
Robotics and Autonomous Systems
Lecture 20: More Complex Programs in AgentSpeak and Jason

Terry Payne

Department of Computer Science
University of Liverpool

1 / 1



Today

• In this lecture we will look in more detail at the tools that you will use
for the second assignment:
• AgentSpeak
• Jason

• AgentSpeak is a programming language.

• Jason is an environment for building agents.

• They can be combined with Java/LeJOS for building robot controllers.

2 / 1



HelloWorld in Jason

• Create a Jason project “helloworld” in Eclipse, and you get:

MAS helloworld{

infrastructure: Centralised

agents:
agent1 sample_agent;

aslSourcePath:
"src/asl";

}

3 / 1



HelloWorld in Jason

• infrastructure: how the agent system is organised.

• agents: the list of agents that make up the system.
Here there is just one.

• aslSourcePath: path from the MAS file to the agent descriptions.

4 / 1



HelloWorld in Jason

5 / 1



HelloWorld in Jason

• The agent looks like this:

/* Initial beliefs and rules */

/* Initial goals */

!start.

/* Plans */

+!start : true <- .print("hello world.").

6 / 1



HelloWorld in Jason

• No initial beliefs or rules

• Only goal is the achievement goal start.

• The context/precondition for start is true.

• The plan for start is to print “hello world.”

7 / 1



Mars Rover example

8 / 1



Environment

• This is the cleaning-robots example from the Jason distribution.

9 / 1



Garbage collection

• r1 collects the garbage.

10 / 1



Garbage collection

• DustCart in Peccioli

11 / 1



Peccioli

12 / 1



Garbage disposal

• r2 disposes of the garbage.

13 / 1



How do we do this?

• Set up MAS.

• Set up environment.

• Set up robots.

14 / 1



MAS

• Here is a suitable MAS description.

MAS mars {

infrastructure: Centralised

environment: MarsEnv

agents: r1; r2;
}

• mars.mas2j

15 / 1



MAS

• Environment is defined by the MarsEnv.java file.

• Defines several primatives that the agents can execute which
complete actions in the environment or sense the environment.

16 / 1



MAS

• Environment is defined by the MarsEnv.java file.

• Defines several primatives that the agents can execute which
complete actions in the environment or sense the environment.

• In your assignment, the robot will provide this.

17 / 1



A program for r1

• We will build up the program bit by bit.

• First, a program to move around the world.

• The environment calls each square a “slot”, and provides the
primitive:
next(slot)
to move from one to another.

• The environment also provides the position of the robots through the
predicate:
pos(robot, xloc, yloc)

• A simple program to move through the space is the following.

18 / 1



A program for r1

• The initial goal for all these programs is:

/* Initial goal */

!check(slots).

• This has no inherent meaning, just a high level goal that coincides
with the head of a plan.

19 / 1



Version 1

/* Plans */

// Step through the gridworld and then stop
//
// To achieve the goal !check(slots): if the robot
// isn’t at the end of the world, move to the next
// slot, then reset the goal !check(slots)
+!check(slots) : not pos(r1,6,6)
<- next(slot);
!check(slots).

// Achieve the goal !check(slots) without doing
// anything.
+!check(slots).

• This is the program r1_v1.asl on the course website.

20 / 1



Version 2

• We have a slightly different version of +!check(slots)

// Step through to the first piece of garbage
//
// In this version, we keep moving so long as
// we don’t sense garbage.
+!check(slots) : not garbage(r1)
<- next(slot);
!check(slots).

+!check(slots).

• So the stop condition is finding garbage rather than getting to the end
of the world.

21 / 1



Version 2

• This version also says what to do if we sense garbage.
If there is a belief event garbage(r1).

+garbage(r1) : true
<- .print("Garbage!").

• This is the program r1_v2.asl on the course website.

22 / 1



Version 3

• We want version 3 to pick up the garbage when it finds it.

• !check(slots) is the same:

+!check(slots) : not garbage(r1)
<- next(slot);
!check(slots).

+!check(slots).

• But the garbage handling part needs to be altered:

+garbage(r1) : true
<- .print("Garbage!");
!ensure_pick(garb).

23 / 1



Version 3

• Picking up garbage is not deterministic, so we need a recursive plan
to make sure it happens.
pick(garb) is another primitive.

• We keep trying to pick it up until we succeed.

+!ensure_pick(G) : garbage(r1)
<- pick(garb);
!ensure_pick(G);

!check(slots).
+!ensure_pick(_).

• Then we continue moving.

• The last clause gives a way of achieving the goal when there is no
garbage (the robot does nothing).

24 / 1



Version 3

• With the previous version of !check(slots) this will collect garbage,
but get stuck at the end of the grid, trying to move forward.

• To prevent this, we add the following *before* the first clause of
!check(slots):

+!check(slots) : not garbage(r1) & pos(r1, 6, 6).

• This prevents the recursive call if the robot is at the end of the grid.

25 / 1



Version 3

• The full code for !check(slots) is then:

+!check(slots) : not garbage(r1) & pos(r1, 6, 6).
+!check(slots) : not garbage(r1)
<- next(slot);
!check(slots).

+!check(slots).

• All of this is the program r1_v3.asl on the course website.

26 / 1



Version 4

• To make the robot go to r2 to dispose of the garbage, we need to first
modify what we do when we find garbage.

+garbage(r1) : true
<- .print("Garbage!");
!take(garb,r2).

• When we find garbage we take it to r2.

27 / 1



Version 4

• To take the garbage to r2 we make the robot at the location of r2 and
then drop the garbage.
drop(garb) is another primitive.

+!take(G,L) : true
<- !ensure_pick(G);
!at(L);
drop(G).

• We need two things to make this work.

28 / 1



Version 4

• First we need how to compute the location of the robot from the pos
primitive.

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

• This is added to the (currently empty) beliefs of the robot.

29 / 1



Version 4

• Then we say how we achieve the goal of being at a location.

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);

move_towards(X,Y);
!at(L).

• We do this by repeatedly moving one step towards the right location.

• The step is achieved using the primitive move_towards(X,Y)

• As before, we do the repetition by recursion.

• This is the code in r1_v4.asl on the course website.

30 / 1



Onwards

• At this point it is only a short step to the version that you can
download with the Jason distribution.

• Right now r1 stops when it gets to r2 and drops the garbage.

• Adding another !check(slots) will kick it back into motion.

31 / 1



Onwards

• Unfortunately, this will start it off again from the location of r2.

• That misses some garbage.

• It also covers some parts of the grid more than once.
• To get around this we need to:

• Remember where we picked up the garbage.
• Go back there form r2

• The full version of the rover (which is on the course website) gives an
elegant solution.

32 / 1



A challenge

• A good exercise is to go look at the full version, run it, and see if you
understand why it behaves as it does.

• When the first assignment is complete, I will post a lab that has you
modify the mars robot example as a way of getting to grips with
AgentSpeak and Jason.

33 / 1



Summary

• This lecture looked at writing programs in AgentSpeak/Jason.

• We briefly recapped some of the basic material from last time.

• We looked again at “hello world!”.

• Then we launched into a larger Mars Rover example.

• We looked at several steps on the way to building a full
implementation of this example.

34 / 1


