Robotics and Autonomous Systems

Lecture 20: More Complex Programs in AgentSpeak and Jason

Terry Payne

Department of Computer Science
University of Liverpool

P2’ UNIVERSITY

v LIVERPOOL

1/1

In this lecture we will look in more detail at the tools that you will use
for the second assignment:

o AgentSpeak
e Jason

AgentSpeak is a programming language.
Jason is an environment for building agents.
They can be combined with Java/LeJOS for building robot controllers.

HelloWorld in Jason

e Create a Jason project “helloworld” in Eclipse, and you get:
MAS helloworld{

infrastructure: Centralised

agents:
agentl sample_agent;

aslSourcePath:
"src/asl";

HelloWorld in Jason

e infrastructure: how the agent system is organised.

e agents: the list of agents that make up the system.
Here there is just one.

e aslSourcePath: path from the MAS file to the agent descriptions.

HelloWorld in Jason

8 Jason - helloasons
Edt Nagste Sexch Proect

Quick Access

160SNU fun Window Help

Fie
AR RS E0 R e ED RS AR SR R i
%8 lazon Navigator 37 =8 ample_agentasl 37 | 99 hellolszonmaz2) = O | 2 Outine &7
T - . 1e_agent in pre - u -tten
/* Tnitial betiets and rutes *
* Tnitial goals */
sstare
B sistart : true <o prin or1d.")
& jna I
ee——
2 Tusks B Probems 52
2enors. 0 wamings. 0 othes
Description ' Resource Path Location Type.
40 Eros Qe
hellcsson Buidpsth BuldPath
Unkronn Java Pralem

i Projecthelloason’ is missing required brary: null

© The project canot be bl i build path erors ar reolved. helllszon

Witable Insert 21

=5

5/1

HelloWorld in Jason

e The agent looks like this:

/* Initial beliefs and rules */
/* Initial goals */

Istart.

/* Plans */

+!start : true <- .print("hello world.").

HelloWorld in Jason

No initial beliefs or rules
Only goal is the achievement goal start.

The context/precondition for start is true.
The plan for start is to print “hello world.”

Mars Rover example

Environment

e This is the cleaning-robots example from the Jason distribution.

Garbage collection

e rl collects the garbage.

10/1

Garbage collection

e DustCart in Peccioli

11/1

Peccioli

12/1

Garbage disposal

|

HEY, CET ME ST,

You SYURI0 QeEAr-
HONK OF TN 7

e r2 disposes of the garbage.

13/1

How do we do this?

e Set up MAS.
e Set up environment.
e Set up robots.

MAS

e Here is a suitable MAS description.
MAS mars {

infrastructure: Centralised
environment: MarsEnv

agents: rl; r2;
3

e mars.mas2j

15/1

MAS

e Environment is defined by the MarsEnv. java file.

e Defines several primatives that the agents can execute which
complete actions in the environment or sense the environment.

16/1

MAS

e Environment is defined by the MarsEnv. java file.

e Defines several primatives that the agents can execute which
complete actions in the environment or sense the environment.

e In your assignment, the robot will provide this.

17/1

A program for rl

We will build up the program bit by bit.

First, a program to move around the world.

The environment calls each square a “slot”, and provides the
primitive:

next(slot)

to move from one to another.

The environment also provides the position of the robots through the
predicate:

pos(robot, xloc, yloc)

A simple program to move through the space is the following.

A program for rl

e The initial goal for all these programs is:
/* Initial goal */

Icheck(slots).

e This has no inherent meaning, just a high level goal that coincides
with the head of a plan.

/* Plans */

// Step through the gridworld and then stop
//
// To achieve the goal !check(slots): if the robot
// isn’t at the end of the world, move to the next
// slot, then reset the goal !check(slots)
+!check(slots) : not pos(rl,6,6)

<- next(slot);

Icheck(slots).

// Achieve the goal !check(slots) without doing
// anything.
+!check(slots).

e This is the program r1_v1.asl on the course website.

20/1

e We have a slightly different version of +!check(slots)

// Step through to the first piece of garbage
//
// In this version, we keep moving so long as
// we don’t sense garbage.
+!check(slots) : not garbage(rl)

<- next(slot);

!check(slots).

+!check(slots).

e So the stop condition is finding garbage rather than getting to the end
of the world.

21/1

e This version also says what to do if we sense garbage.
If there is a belief event garbage (rl).

+garbage(rl) : true
<- .print("Garbage!").

e This is the program r1_v2.asl on the course website.

22/1

e We want version 3 to pick up the garbage when it finds it.
e !Icheck(slots) is the same:

+!check(slots) : not garbage(rl)
<- next(slot);
!check(slots).
+!check(slots).

e But the garbage handling part needs to be altered:

+garbage(rl) : true
<- .print("Garbage!");
!ensure_pick(garb).

23/1

e Picking up garbage is not deterministic, so we need a recursive plan
to make sure it happens.
pick(garb) is another primitive.
o We keep trying to pick it up until we succeed.
+!ensure_pick(G) : garbage(rl)
<- pick(garb);
lensure_pick(G);
Icheck(slots).
+lensure_pick(_).
e Then we continue moving.
e The last clause gives a way of achieving the goal when there is no
garbage (the robot does nothing).

24/1

e With the previous version of ! check(slots) this will collect garbage,
but get stuck at the end of the grid, trying to move forward.

e To prevent this, we add the following *before* the first clause of
!check(slots):

+!check(slots) : not garbage(rl) & pos(rl, 6, 6).
e This prevents the recursive call if the robot is at the end of the grid.

25/1

e The full code for ! check(slots) is then:

+!check(slots) : not garbage(rl) & pos(rl, 6, 6).
+!check(slots) : not garbage(rl)
<- next(slot);
Icheck(slots).
+!check(slots).

o All of this is the program r1_v3.asl on the course website.

26/1

¢ To make the robot go to r2 to dispose of the garbage, we need to first
modify what we do when we find garbage.

+garbage(rl) : true
<- .print("Garbage!");
!take(garb,r2).
e When we find garbage we take it to r2.

27/1

o To take the garbage to r2 we make the robot at the location of r2 and
then drop the garbage.
drop(garb) is another primitive.

+!take(G,L) : true
<- lensure_pick(G);
lat(L);
drop(G).

e We need two things to make this work.

28/1

e First we need how to compute the location of the robot from the pos
primitive.
at(P) :- pos(P,X,Y) & pos(rl,X,Y).

e This is added to the (currently empty) beliefs of the robot.

29/1

e Then we say how we achieve the goal of being at a location.

+lat(L) : at(L).

+lat(L) <- ?pos(L,X,Y);
move_towards(X,Y);
lat(L).

e We do this by repeatedly moving one step towards the right location.
e The step is achieved using the primitive move_towards(X,Y)

e As before, we do the repetition by recursion.

e This is the code in r1_v4.asl on the course website.

30/1

e At this point it is only a short step to the version that you can
download with the Jason distribution.

¢ Right now r1 stops when it gets to r2 and drops the garbage.
e Adding another ! check(slots) will kick it back into motion.

31/1

Unfortunately, this will start it off again from the location of r2.

That misses some garbage.

It also covers some parts of the grid more than once.
To get around this we need to:
 Remember where we picked up the garbage.
e Go back there form r2
The full version of the rover (which is on the course website) gives an
elegant solution.

32/1

A challenge

e A good exercise is to go look at the full version, run it, and see if you
understand why it behaves as it does.

e When the first assignment is complete, | will post a lab that has you
modify the mars robot example as a way of getting to grips with
AgentSpeak and Jason.

33/1

This lecture looked at writing programs in AgentSpeak/Jason.

We briefly recapped some of the basic material from last time.

We looked again at “hello world!”.

Then we launched into a larger Mars Rover example.

We looked at several steps on the way to building a full
implementation of this example.

34/1

