
Introduction to Labs (Lab Intro 2)
Using the Departmental Linux Systems

1 Introduction
The lab PCs running Windows are only part of the department’s computing facilities. There are
also a number of systems running the Linux operating system (currently Scientific Linux 7.7),
which are available to all members of the department. The assignments on COMP284 will ask
you to use scripting languages to produce web-based applications. The web server hosting those
applications and providing them to the public is itself a Linux system. You are not able to directly
work on the web server, but there are other Linux systems that provide an easy way to set up web-
based applications on the web server via their shared filestore. All these systems together can be
considered to be the production servers for your applications, that is, they host the applications and
make them accessible to the public, typically after extensive development and testing. Normally,
such development would be conducted on a separate set of systems, the development servers. To
simplify matters, we will not make that distinction. We assume that all development work is
conducted on the production servers.

This practical is intended to familiarise you with the departmental Linux systems. The tasks
described below will guide you through the process of accessing and logging onto a Linux system,
using the command line interface and editing text files.

This document is available in PDF format at

https://cgi.csc.liv.ac.uk/∼ullrich/COMP284/notes/labintro02.pdf

While you work through the tasks below compare your results with those of your fellow students
and ask one of the demonstrators for help and comments if required.

2 Logging in to the Linux systems
The Departmental Linux systems are not physically accessible, but can be accessed over the net-
work. You use the same University (MWS) username and password to log in to both the Windows
and Linux systems, but the personal filestore on the Linux systems, called your ‘home directory’,
is separate from the M: drive on the Windows systems.

Figure 1:
MobaXterm
Shortcut

Commence by logging in to the Windows PC in the same way as you did
previously. Now double-click on the “MobaXterm” shortcut (Figure 1) on the left-
hand side of the desktop to open the MobaXterm application (Figure 2a). Click
on “Session” in the toolbar, this will open a window for session settings. In the
toolbar of that window click on “SSH”, this will open a new window in which you
can enter the connection details for a SSH connection to one of our Linux servers.
In the text field to the right of the label “Remote Host” enter the name of a Linux
server, lxfarm01.csc.liv.ac.uk to lxfarm08.csc.liv.ac.uk, click on the button to the left of
“Specify username”, then enter your University username into the text field to the right of that
label. Click on the tab “Terminal Settings” below the text fields (Figure 2b). You will find an
option “Terminal colors scheme” with a drop-down menu to the right of it. In that menu chose
the option “White background / Black text” (unless you are really into retro colour schemes,
in which case you should start with “Black background / White text” and customise that to

1

https://cgi.csc.liv.ac.uk/~ullrich/COMP284/notes/labintro02.pdf


(a) MobaXterm (b) Open a SSH Session (c) Enter Password

(d) Save Password (e) SSH Session Opened (f) Logging Out

Figure 2: Using MobaXterm for SSH sessions

use green text). Then click on the “OK” button at the bottom of the window. A new tab will open
in the main window pane of MobaXterm in which you will see a prompt asking for your password
(Figure 2c). Enter the password for your University (MWS) account. Note that there will be no
visiual indication that you are typing anything. Press RETURN once you have typed in all characters
of your password. You will then be asked whether you want MobaXterm to store your password so
that next time you connect to this particular Linux server you do not need to enter your password
again (Figure 2d). It is up to you whether you do so, it is the typical trade-off between convenience
and security. Independent of the choice you make you now see a shell prompt in the main window
pane of MobaXterm (Figure 2e). Also, note that on the left to the main window pane you have a
pane with a file browser showing the files in your home directory on the Linux server.

3 Using the Command Line Interface
As mentioned, in the main window pane of MobaXterm you see a shell prompt, typically, bash-4.2$.
This prompt, which will be represented throughout this practical by I, is followed by a square or
underline—the cursor. Anything you type on the keyboard will appear here. You can use the left
and right arrow keys to move the cursor back and forth within the text you have entered, and this
can be used to correct typing errors.

The shell is a command language interpreter that executes commands read from the standard
input device, in this case your keyboard, or from a file. So, anything you type is intended as
command to the operating system. When you have finished typing a command, press the <RETURN>
key. This tells the shell to run the command you specified, relative to your current working
directory, and to show any output produced by the command. It will then display another prompt,
ready for your next command.

Here is an example that uses the hostname command to discover which Linux server you are
using:
I hostname

2



lxfarm06.csc.liv.ac.uk
I

Throughout the rest of this practical, we will not always show the command prompt in the exam-
ples. However, if you type in a command, press RETURN, and no new command prompt appears,
then either you have not completed the command yet, say, there is an open string that you have
not closed yet, or the command is still running, say, you have opened an editor ‘in the foreground’
and have not closed it yet. There are then three possibilities:

• If the command is not being executed yet, then you can try to properly complete the com-
mand and press RETURN again.

• If the command is being executed, but it does not terminate, then you can terminate the
execution of the command by using the key combination CTRL-C. Note that if the command
you are executing is an editor or software development environment, the text/program you
were working on might be lost.

• If the command is being executed, but it does not terminate, then you can suspend the
execution of the command by using the key combination CTRL-Z. You should then see a
command prompt again. With the command bg you can move the just-suspended command
to the background where it continues the execute, or, with the command fg bring it back to
the foreground. The combination CTRL-Z followed by the command bg is the most reasonable
cause of action if the command you are executing is a text editor, software development
environment, or similar.

3.1 Basic Commands
The simplest commands are those concerned with viewing and manipulating files and folders. The
following series of commands illustrate this for both Linux and Windows. Try working through
each set in turn, and watch what happens using the file manager (note: ‘l’ is the letter `, not the
number ‘1’).

Linux MS Windows
cd M: Change your working directory to

your home directory
pwd pwd Show the name of the working direc-

tory
ls -l dir Long listing of the files and folders

in this directory
mkdir COMP284 mkdir COMP284 Create a new folder (directory)
cd COMP284 cd COMP284 Change the working directory to the

named sub-folder
ls dir /w Short listing of files and folders in

this directory
cd .. cd .. Change the working directory up a

level (.. = “parent directory”)
cp /etc/php.ini t1 copy \etc\php.ini t1 Make a copy of a file
cat t1 type t1 View the contents of the file t1

3



Linux MS Windows
more t1 more t1 View the contents one page at a time

(press the ‘q’ key to quit)
mv t1 php.ini rename t1 php.ini Rename a file
cp php.ini COMP284 copy php.ini COMP284 Make a copy of a file in a different

folder
mv php.ini COMP284/t2 move php.ini COMP284\t2 Move a file into another folder (and

rename it)
ls COMP284 dir COMP284 List the contents of a folder
rmdir COMP284 rmdir COMP284 Try to delete a (non-empty) folder

(which fails)
mv COMP284/* . move COMP284\* . Empty the folder (by moving the

contents to the current directory)
rmdir COMP284 rmdir COMP284 Delete the (empty) folder
rm php.ini t2 del php.ini t2 Delete the test files

Be careful when using rm. Linux assumes you know what you are doing. So, if you ask it to
delete a file, then it will be deleted. It will not simply be moved to the “Wastebasket” folder
(which is what the file manager does). So it’s typically not possible to “undelete” a file that has
been deleted by mistake—when it’s gone, it’s gone. The same holds for Windows and del.

Note that Linux uses a filesystem with case-sensitive identifiers—the folder COMP284 is different
to one called comp284. Be very careful to type the names of files or folders exactly as they appear
in the file manager, or in the output of ls or dir. Windows is more forgiving, and will ignore case
differences.

Also be aware that by default the Windows File Manager will often hide the filename extension,
that is, the last three or four characters after the final ‘.’. When using the command line, you
typically need to give the full filename, including the filename extension.

3.2 Wildcards
The third-from-last command above (emptying the test directory before deleting it) illustrates a
new idea—the use of wildcards.

Most of the commands above specify the name of a file or folder to work with. And as the last
command shows, it’s often possible to manipulate several files at the same time, by listing them
on the command line. But if there are large number of files to manipulate, typing all of them
out would be both time consuming and subject to errors. So both Linux and Windows provide a
wildcard mechanism, to match the names of multiple files (or folders) at once.

Using the command
I mkdir ~/COMP284; cd ~/COMP284
I touch test1 test2 test3.txt test10
create a directory and four files in it. Next, try the following sequence of commands. Think about
the results you see, and what these patterns might mean.
I ls test?
I ls *
I ls *.*
I ls *.txt

4



I ls test*
I ls *st?
Also try the corresponding commands with the Windows command line (using dir instead of ls).

3.3 Redirection
Another useful technique is redirection, where the output of a command can be saved to a file.
I ls test* > out1.txt
I cat out1.txt
This can be very useful when you come to test your programs. But note that any errors will still
be displayed
I ls yourFile* > out2.txt
ls: cannot access yourFile*: No such file or directory
I cat out2.txt
Redirection works on both Linux and Windows command line terminals.

The main problem with this approach is that it only saves the output of the program, and not
anything that is typed on the keyboard. Redirecting output to a file also means that you will not
see any prompts or instructions that might be displayed by the program. In one sense, this does
not really matter—as long as you know what information you need to supply, you can type this
“blindly” and the program should run correctly.

But it would be better if you could see the output (including any prompts) and still have
everything saved to a file. On Linux, this can be done using the script command:
I script -c "command " logFile
(where command is the command whose output you want to capture and logFile is the name of
a file in which you want to store that output). Try experimenting with this, using some of the
commands above, for example, try
I script -c "ls -l /etc/" out3.txt
(Although it will only really become useful when you start running programs that expect input
from the keyboard). Note that script is only available on the Linux systems—there is not an
equivalent mechanism under Windows.

3.4 Pipes
A variation of output redirection is the idea of a "pipe" - using the output of one command as the
input to another. Try the following in the Linux terminal window
I ls | sort -r
I cat out3.txt | tail -5
I ls /lib | less (press the ‘q’ key to quit)
(The symbol ‘|’ is to the left of the character ‘z’ on UK keyboards.) Compare the results of these
pipeline commands, with the output generated by the first command in each pipeline on its own.
Also, find out what the difference between less and more is.

Pipes are also available under Windows, though they are much less widely used. The last
command would work in much the same way (dir C:\Windows\System | more). Windows does
not typically include the same range of “filter” commands such as sort, head and tail.

5



Most (traditional) Linux commands are designed to process the contents of the specified files,
or (if no files are listed) to work on “standard input” as part of just such a pipeline of commands.

3.5 Command Line History
When developing a computer program, you will typically find yourself repeating the same sequence
of commands again and again—editing the file containig the source code, compiling this file,
running the resulting program, editing the file to fix any errors, compiling the corrected file, running
the program again, and so on. This means that you will end up typing the same commands over
and over again.

Both Linux and Windows command shells include a command history mechanism, which re-
members the previous commands that you have typed and allows you to recall them and run them
again. Try using the up and down arrow keys to step through this list.

3.6 Filename Completion
There is one final function of the shell to mention, namely, filename completion.

Quite often you will have several different files in the same folder, with significantly different
names. The Linux shell allows you to type the first few characters of a filename (sufficient to
uniquely identify that file), and then hit the <TAB> key. This will automatically complete the
name of the file, just as if you had typed it at the keyboard. This is extremely useful - particularly
if you are using meaningful filenames (which can be relatively long), or if your typing is not
particularly accurate!

If the prefix you have supplied is not unique, and there are two files that could possibly match,
the shell will complete as much as it can, and leave you to complete it.

4 Editing Text Files
In the course of these practicals we will create many files, mainly, HTML documents, PHP scripts
and JavaScript scripts. The main complication in doing so is that for these files to be of any use
to us they will need to be on the Linux systems in a separate filestore from the Windows PC that
you are currently interacting with. There are basically, three approaches to solving this problem:

1. You first create and edit a file on the Windows PC in your MWS filestore and then transfer
the file to the Linux filestore. We will cover file transfer in the next worksheet.

2. You create and edit a file on the Linux PC in the Linux filestore using a Linux text editor
whose graphical user interface is shown on the Windows PC. Linux supports a plethora of
text editors. In Sections 4.2 to 4.4 we will just cover three of them: The default text editor
gedit, Atom, and Emacs.

3. You create a file in the Linux filestore using MobaXterm’s file browser and edit it us-
ing MobaXterm’s built-in editor (or you start an alternative editor from MobaXterm’s file
browser). Whenever you save changes to the file, MobaXterm will automatically update the
file in the Linux filestore. We cover this approach in Section 4.1

6



(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Figure 3: Creating/editing a file with MobaXterm

4.1 MobaXterm’s built-in editor

Figure 4: MobaXterm Editor

Let us first explore how we can use MobaXterm’s functionality
to create and edit a file, in our case, a Java program. In the
file browser pane of MobaXterm you should see the contents of
your home directory in the Linux filestore which should include
a directory COMP284 (Figure 3a). Double-click on that directory
and MobaXterm will now should you the contents of COMP284
which should consist of various files we have created in previous
exercise. You can now create an empty new file by clicking on
the “New File” icon in the toolbar of the file brower pane (Figure
3b). Alternatively, you could right-click on an empty space in
the file browser pane and select “New empty file” in the pop-up
menu that opens. Either of these actions will open a dialogue
window that asks you to enter the name of the new file, enter
‘HelloWorld.java’ (Figure 3c). The file browser pane will then show the new file. Right-click on
the file and in the file context menu select the entry “Open with default editor” (Figure 3d).
This opens MobaXterm’s built-in editor. Open the URL

http://cgi.csc.liv.ac.uk/∼ullrich/COMP284/examples/HelloWorld.java

in a web browser. Copy the Java program that the web browser will show you into the editor
(Figure 4). This allows you to get a better impression of the functionality that the editor provides.

The editor uses tabs to manage the files you have open. Right now there is one tab for the one
file HelloWorld.java. If you were to open another file, additional tabs would appear and allow
you to easily switch from one file to the next.

The editor supports syntax highlighting to indicate the structure of the code and it indicates
line numbers on the left. If you hover with over an opening parenthesis or bracket, the editor will
highlight the corresponding closing parenthesis or bracket, and vice versa.

Explore the toolbar and menus of the editor. For instance, note that the editor allows you to
select two ‘formats’, “DOS format” (Windows icon in the toolbar) and “Linux format” (Linux
penguin icon in the toolbar). DOS/Windows and Unix/Linux use different end-of-line character
sequences and these two entries in the toolbar allow you select the right one. For our purposes
that will always be ‘Linux format’.

7

http://cgi.csc.liv.ac.uk/~ullrich/COMP284/examples/HelloWorld.java


Figure 5: Saving a remote file

Make some change to the program. Notice that in the editor tab there is now a star * to the
left of the name of the file, indicating that there are unsaved changes. Save the file by clicking on
the floppy disk icon in the toolbar. This opens in a new dialogue window (Figure 5). MobaXterm
indicates that the file will not be saved locally, but remotely in the Linux filestore on the Linux
server that you are connected to. You can either permit this once, by selecting “Yes”, or for all
future saves in this editing session, by selecting “Autosave”. Choose either of the two options then
close the editor. It is worth pointing out that the file context menu (Figure 3d), via the entry
“Open with...”, also allows you to use other editors or IDEs, for example, Atom or Notepad++.
The remote saving functionality of MobaXterm will still work with those editors.

4.2 gedit
Next we consider the use of a Linux editor that runs on a Linux server and edits files in the Linux
filestore but with its graphical user interface being displayed on your Windows PC.

In the MobaXterm terminal window, change to the directory in which you have stored the pro-
gram HelloWorld.java. Make sure that you are in the right directory by using the ls command.
Now open the file in gedit by using the command
I gedit HelloWorld.java 2> /dev/null &
The redirection 2> /dev/null disposes of error messages. The ampersand & at the end of the line
tells the shell to start the command ‘in the background’ so that you can continue to use the shell
and do not have to wait until the command has finished. This makes sense since you normally
intend to use the text editor for a long time and might want to do other things in parallel, such
as compiling and running the program that you edit. It will take about 3 seconds for the editor

(a) gedit (b) Atom (c) Emacs

Figure 6: Linux text editors

8



to open as it is running remotely on a Linux server.
Initially, gedit, with HelloWorld.java open in it, probably looks as shown in Figure 6a. gedit

uses syntax highlighting to indicate the structure of your code.
gedit uses tabs to manage the files you have open. Right now there is one tab for the one file

HelloWorld.java. If you were to open another file, additional tabs would appear and allow you
to easily switch from one file to the next. For program development it is often helpful to have
the lines of the code numbered, as error messages by a compiler often indicate the line number at
which an error has been found. To enable line numbers in gedit, click on the so-called hamburger
menu, then on the entry “Preferences” in that menu. In the “View” tab, click on the option
“Display line numbers”. Also explore other options available in the preferences:

• In the “View” tab you could choose to enable the option that matching brackets should be
highlighted;

• In the “Editor” tab you could enable the option that a backup copy of files are created before
saving a file;

• In the “Font & Colours” tab you could change the colour scheme that is used by gedit.

If you make changes to a file, then you can save those changes by clicking on the “Save” button
or via the key combination <CTRL>-s. You can have more than one file open in gedit at the same
time. You open files from within gedit via the “Open” menu. The menu allows you to either search
for a file or to navigate to it via “Other Documents...” which will open a file browser. For each
open file, there will be a tab entitled with the name of the file and by clicking on a tab you switch
between open files. A tab containing a file with unsaved changes will have a star * to the left of
the file name in the title.

Once you feel that you understand how gedit works, close it by clicking on the cross in the top
right corner, via the entry “Quit” in the hamburger menu, or via the key combination <CTRL>-q.

4.3 Atom
Next try Atom. Open HelloWorld.java in Atom using the command
I atom HelloWorld.java &
Here the ampersand & is optional, Atom would start in the background even without it. Just like
gedit, Atom uses tabs to manage several files at the same time (Figure 6b). When you open Atom
for the first time it is likely there are several tabs open, possibly including “Welcome”, “Welcome
Guide”, “Telemetry Consent”, and a tab for the file HelloWorld.java you have opened. You
might want to start with “Telemetry Consent” and decide whether you want to send usage stats
to the developers of Atom. Then switch to the tab with the HelloWorld.java file.

Just as the other editors, Atom uses syntax highlighting to indicate the structure of your code.
Atom should already show line numbers next to your code. Likewise, it should highlight matching
brackets: place the cursor on any curly bracket in the code; the bracket should then be underlined
and so is the opening or closing bracket matching it.

If you make changes to a file, then you can save those changes using “File→Save” or via the
key combination <CTRL>-s. A tab containing a file with unsaved changes will have a blue dot on
the right-hand side of the title bar of the tab.

It is still worth exploring the configuration options of Atom.

9



• Use “Edit→Preferences”. A new tab “Settings” will appear in the main window pane of
Atom. In the left pane click on “Editor”, then in the right pane scroll down to “Show Line
Numbers”. Make sure that this option is enabled.

• Next click on “Themes” in the left pane and choose the colour scheme that you prefer. For
the “UI Theme” choose “One Light” among the options and for the “Syntax Theme” again
choose “One Light” among the options.

• Finally, explore “Install”. Atom is an extensible editor for which a lot of packages are
available that make program development easier. In the search field enter “Java” and press
<RETURN>. Atom will list a number of packages for Java and JavaScript. Install the package
autocomplete-java.

Once you feel that you understand how Atom works, close it by clicking on the cross in the top
right corner, via “File→Quit”, or via the key combination <CTRL>-q.

4.4 Emacs
The third editor we want to explore is Emacs. Open HelloWorld.java in Emacs using the com-
mand
I emacs HelloWorld.java &
Emacs has quite a distinct look and feel from the other editors, some of the differences are due to
the fact that it can be used as a command line editor without a graphical user interface (using the
option -nw) and controlled solely via the keyboard.

Open files, as well as other things that Emacs is capable of, are held in buffers. Buffers are
shown in windows which in turn are shown in frames. Frames correspond to GUI windows and
contain one or more window. When you first open Emacs you probably see one frame, containing
two windows arranged vertically within the frame. Each window shows a different buffer, one
for the file HelloWorld.java and one called the startup screen. The later has ‘links’ to useful
information such as a tutorial and a manual. You should explore those later, for the moment close
the window with the startup screen by clicking on “Dismiss this startup screen”.

This leaves the window showing the buffer with the file HelloWorld.java. Just as the other
editors, Emacs uses syntax highlighting to indicate the structure of your code. At the bottom of
each window is a modeline. Among other things it indicates the name of the buffer / file and via
L followed by a number shows you in which line of the buffer / file the cursor is currently placed.
Move the cursor around a bit so that you can see how that number changes. By default, matching
brackets are not indicated. To change that, click on “Options” then click on the box next to
“Highlight Matching Parentheses”, and finally on “Save Options”. Once you have done that,
check whether matching brackets are indicated: Place the cursor on an opening curly bracket or
parenthesis, then the matching closing bracket / parenthesis should be highlighted. For the reverse
you have to place the cursor just after a closing bracket / parenthesis, instead of on it. Give it a
try.

If we want to have permanent line numbers to the right of our program code, then we have to
directly edit the configuration file of Emacs. Use “File→Open File...” to open a file browser.
Use the file browser to locate the file .emacs in your home directory (note the dot at the start of
the file name; also, to be able to see the file .emacs in the file browser, you need to enable the
option ‘Show hidden files’ in it.). Once you have selected the file in the file browser click on “Open”
and it will appear in a new buffer and window in Emacs. It should look as follows:

10



(custom-set-variables
;; custom-set-variables was added by Custom.
;; If you edit it by hand, you could mess it up, so be careful.
;; Your init file should contain only one such instance.
;; If there is more than one, they won’t work right.
’(show-paren-mode t))
(custom-set-faces
;; custom-set-faces was added by Custom.
;; If you edit it by hand, you could mess it up, so be careful.
;; Your init file should contain only one such instance.
;; If there is more than one, they won’t work right.
)

Most of Emacs is written in the functional programming language Emacs Lisp. What you see
above are expressions in that language. Add the following two expressions at the end of the buffer:

(global-linum-mode t)
(column-number-mode t)

The first enables line numbers in all buffers, the second column numbers. As you type in the
expressions, note that ** has appeared to the left of the file name in the modeline: This indicates
that the file has been changed and needs to be saved. Do so, using “File→Save” or via the
key combination <CTRL>-x <CTRL>-c. Without further action, the changes you have made would
only take effect the next time you start Emacs. In order to force an immediate effect, we need to
evaluate the expressions in this buffer (basically, we execute the Lisp program). To do so, click on
“Emacs-Lisp” in the toolbar and then on “Evaluate Buffer”. Line numbers should appear and
in the modeline a pair of number consisting of a line number and a column number has replaced
the single line number.

Switch back to the buffer containing your program code. You do so via the “Buffers” menu in
the toolbar where you select the entry for HelloWorld.java. You can see that in this buffer too
you now have line numbers and column numbers. Note that the toolbar now has an entry “Java”.
Explore this menu.

Once you feel that you understand how Emacs works, close it by clicking on the cross in the
top right corner, via “File→Quit”, or via the key combination <CTRL>-x <CTRL>-c.

As mentioned, Emacs can be used as a command line editor. In the MobaXterm terminal
window use
I emacs -nw HelloWorld.java
to open Emacs without a graphical user interface. Instead of using menus to load and save files
and switch between buffers, you now have to use key combinations to control the editor. The most
important such key combination are:

• <CTRL>-x <CTRL>-f: load file into buffer

• <CTRL>-x <CTRL>-s: save buffer to file

• <CTRL>-x <CTRL>-c: exit Emacs

• <CTRL>-k: kill line (basically, a ‘cut’ operation)

• <CTRL>-y: yank back line (basically, a ‘paste’ operation)

11



For a much more comprehensive list see

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

5 Logging Out
You end the SSH session with one of the commands exit or logout. You will then see a message
in the main window pane telling you that the session has been stopped (Figure 2f). If you do not
see this message, then there are still commands running in the background and the connection has
not properly been terminated. Make sure that any application with a graphical user interface, for
example, text editor, has been closed, then click on the cross symbol in the top right corner of the
tab above the main window pane. Typically, you will be shown a prompt informing you that one
or more processes are still running and asking you whether you are sure that you want to close the
tab, and thereby close the connection. If you confirm, the tab will be closed and the connection is
properly terminated.

Note that the pane to the left of the main window pane changes. It now shows a list of
previous sessions that you have established, in particular, you see the names the computers that
you connected to and the user name you have used. You can reconnect to a particular computer by
double-clicking on the corresponding entry in the list. If you have authorised MobaXterm to save
the password that you have used, then the connection is reestablished without prompting you for
a password. Give it a try, check that a SSH connection is indeed established, then log out again.

12

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

	Introduction
	Logging in to the Linux systems
	Using the Command Line Interface
	Basic Commands
	Wildcards
	Redirection
	Pipes
	Command Line History
	Filename Completion

	Editing Text Files
	MobaXterm's built-in editor
	gedit
	Atom
	Emacs

	Logging Out

