
Robotics and Autonomous Systems
Lecture 23: Localization

Terry Payne

Department of Computer Science
University of Liverpool

1 / 61

Today

2 / 61

Acknowledgement

• The material on particle filters is heavily based on:

D. Fox, S. Thrun, F. Dellaert, and W. Burgard, Particle filters for
mobile robot localization, in A. Doucet, N. de Freitas and N. Gordon,
eds., Sequential Monte Carlo Methods in Practice. Springer Verlag,
New York, 2000.

3 / 61

Localization

• We started this course with three questions:

?

• Where am I ?
• Where am I going ?
• How do I get there ?

• We are now at a point where we can answer the first of these.

4 / 61

Localization

• The basic localization task is to compute current location and
orientation (pose) given observations.
• What constitues a pose depends on what kind of map we have.
• But roughly speaking it is pxI, yI, θq.
• The same things we worried about in the motion model

• Do we need to do any more than just use odometry?
• After all, that sort of worked in the lab.

5 / 61

Why localization?

• In general odometry doesn’t hold up well over long distances.
• Range error: integrated path length (distance) of the robots

movement
• Sum of the wheel movements

• Turn error: similar to range error, but for turns
• Difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error in the
robot’s angular orientation.

• Over long periods of time, turn and drift errors far outweigh range
errors!

6 / 61

Problems with odometry

• A simple error model based on the kinematics predicts:

7 / 61

Problems with odometry

• Which is worse when we turn:

8 / 61

Problems with odometry

• Leading to:

• Images from Dieter Fox in his CMU days.

9 / 61

What else?

• If odometry alone doesn’t help, what about GPS?
• Non-military GPS is not accurate enough to work on its own.

• Thrun: Sometimes GPS places you on the wrong side of the road,
sometimes off the road completely.

• Doesn’t tend to work well indoors.

10 / 61

What else?

• Instead we try to use sensor data to identify where we are on a map.

• It is tempting to try and triangulate.
• But doing this is too prone to error.

• Sensor noise.
• Sensor aliasing.

• You get better results if you:
• Combine data from multiple sensors.
• Take into account previous estimates of where the robot is.

11 / 61

Bayesian filter

• General schema:

S

O

tS

O t

S

A t

O

t+1

t+1

t−1

t−1

A
t−1

A
t−2

• Here A is action, S is pose and O is observation.

• The point is that position at one time depends on position at the
previous time.

12 / 61

The localization problem(s)

• There are a number of flavors of localization:

• Position tracking
• Global localization
• Kidnapped robot problem
• Multi-robot localization

• All are hard, but variations of the technique we will look at helps to
solve all of them.

13 / 61

Bayesian filter

• General schema (again):

S

O

tS

O t

S

A t

O

t+1

t+1

t−1

t−1

A
t−1

A
t−2

• Here A is action, S is pose and O is observation.

• The point is that position at one time depends on position at the
previous time.

14 / 61

Bayesian filter

• The pose at time t depends upon:
• The pose at time t ´ 1, and
• The action at time t ´ 1.

• The pose at time t determines the observation at time t .

• So, if we know the pose we can say what the observation is.

15 / 61

Bayesian filter

• The pose at time t depends upon:
• The pose at time t ´ 1, and
• The action at time t ´ 1.

• The pose at time t determines the observation at time t .

• So, if we know the pose we can say what the observation is.

• But this is backwards. . .

• To help us out of this bind we need to bring in probabilities (as
mentioned before they are also helpful because sensor data is noisy).

16 / 61

Bayesian filter

• The technique we will use for localization is a form of Bayesian filter.

• The key idea is that we calculate a probability distribution over the set
of possible poses.

• That is we compute the probability of each pose that is in the set of all
possible poses.

• We do this informed by all the data that we have.

17 / 61

Bayesian filter

• We call the probability that we calulate the belief.

• We denote the belief by:

Belpstq “ Prpxt | d0,...,tq

where d0,...,t is all the data from time 0 to t .
• Two kinds of data are important:

• Observations ot
• Actions at

just as in the general scheme.

18 / 61

Bayesian filter

• Now, the basic principle behind using Bayes filters is that if we know
the current state, then future states do not depend on past states.

• The Markov assumption.

S

O

tS

O t

S

A t

O

t+1

t+1

t−1

t−1

A
t−1

A
t−2

19 / 61

Bayesian filter

• So, we can calculate the belief recursively based on:
• The next state density or motion model

Prpst | st´1, at´1q

• The sensor model
Prpot | stq

• In other words, belief about the current location is a function of belief
about the previous location, what the robot did, and what the robot
can see.

20 / 61

Bayesian filter

• The motion model, obviously enough, predicts how the robot moves.

• The model should take into account the fact that the motion is
uncertain.

21 / 61

Bayesian filter

• The sensor model captures both the landmarks the robot can see,
and the lack of precise knowledge in where the robot must be to see
them.

• ot in the above is the distance the sensor says the object is away from
the robot, dt is the real distance.

• The map tells us how far the object is, dt , and the graph tells us how
likely this is.

22 / 61

Bayesian filter

• Overall, the filtering procedure works to reduce uncertainty of location
when landmarks are observed.

• Diagram assumes that landmarks are identifiable—otherwise, Bel is
multimodal

23 / 61

Models of belief

• Single hypothesis,
continuous distribution

• Multiple hypothesis,
continuous distribution

• Multiple hypothesis,
discrete distribution

• Topological map, discrete
distribution

24 / 61

More filtering

• Handling the kind of probability distributions that the Bayes filter
requires is a bit tricky.

• So we improvise.

• Three different approaches:

• Assume everything is Gaussian.
• Make the environment discrete.
• Take a sampling approach.

• All are used with differing degrees of success.

25 / 61

More filtering

• Assuming Gaussian distributions gives us Kalman filters.
• Fast and accurate.
• Only really work for position tracking.

• A discrete environment gives us Markov localization.
• Simple.
• Accuracy requires huge memory.

• We’ll start by looking at Markov localization.

26 / 61

Markov Localization

• We start with a map that breaks the world into a grid:

• There are many ways to do this, as we saw last lecture.

27 / 61

Markov Localization

• Initally we have a uniform distribution over the possible locations.
• For every observation, for every location, we check what we observe

against the map.
• Apply the sensor model to find out how likely the observation is from

that location.
• Update the probability of the location.

• Then we normalize the probabilities — make sure they all add up to 1.

28 / 61

Markov Localization

• For every motion, for every location
• Apply the sensor model to find out what new locations are how likely.
• Update the probability of those locations.

• Then we normalize the probabilities — make sure they all add up to 1.

29 / 61

Markov Localization

• We repeat this process for every item of sensor data and every
motion.

30 / 61

Markov Localization

• Crudely what happens:

31 / 61

Markov Localization

• After 1 scan.

• W. Burgard

32 / 61

Markov Localization

• After 2 scans.

• W. Burgard

33 / 61

Markov Localization

• After 3 scans.

• W. Burgard

34 / 61

Markov Localization

• After 13 scans.

• W. Burgard

35 / 61

Markov Localization

• After 21 scans.

• W. Burgard

36 / 61

Topological maps

• Another way to make the map discrete is to use a topological map.

• Treat it the same way as the grid map.

• Fewer locations is good and bad.

37 / 61

Improving on Markov Localization

• The problem with Markov localization is that if the area is big, we
need to consider a lot of possible locations.
• Memory and processor intensive

• Particle filters use sampling techniques to reduce the number of
possible positions, and hence the number of calculations.

• The sampling approach is what we will consider next.

• Rather than compute the whole distribution, we pick possible
locations (samples) and do the calculations for them.

• This can work with surprisingly few samples (or particles).

38 / 61

Particle filter

• Also known as “Monte-Carlo Localization”.

• We approximate Belpstqby a set of samples:

Belpstq « ts
piq
t ,wpiqt ui“1,...,m

• Each spiqt is a possible pose, and each wpiqt is the probability of that
pose (also called an importance factor).

• Initially we have a set of samples (typically uniform) that give us
Belpsoq.

• Then we update with the following algorithm.

39 / 61

Particle filter

st`1 “ H

for j “ 1 to m
// apply the motion model
generate a new sample spjqt`1 from spjqt , at and Prpst`1 | st , atq

// apply the sensor model
compute the weight wpjqt`1 “ Prpot`1 | st`1q

// pick points randomly but biased by their weight
for j “ 1 to m

pick a random spiqt`1 from st`1 according to wp1qt`1, . . . ,w
pmq
t`1

normalize wt`1 in st`1

return st`1

40 / 61

Particle filter

• And that is all it takes.

41 / 61

Particle filter

• How does this work?

42 / 61

Particle filter

• After intialisation. Robot is the small circle, arrows are particles. The
direction of the arrow shows the angle component of the pose. Blue
houses are beacons.

43 / 61

Particle filter

• Orange house is the beacon observed by the robot. Black particles
are those whose weight, determined by the sensor model, is below a
threshold.

44 / 61

Particle filter

• Notice how the remaining red particles are on approximately the
same radius around the observed beacon as the robot.

45 / 61

Particle filter

• Black particles are removed, and we resample from the ones that are
left. A few random particles are added.

46 / 61

Particle filter

• Robot moves, particles are updated with the motion model. Black dot
is the average of the particles — where the particle filter thinks the
robot is.

47 / 61

Particle filter

• After another cycle of observation, resampling, and moving.

48 / 61

Particle filter

• After a third cycle.

49 / 61

Particle filter

• After a fourth cycle.

50 / 61

Particle filter

• After a fifth cycle.

51 / 61

Particle filter

• After a sixth cycle.

52 / 61

Particle filter

• After a seventh cycle.

53 / 61

Particle filter

• Thus after several repetitions, the particle “home in” on the correct
location of the robot.

• And then they track it as it moves.

54 / 61

Effectiveness

• All localization is limited by the noise in sensors:
• There are techniques for reducing noise by modelling spurious

measurements.
• Cannot remove all uncertainty.

• Discrete, grid-based approaches can reduce average error below
5cm.
• However this is hard to do in real-time.
• Requires huge amounts of memory.

• Particle filters with feasible sample sizes (« 1000) have comparable
error rates.

55 / 61

Effectiveness

• With much smaller numbers of particles (« 100) we have average
errors of around 10cm.

• This is sufficient for many tasks.

56 / 61

Summary

• This lecture looked at the problem of localization
• How we have the robot figure out where it is.

• We discussed why odometry is not sufficient.
• We then described probabilistic localization techniques, concentrating

on:
• Markov localization
• Particle filters

57 / 61

