
COMP329
Robotics and
Autonomous Systems

Dr Terry R. Payne
Department of Computer Science

Lecture 5: Perception and Odometry

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

General control architecture

2

Localisation

Perception Motion Control

Cognition

Environment Model
Local Map

Position
Global Map

Real World
Environment

Path

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Perception

•Sensors give important feedback
from the environment
• Without them, robots are blind

•Perception is all about what can
be sensed and what we can do
with that sensing

3

Effectors (Action)

Sensors
(Percepts)

Environment

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Classification of Sensors
•Proprioceptive sensors

• Measure values internally to the system (robot),
• (motor speed, wheel load, heading of the robot, battery

status)

• Exteroceptive sensors
• Information from the robots environment

• (distances to objects, intensity of the ambient light, unique
features.)

• Passive sensors
• Energy coming from the environment

•Active sensors
• Emit their own energy and measure the

reaction
• Better performance, but some influence on

environment

4

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Classification of Sensors
•Proprioceptive sensors

• Measure values internally to the system (robot),
• (motor speed, wheel load, heading of the robot, battery

status)

• Exteroceptive sensors
• Information from the robots environment

• (distances to objects, intensity of the ambient light, unique
features.)

• Passive sensors
• Energy coming from the environment

•Active sensors
• Emit their own energy and measure the

reaction
• Better performance, but some influence on

environment

5

Focus of today’s lecture;

sensors that the robot

uses to determine its state.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Wheel Encoders

6

•Measure position or speed of the wheels
or steering.
• Wheel movements can be integrated to get an

estimate of the robot's position
• Odometry

•Optical encoders are proprioceptive
sensors
• Position estimate is only useful for short movements.
• Typical resolutions: 2000 increments per revolution.

•Count the changes from black to white:
• Measure light passing through the encoder.
• Bounce light off the encoder. 

•Simple encoder will give you count/speed.

•Quadrature encoder will you direction also.
• Look at phase of signals from the two bands on the

encoder.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Wheel Encoders

7

Unencoded Unencoded with
Index Track

Two Track
Quadrature

Two Track Quad
with Index Track

Absolute Position
Gray Code

Absolute Position
Binary

Custom
Courtesy of Tom Lackamp

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Wheeled Robots
•Wheels are a good solution for many

applications
• Three wheels are sufficient to guarantee stability
• More than three wheels requires flexible suspension

•Different configurations for drive and
steering

•Tracked robots use slip/skid steering
• can be controlled with two wheels

8

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Steering and Movement
•Three main approaches to steering:

• Steering wheels at front, with drive wheels at
back
• Similar to a car

• Differential drive
• Turning achieved by varying the individual velocity / speed of

each wheel

• Omidirectional drive
• Can move in any direction, in any orientation

• Check out this example of an holonomic robot
• https://youtu.be/-ZdBowwPZas

9

Steering
Wheels

Differential
Drive

Omnidirectional Drive

https://youtu.be/-ZdBowwPZas
https://youtu.be/-ZdBowwPZas

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Navigation through Pilots
• Distance information on its

own permits a crude form
of navigation:
• Dead reckoning!!!
• Calculate how far the robot has

gone based on wheel rotations.
• Our robot uses a slip/skid drive,

which is similar to a differential
drive, but with worse odometry.

• LeJOS provides several
Pilot classes to support
different types of vehicle
• Three main Pilot classes are

currently provided by the
lejos.robotics.navigation
package
• MovePilot - used instead of the

depreciated DifferentialPilot class
• OmniPilot - for use with holonomic robots
• SteeringPilot - for use with Steering

wheels

10

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Move Pilot
•Constructing a MovePilot

• Based on the definition of a Chassis
• Requires the definition of the two wheels, comprising:

• The wheel diameter
• Position from the center of the robot (i.e. half of the track width)

• The track width is the distance between the left and right wheels

• Motor port
• Optional gear train between wheel and motor (not used with our robot)

• Typically requires some trial and error!!!

11

Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).offset(-10.0);
Wheel rightWheel = WheeledChassis.modelWheel(Motor.C, 3.3).offset(10.0);
Chassis myChassis = new WheeledChassis(
	 	 	 new Wheel[]{leftWheel, rightWheel},
	 	 	 WheeledChassis.TYPE_DIFFERENTIAL);
MovePilot pilot = new MovePilot(myChassis);

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

MovePilot Methods
•Speed of motion (linear or

rotation)
• speed is in wheel-diameters-units

per second (e.g. cm per second)
• setLinearSpeed(double speed)
• setAngularSpeed(double speed)

• Also possible to get current speed
• e.g. double getLinearSpeed()

• and max possible speed
• e.g. double getMaxLinearSpeed()

• Also possible to set acceleration, etc

•Move a certain amount
• travel(double distance)

• distance is in wheel-diameters-units (e.g. cm)

•Rotate:
• rotate(double angle)

• rotate through specified angle (in degrees) in
a zero-radius turn.

• Lots of other methods
defined in the API.

12

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Example Code - MovePilot

13

public class SimplePilot {
MovePilot pilot;
GraphicsLCD lcd;

	
public void drawSquare(float length){

for(int i = 0; i<4 ; i++){
pilot.travel(length); // Drive forward
pilot.rotate(90); // Turn 90 degrees

}
}

public static void main(String[] args) {
Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).offset(-10.0);
Wheel rightWheel = WheeledChassis.modelWheel(Motor.C, 3.3).offset(10.0);
Chassis myChassis = new WheeledChassis(

new Wheel[]{leftWheel, rightWheel}, WheeledChassis.TYPE_DIFFERENTIAL);
	 	
 // Create a SimplePilot and instantiate its member pilot
 SimplePilot sp = new SimplePilot();
 sp.pilot = new MovePilot(myChassis);
 sp.lcd = LocalEV3.get().getGraphicsLCD();

 sp.pilot.setLinearSpeed(20); 	 // Set speed to 20cm per second
 sp.drawSquare(40);

}
}

The MovePilot instance is created by generating
two instances of the type wheel using the
modeller method modelWheel. The parameters
here broadly represent the robot, but as we have
a differential drive, the precise values may need
calibrating.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Example Code - MovePilot

14

public class SimplePilot {
MovePilot pilot;
GraphicsLCD lcd;

	
public void drawSquare(float length){

for(int i = 0; i<4 ; i++){
pilot.travel(length); // Drive forward
pilot.rotate(90); // Turn 90 degrees

}
}

public static void main(String[] args) {
Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).offset(-10.0);
Wheel rightWheel = WheeledChassis.modelWheel(Motor.C, 3.3).offset(10.0);
Chassis myChassis = new WheeledChassis(

new Wheel[]{leftWheel, rightWheel}, WheeledChassis.TYPE_DIFFERENTIAL);
	 	
 // Create a SimplePilot and instantiate its member pilot
 SimplePilot sp = new SimplePilot();
 sp.pilot = new MovePilot(myChassis);
 sp.lcd = LocalEV3.get().getGraphicsLCD();

 sp.pilot.setLinearSpeed(20); 	 // Set speed to 20cm per second
 sp.drawSquare(40);

}
}

The drawSquare method draws the four sides
of the square, by using pilot.travel(length) to
move forward the length of a side, and rotating
around 90 degrees at each corner by using
pilot.rotate(90)

The speed of the pilot is defined using the
method setLinearSpeed() to travel at 20cm per
second. A 40cm square is drawn using
drawSquare(40)

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

MovePilot - Calibration
•Using the MovePilot and the wheeledChassis

• You will find it doesn't do exactly what you ask it to right away.

•With correct robot dimensions
• Pretty good on distance.
• Less good on rotation.

•You will need to callibrate to get it to do what
you want it to do.

•You will need to keep on callibrating.
15

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Borenstein's experiment

16

Reference Wall

ForwardPreprogrammed
square path

4x4m

Start
(x0, y0, θ0)

En
d

(x 0
+𝜀

x,
y 0

+𝜀
y,
θ 0

+𝜀
θ)

Reference Wall

Forward

Curved instead of a straight path

(due to wheel diameters or poor

configuration). In this example it

causes a 3° orientation error.

87° turn instead of a
90° turn (due to the

uncertainty about the
effective wheelbase

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Odometry Pose Provider (OPP)
•When using the MovePilot

• the control loop running the motors
knows instantaneously how far the robot
has moved.

• That is what it uses to know when to
stop the motors.

• It is useful to be able to log this
information in the control
program.
• The OdometryPoseProvider provides

some of this ability.

•Pose objects are manipulated
by OdometryPoseProvider
• Pose objects store a robot pose.
• Turns out you need to do this a lot. Has

no necessary relation to where the robot
is.

• Methods:
• getX()

• getY()
• getHeading()

• Just as you might/should expect.
• Values returned are floats.

17

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Odometry Pose Provider (OPP)
•Getting and Setting the Pose

• void SetPose(Pose aPose)
• sets the Pose value in the OPP.
• Note that this does not move the robot, just

changes the value that is stored.

• Pose GetPose()
• returns a Pose.
• This is the current pose stored by the OPP.
• If used correctly, this Pose will tell you

something useful.

• A Pose maintains:
• float _heading

• Point _location

•When you create an OPP, you
link it to a Pilot object:

OdometryPoseProvider opp =
new OdometryPoseProvider(pilot);

• where pilot is a MovePilot.
• Then the Pose returned by the OPP is

updated when the robot moves.
• Of course, it is updated by the

amount that the robot thinks it moves.
• (Since the robot doesn't actually know how

much it is moving.)

18

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Example Code - OPP

19

 // Create a pose provider and link it to the move pilot
 OdometryPoseProvider opp = new OdometryPoseProvider(pilot);

 lcd.drawString("Pose (1): " + opp.getPose(), 10, 20, 0);
 pilot.travel(30);
 lcd.drawString("Pose (2): " + opp.getPose(), 10, 40, 0);
 pilot.rotate(90);
 lcd.drawString("Pose (3): " + opp.getPose(), 10, 60, 0);
 pilot.travel(20);
 lcd.drawString("Pose (4): " + opp.getPose(), 10, 70, 0);
 pilot.rotate(90);
 lcd.drawString("Pose (5): " + opp.getPose(), 10, 90, 0);
 pilot.travel(30);
 pilot.rotate(-180);
 lcd.drawString("Pose (6): " + opp.getPose(), 10, 100, 0);

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Heading Sensors
•Heading sensors can be:

• proprioceptive (gyroscope, inclinometer); or
• exteroceptive (compass).

•Used to determine the robot's orientation
and/or inclination.
• Allow, together with an appropriate velocity information,

to integrate the movement to an position estimate.

•A bit more sophisticated than just using
odometry.

20

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Compass
•Used since before 2000 B.C.

• Chinese suspended a piece of naturally magnetic magnetite
from a silk thread and used it to guide a chariot over land.

•Magnetic field on earth
• Absolute measure for orientation.

•Large variety of solutions to measure the
earth's magnetic field
• Mechanical magnetic compass
• Direct measure of the magnetic field

• (Hall-effect, magnetoresistive sensors)

21

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Compass
•Major drawback

• Weakness of the earth field
• Easily disturbed by magnetic objects or other

sources
• Not feasible for indoor environments in general.

•Modern devices can give 3D
orientation relative to Earth's
magnetic field.

22

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Gyroscope
•Heading sensors, that keep the orientation to

a fixed frame
• Provide an absolute measure for the heading of a mobile

system.
• Unlike a compass doesn't measure the outside world.

•Two categories, mechanical and optical
gyroscopes
• Mechanical Gyroscopes

• Standard gyro
• Rate gyro

• Optical Gyroscopes
• Rate gyro

23

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Mechanical Gyroscopes
•Concept: inertial properties of a fast spinning rotor

• gyroscopic precession

•Angular momentum associated with a spinning
wheel keeps the axis of the gyroscope inertially
stable.
• No torque can be transmitted from the outer pivot to the wheel

axis
• Spinning axis will therefore be space-stable
• Quality: 0.1 degrees in 6 hours

•In rate gyros, gimbals are held by torsional springs.
• Measuring force gives angular velocity.

24

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Optical Gyroscopes
•Use two monochromatic light (or laser)

beams from the same source.

•One beam travels clockwise in a cylinder
around a fibre, the other→ counterclockwise.
• The beam traveling in direction of rotation:
• Slightly shorter path shows a higher frequency
• Difference in frequency Δf of the two beams is

proportional to the angular velocity Ω of the cylinder/fibre.

•Newest optical gyros are solid state.
25

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Accelerometer
•Measure acceleration.

• Mass on a spring.
• Measure force in spring through the change in capacitance
• Gives acceleration of mass.

• Any heading or position sensor reading can be
“differentiated” to give acceleration.
• Difference between two values gives “velocity”
• Difference between two “velocities” gives acceleration

• Any velocity sensor reading can be handled
similarly.

26

Sp
rin

g

Fixed Plate

Moving Plate (mass)

Fixed Plate

Sp
rin

g

Sp
rin

g

Fixed Plate

Moving Plate (mass)

Fixed Plate

Sp
rin

g

Acceleration

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensor Performance
•Dynamic Range

• Spread between lower and upper limits of input
values (as a ratio)

•Resolution
• Minimum difference between two sensor values

•Sensitivity
• Measure of the degree to which incremental

change in target input changes output signal
• Ratio of output change to input change

• In real world environment, the sensor has very
often high sensitivity to other environmental
changes, e.g. illumination.

•Cross-sensitivity
• Sensitivity to environmental parameters that are

orthogonal to the target parameters

•Error / Accuracy
• Difference between the sensor's output and the

true value

• where
• m = measured value and
• v = true value.

27

accuracy = 1� |m� v|
v

error = m� v

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensor Performance
•Systematic error → deterministic errors

• Caused by factors that can (in theory) be modelled
• → prediction

• e.g. distortion caused by the optics of a camera.

•Random error → non-deterministic
• No prediction possible
• However, they can be described probabilistically

• e.g. error in wheel odometry.

•Precision
• Reproducibility of sensor results
• If a random error of a sensor is characterised by some mean σ and

standard deviation, µ then the precision is the ratio of the sensors
output range to s.d.

28

precision =
range

�

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Coping with Errors
•Compensate for systematic

errors.
• Build a probabilistic model of random

errors.
• Obtain a distribution of possible positions.

•Know where we are on average.
• Don't know where we are in particular.
• Errors accumulate over time.

29

A simple error
model for straight
line motion

(Thrun, Burgard and Fox)

A simple error
model when we
turn

(Thrun, Burgard and Fox)

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Summary
•This lecture started to look at sensor data.

• It concentrated on data that can be used in odometry.
• Wheel encoders

• and looked at LeJOS support for doing odometry.
• Also looked at other kinds of related sensor data:

• Compass
• Gyroscope

• Later in the module we will look at range sensor data
and cameras as sensors.

•In the next lecture, we will look at
Behaviour Based Robots

31

