{I}=\dot{x}_{R} \cos (\theta)-\dot{y}_{R} \sin (\theta)+\dot{\theta}_{R} .0$

$$
\begin{aligned}
\dot{y}_{I} & =\dot{x}_{R} \sin (\theta)+\dot{y}_{R} \cos (\theta)+\dot{\theta}_{R} \cdot 0 \\
\dot{\theta}_{I} & =\dot{x}_{R} \cdot 0+\dot{y}_{R} \cdot 0+\dot{\theta}_{R} \cdot 1
\end{aligned}
$$

Reverse Kinematics

- To do this we compute:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{y}_{I} \\
\dot{\theta}_{I}
\end{array}\right] } & =R(\theta)^{-1}\left[\begin{array}{c}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right]
\end{aligned}
$$

meaning that:

$$
\begin{aligned}
\dot{x}_{I} & =\dot{x}_{R} \cos (\theta)-\dot{y}_{R} \sin (\theta) \\
\dot{y}_{I} & =\dot{x}_{R} \sin (\theta)+\dot{y}_{R} \cos (\theta) \\
\dot{\theta}_{I} & =\dot{\theta}_{R} .
\end{aligned}
$$

Down to the structure of the robot

- We can now identify the motion of the robot, in the global frame, if we know:

$$
\dot{x}_{R}, \dot{y}_{R}, \dot{\theta}
$$

- but how do we tell what these are?

Down to the structure of the robot

- We compute them from what we can measure, like the speed of the wheels.
- Some assumptions (constraints) on the motion of the robot:
- Movement on a horizontal plane
- Point contact of the wheels; wheels not deformable
- Pure rolling, so v=0 at contact point; no slipping, skidding or sliding
- No friction for rotation around contact point
- Steering axes orthogonal to the surface
- Wheels connected by rigid frame (chassis)

- These won't always be true, why?

Differential Drive

- Consider differential drive.

- Wheels of diameter r rotate at $\dot{\varphi}$ radians per second
- Left wheel: $\dot{\varphi}_{I}$
- Right wheel: $\dot{\varphi}_{2}$
- Each wheel contributes: $\frac{r \dot{\varphi}}{2}$

to motion of centre of rotation.
- Motion in the x direction.
- Total speed is the sum of two contributions.

Differential Drive

- Example 1:

- Assume each wheel has a diameter $r=1$
- Each wheel will move a full rotation
- i.e. will move 2π radians
- As $\dot{\varphi}_{1}=\dot{\varphi}_{2}$, the robot will move only along the x axis (i.e. forward)
- This is because there is no lateral movement (i.e. along the y axis) differential drive.
- Wheels of diameter r rotate at $\dot{\varphi}$ radians per second

- Left wheel: $\dot{\varphi}_{I}$
- Right wheel: $\dot{\varphi}_{2}$
- The Robot centre (P) moves: $\quad x=\frac{r \dot{\varphi}_{1}}{2}+\frac{r \dot{\varphi}_{2}}{2}$

$$
\begin{aligned}
& =\frac{1 \times 2 \pi}{2}+\frac{1 \times 2 \pi}{2} \\
& =2 \pi
\end{aligned}
$$

- i.e. the circumference of the whee!!

Differential Drive

- Example 2:

- Assume each wheel has a diameter $r=1$
- Only the left wheel moves a full rotation
- Right wheel is stationary
- The robot will now move around the right wheel

- Centre of the Robot moves: $x=\frac{r \dot{\varphi}_{1}}{2}+\frac{r \dot{\varphi}_{2}}{2}$

$$
\begin{aligned}
& =\frac{1 \times 2 \pi}{2}+0 \\
& =\pi
\end{aligned}
$$

- However, we have not calculated the change θ in angle or movement in the y axis

Differential Drive

-What if wheels move in counter directions?

- Now, motion in the θ direction.
- Rotation due to left wheel (going forward) is: $\omega_{1}=\frac{r \dot{\varphi}_{1}}{2 l}$

- l is the distance from P to a wheel.
- Whereas rotation due to the right wheel (going backward) is: $\quad \omega_{2}=\frac{-r \dot{\varphi}_{2}}{2 l}$

Differential Drive

- Combining these components we have:

$$
\dot{\xi}_{I}=\left[\begin{array}{l}
\dot{x}_{R} \\
\dot{y}_{R} \\
\dot{\theta}_{R}
\end{array}\right]=\left[\begin{array}{c}
\frac{r \dot{\phi}_{1}}{2}+\frac{r \dot{\varphi}_{2}}{2} \\
\frac{r \dot{\varphi}_{1}}{2 l}-\frac{r \dot{\phi}_{2}}{2 l}
\end{array}\right]
$$

- And we can combine these with $R(\theta)^{-1}$ to find motion in the global frame.

Differential Drive

- Suppose that the robot is positioned such that:
- $\theta=\pi / 2$
- $r=l=1$
- If the robot engages its wheels unevenly, such that:
- $\omega_{1}=4$
- $\omega_{2}=3$

We can compute its velocity in the global reference frame

$$
\dot{\xi_{R}}=\left[\begin{array}{c}
\frac{r \dot{\varphi}_{1}}{2}+\frac{r \dot{\varphi}_{2}}{2} \\
0 \\
\frac{r \dot{\varphi}_{1}}{2 l}-\frac{r \dot{\varphi}_{2}}{2 l}
\end{array}\right]=\left[\begin{array}{c}
\frac{1 \times 4}{2}+\frac{1 \times 2}{2} \\
0 \\
\frac{1 \times 4}{2 \times 1}-\frac{1 \times 2}{2 \times 1}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
$$

$$
\dot{\xi}_{I}=R(\theta)^{-1} \dot{\xi_{R}}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]
$$

Differential Drive

- Suppose that the robot is positioned such that:
- $\theta=\pi / 2$
- $r=l=1$
- If the robot engages its wheels unevenly, such that:
- $\omega_{1}=4$
- $\omega_{2}=3$

Thus, the robot will move:
Along the y axis of the global reference frame
Speed 3 / Rotating speed 1

$$
\dot{\xi}_{I}=R(\theta)^{-1} \dot{\xi_{R}}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]
$$

More Complex Scenarios

- Making sure the assumptions hold imposes constraints on robot
- For example, ensuring a rigid chassis.
- Knowing what the assumptions are imposes constraints on the applicability of the model
- For example, ensuring wheels don't slip.
- Some constraints can be relaxed by using other wheels
- Eg. castor wheel or Swedish wheel, or using a steering wheel
- But these introduce additional parameters!

Robot Mobility

- The sliding constraint means that a standard wheel has no lateral motion.
- Zero motion line through the axis.
- Has to move along a circle whose centre is
 on the zero motion line

Robot Mobility

- A differential drive robot has just one line of zero motion.
- Thus its rotation is not constrained
- It can move in any circle it wants.
- Makes it very easy to move around.

- In general, the manoeuvrability of a robot depends on the number of independent kinematic constraints.
- Q: How can we formalise this idea?
- A: Degrees of mobility and manoeuvrability.

Robot Mobility

- Formally we have the notion of a degree of mobility

$$
\delta_{m}=3-\text { number of independent kinematic constraints }
$$

- This number is also the number of independent fixed or steerable standard wheels.
- The independence is important.
- Differential drive has two standard wheels, but they are on the same axis.
- So not both independent.
- Number of constraints is 1 .
- So $\delta_{\mathrm{m}}=2$ for a differential drive robot
- Can alter \dot{x} and $\dot{\theta}$ just through wheel velocity.

Steerability and manoeuvrability

- Steering has an impact on how the robot moves.
- The degree of steerability δ_{s} is then the number of independent steerable wheels.
- Note that a steerable standard wheel will both reduce the degree of mobility and increase the degree of steerability.
- The degree of maneuverability is $\delta_{\mathrm{M}}=\delta_{\mathrm{m}}+\delta_{\mathrm{s}}$
- where δ_{m} tells us how many degrees of freedom a robot can manipulate.
- Two robots with the same δ_{M} aren't necessarily equivalent (see on).

Robot manoeuvrability

- Differential drive has no steering wheels.
- $\delta_{\mathrm{s}}=0$
- $\delta_{\mathrm{m}}=2$
- Thus, $\delta_{\mathrm{M}}=\delta_{\mathrm{m}}+\delta_{\mathrm{s}}=2$
- A bicycle has one steering wheel
- $\delta_{\mathrm{s}}=1$
- $\delta_{\mathrm{m}}=1$
- Thus, $\delta_{\mathrm{M}}=\delta_{\mathrm{m}}+\delta_{\mathrm{s}}=2$

Omni-Steer $\delta_{M}=3$ $\delta_{m}=2$

Tricycle
Tricycle
$\delta_{M}=2$
$\delta_{M}=2$
$\delta_{m}=1$

Two-Steer
$\delta_{M}=3$

$$
\begin{aligned}
& \delta_{m}=1 \\
& \delta_{s}=2
\end{aligned}
$$

Common Configurations

Robot manoeuvrability

- $\delta_{M}=2$ is an indication of how easy it is for a robot to move around.
- Compare with the number of DOF in the environment.
- 3 for the environments we care about.
- Differential drive and bicycle both have $\delta_{M}=2$, but you drive them very differently.
- A bicycle, has a $\delta_{M}=2$ yet can position itself anywhere in the plane.
- But a bicycle only has one DOF that it can control directly (x).
- Differential DOF is always equal to δ_{m}
- A general inequality:
- DDOF $\leq \delta_{M} \leq \mathrm{DOF}$
- A robot with DDOF = DOF is called holonomic

Summary

- This lecture took a brief look at kinematics
- The business of relating what robots do in the world to what their motors need to be told to do.
- We did a little maths, but most of the discussion was qualitative.
- The Autonomous Mobile Robotics book goes more into the mathematical detail of establishing kinematic
- Next time we'll look at more advanced sensors and perception

