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Summary. This chapter proposes two new methods for realising automated reason-
ing within agent-based systems. We concentrate on a core of the KARO framework,
which is a specification framework for modelling intelligent agent behaviour. We
discuss the advantages of each approach and suggest ways of extending each variant
to cover more of the KARO framework.

1 Introduction

The use of agents is now seen as an essential tool in representing, understand-
ing and implementing complex software systems. In particular, the charac-
terisation of complex components as intelligent or rational agents allows the
system designer to analyse applications at a much higher level of abstrac-
tion [13, 47]. In order to describe and reason about such agents, a number
of theories of rational agency have been developed, for example the BDI [33]
and KARO [45] frameworks. Usually, these frameworks are represented as
complex multi-modal logics. These logics, in addition to their use in agent
theories, where the basic representation of agency and rationality is explored,
form the basis for agent-based formal methods. In both uses, (automated)
theorem proving is of vital importance. In agent theories, automated theorem
proving allows us to examine properties of the overall theory and, in some
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cases, to characterise computation within that theory. In agent-based formal
methods, theorem proving is clearly important in developing verification tech-
niques.

The leading agent theories and formal methods in this area all share similar
logical properties. Usually, the agent theories have:

• an informational component, being able to represent an agent’s beliefs (by
the modal logic KD45) or knowledge (by the modal logic S5),

• a dynamic component, allowing the representation of dynamic activity (by
temporal or dynamic logic), and,

• a motivational component, often representing the agent’s desires, inten-
tions or goals (by the modal logic KD).

Thus, the predominant approaches use particular combinations of modal log-
ics.

(For definitions of the modal logics mentioned in this chapter we refer the
reader to [4].)

The particular agent theory that we consider here is the KARO framework,
KARO is short for Knowledge, Abilities, Results and Opportunities [28]. The
KARO framework combines actions, knowledge, and wishes via propositional
dynamic logic PDL, S5(m), and KD(m), respectively.

While proof methods have been developed for other agent theories like the
BDI framework [34], no such methods exist for the KARO framework. Thus,
our aim in this paper is to examine possible approaches to the development of
automated proof methods for the KARO framework. We study two approaches
to the problem of proof in this complex system:

1. Proof methods for the fusion of PDL and S5(m) based upon translation to
classical logic and first-order resolution;

2. Representation of KARO in terms of the fusion of CTL and S5(m) and
proof methods by direct clausal resolution on this combined logic.

These approaches both show how we can verify properties of agent-based
systems represented in the KARO theory of rational agents, but there are
fundamental differences in the techniques used. The first approach involves
translating all modal and dynamic logic aspects into classical logic and then
carrying out proof by defining specific orderings on classical resolution. The
second approach retains the non-classical structure and develops appropriate
resolution rules for the combined logic. In addition, branching time temporal
logic, rather than propositional dynamic logic, is used to represent the agent’s
dynamic behaviour.

2 Basic KARO Elements

The KARO logic [45, 28] is a formal system that may be used to specify, anal-
yse and reason about the behaviour of rational agents. Concerning the infor-
mational attitudes of agents, in the basic framework [45], it can be expressed
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that agent i knows a fact ϕ (written as Kiϕ). The modality Ki is a standard
S5 modality. Consequently, the informational component of KARO is a multi-
modal S5(m) logic. In the full system we also consider beliefs; these epistemic
and doxastic attitudes were extensively studied in [27]. On an equal foot-
ing with these informational attitudes, the language encompasses a dynamic
component. Starting with some atomic actions Acat, KARO allows for com-
posite actions such as sequential composition (α ;β), testing ϕ!, conditionals
(if ϕ then α else β), repetition (while ϕ do α). We also investigated sev-
eral notions of choice (α+β) in [44]. The framework is especially fit to reason
about the preconditions for such actions: one can express whether agent i is
able to perform action α (Aiα) or has the opportunity to do α (Oiα), and
also that ϕ is a result of doing α ([doi(α)]ϕ). In this paper we concentrate on
one particular variant of the KARO framework and define a core subsystem
for which we are able to provide sound, complete, and terminating inference
systems.

Formally, the logic we consider is an extended modal logic given by the
fusion of a PDL-like logic and multi-modal S5 and KD. Given two (or more)
modal logics L1 and L2 formulated in languages L1 and L2 with disjoint sets of
modal operators, but the same non-modal base language, the fusion L1 ⊕L2

of L1 and L2 is the smallest modal logic L containing L1∪L2. In other words, if
L1 is axiomatised by a set of axioms Ax1 and L2 is axiomatised by Ax2, then
L1 ⊕L2 is axiomatised by the union Ax1∪Ax2. This means, in particular, that
the modal operators in L1 and L2 do not interact.

The base language of the KARO framework is defined over three primitive
types:

• a countably infinite set P of propositional variables ,
• a set Ag of agent names (a finite subset of the positive integers), and
• a countably infinite set Acat of atomic actions .

Formulaeare defined inductively as follows.

• > is an atomic (propositional) formula, and so is every propositional vari-
able in P;

• (ϕ ∨ ψ) and ¬ϕ are formulae provided ϕ and ψ are formulae;
• Kiϕ (knowledge), [doi(α)]ϕ (achievement), Aiα (ability), Oiα (oppor-

tunity), Ws
iϕ (selected wish), and ♦iϕ (implementability) are formulae,

provided i is an agent name, α is an action formula and ϕ is a formula;
• id (skip) is an atomic action formula;
• (α ∨ β) (non-deterministic choice), (α ;β) (sequencing), ϕ! (confirmation

or test), α(n) (bounded repetition), and α? (unbounded repetition) are
action formulae, provided α and β are action formulae, ϕ is a formula, and
n is a natural number (in unary coding).

Implicit connectives include the usual connectives such as ⊥, ∧, →, . . .
for (propositional) formulae, the duals of Ki, Oi and [doi(α)] (denoted by
〈doi(α)〉), as well as
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PracPossi(α, ϕ) = 〈doi(α)〉ϕ ∧ Aiα

Cani(α, ϕ) = KiPracPossi(α, ϕ)

Cannoti(α, ϕ) = Ki¬PracPossi(α, ϕ)

Goaliϕ = ¬ϕ ∧ Ws
iϕ ∧ ♦iϕ

Intendi(α, ϕ) = Cani(α, ϕ) ∧ KiGoaliϕ

We use the following notational convention in this paper. We denote atomic
actions, as well as first-order constants, by a, b, c, (non-)atomic actions by
α, β, agents by i, j, propositional variables by p, q, formulae by ϕ, φ, ψ, ϑ,
first-order variables by x, y, z, terms by s, t, u, functions by f , g, h, predicate
symbols by P , Q, R, atoms by A, A1, A2, literals by L, and clauses by C, D.

Even though the logic defined above does not include all the features of
the KARO framework, we refer to it as the KARO logic.

Intuitively, the semantics of KARO logic is a possible worlds semantics in
which the elements of the primitive types and the operators of KARO logic
are interpreted as follows: A model consists of a set of possible worlds. Each
possible world has associated with it a truth assignment to the propositional
variables in P, that is, each propositional variable is either true or false in a
world. Using such a truth assignment, we can determine the truth of purely
propositional formulae in the standard way: The atomic propositional formula
> is always true in a world, ¬ϕ is true in a world w iff ϕ is false in w, (ϕ ∨ ψ)
is true in a world w iff ϕ is true in w or ψ is true in w. To understand the
remaining operators of KARO logic, we have to take into account the second
component of the possible worlds semantics, the accessibility relations. First,
for each agent i ∈ Ag, there is a binary equivalence relation Ki on the set of
worlds in a model. If v and w are two worlds such that the pair (w, v) is in
Ki, then we say that v is reachable from w via Ki (reachability for relations
other than Ki is defined in the same way). This relation is used to determine
the truth of formulae of the form Kiϕ as follows: Kiϕ is true in a world w

iff ϕ is true in every world v reachable from w via Ki. Second, for each agent
i ∈ Ag, there is a binary serial relation Wi on the set of worlds in a model.
This relation is used to define the truth of formulae of the form Ws

iϕ: Ws
iϕ

is true in a world w iff ϕ is true in every world v reachable from w via Wi.
At first sight, using accessibility relations to provide meaning to knowledge

and wishes may not look intuitive. However, it turns out that our definition
ensures that these operators have many of the properties that we would like
them to have. For example, if an agent i knows ϕ, we would like ϕ to be
true. This is ensured by the fact that the accessibility relation Ki is reflexive.
Consequently, if agent i knows ϕ in world w, that is, Kiϕ is true in w, then ϕ
is true in w, since w is reachable from w by Ki. Similarly, we would like the
wishes of an agent i to be consistent with each other, that is, if agent i wishes
both ϕ and ψ to be true, then it should be possible for both ϕ and ψ to be
true in a world. This is ensured by the fact that the accessibility relation Wi

is serial, that is, for every world w there exists is a world v reachable from
w via Wi. For example, if agent i in world w wishes ϕ to be true, but also
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wishes ¬ϕ to be true, then both ϕ and ¬ϕ have to be true in every world v

reachable from w via Wi. Since there is at least one such world v, both ϕ and
¬ϕ have to be true in v, which is impossible. Thus, an agent i in a world w

could never wish both ϕ and its negation to be true.
Accessibility relations also provide meaning to achievement of results by

actions [doi(α)]ϕ and opportunities Oiα. For each agent i and atomic action
a ∈ Acat a model contains an arbitrary binary relation r(i,a) (i.e., there is
no requirement that the relation is reflexive or serial etc). Intuitively, each
world v reachable from a world w via r(i,a) is a possible outcome of agent i
performing action a in world w. Since r(i,a) is an arbitrary relation, it may
well be that for a world w there is no world v reachable from w via r(i,a). Our
interpretation of this situation is that agent i does not have the opportunity
to perform action a in w. It is also possible that there is more than one world
reachable from w via r(i,a). Our interpretation of this situation is that agent i
cannot predict or influence which particular world reachable from w via r(i,a),
will be the outcome of performing action a in w.

Atomic actions can be used to form more complex actions using action
forming operators of KARO, and with each agent and each complex action α
we again associate a binary relation r(i,α). With the atomic action id we asso-
ciate the identity relation on the set of worlds. With (α ∨ β) we associate the
union of r(i,α) and r(i,β), which means, that the outcome of agent i executing
(α ∨ β) in world w will either be the outcome of executing α or the outcome
of executing β, with agent i being incapable of predicting or influencing which
one it will be. With (α ;β) we associate the composition of r(i,α) and r(i,β),
that is, the outcome of (α ;β) is the outcome of first performing α and then
performing β. The bounded repetition α(n) is inductively defined to be iden-
tical to id if n = 0 and identical to (α ;α(n−1)) if n > 0. With the unbounded
repetition α? we associate the reflexive, transitive closure of r(i,α), that is, a
world v is reachable from w via r(i,α?) iff there is a finite sequence of worlds
v = w0, . . . , wn = w with n ≥ 0 such that the pair (wi, wi+1) is in r(i,α) for
every i, 0 ≤ i < n. Finally, with the confirmation action ϕ! we associate the
relation consisting of all pairs of worlds (w,w) such that ϕ is true at w in our
model. Note that the accessibility relations of the confirmation action as well
as the skip action will be the same for every agent.

We can now state the meaning of achievement of results by actions
[doi(α)]ϕ and opportunities Oiα: [doi(α)]ϕ is true in a world w iff for ev-
ery world v reachable from w via the relation r(i,α), the formula ϕ is true in
v, that is, ϕ is true in every world that agent i might be in after executing
the action α. On the other hand, Oiα is true in a world w iff there exists a
world v reachable from w via the relation r(i,α) such that ϕ is true in v, that
is, we say that agent i has the opportunity to perform action α in world w iff
there is a world v which is a possible outcome of executing α in w. Note that
Oiα is equivalent to 〈doi(α)〉>, which in turn is equivalent to ¬[doi(α)]¬>.
It is an interesting consequence of this definition that every agent i has the
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opportunity to perform an unbounded repetition α? in any world for arbitrary
actions α.

To define the meaning of ability Aiα, that is, to define what it means for an
agent i to be able to perform an action α we take a slightly different approach.
For an atomic action a we simply take note of all the worlds in which agent i
is able to perform a. We do so by associating a set c(i,a) of worlds with every
agent i and atomic action a. For the atomic action id we postulate that every
agent is able to perform it in every world. We assume that an agent i is able
to perform (α ∨ β) in a world w iff agent i can perform α or β in w. We also
assume that an agent i is able to perform a sequence α ;β in w iff agent i is
able to perform α in w and for every world v reachable from w via r(i,α), agent
i is able to perform β in v. Note that this is a cautious view of an agent’s
abilities. Performing action α can have more than one outcome; our definition
of agent i being able to perform α ;β makes sure that whatever world agent
i will end up in after performing α it will have the ability to perform β. The
ability to perform a bounded repetition α(n) is again defined inductively: for
n = 0 it is identical to being able to perform id, and for n > 0 it is identical
to being able to perform the sequence (α ;α(n−1)). For unbounded repetitions
α? we say that agent i is able to perform α? in w iff agent i is able to perform
α(n) in w for every n ≥ 0.

Finally, the formula ♦iϕ is true in world w, that is, an agent i can imple-
ment ϕ in world w, iff there exists a natural number k ≥ 0, and atomic actions
a1, . . . , ak such that PracPossi(a1; . . . ; ak, ϕ) is true in w. By definition of
PracPoss, this is the case, iff agent i has the ability to perform the sequence
a1; . . . ; ak in w and there is a world v reachable from w via r(i,a1;...;ak) in which
ϕ is true.

In this paper we make the following simplifying assumptions: (i) we assume
Aiα = Oiα = 〈doi(α)〉>, (ii) we exclude the unbounded repetition operator
α?, wishes Ws

iϕ, and implementability ♦iϕ from the language, and (iii) there
is no interaction between the dynamic and informational component. This
fragment of the KARO logic is called the core KARO logic. In Section 5 we
will discuss in how far these simplifying assumptions can be relaxed.

Example: Eve in a blocks world

To illustrate the ideas presented in this paper, we specify a blocks world
problem in KARO logic and later show how the two proof methods which will
be presented in Sections 3 and 4 can be used to solve the problem. To make the
example more interesting, the specification makes use of the implementability
operator which has been excluded from the core KARO logic.

Consider two agents, Adam and Eve, living in a blocks world containing
four blocks a, b, c, and d. We use is on(X,Y ), is clear(X), on floor(X) to
describe that a block Y is on top of a block X , that no block is on top of
X , and that X is on the floor, respectively. We allow only one atomic action:
put(X,Y ), which has the effect of Y being placed on X . Eve has the ability
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of performing a put(X,Y ) action if and only if X and Y are clear, Y is not
identical to X , and Y is not equal to c (axiom (A1)). The axiom (E1) describes
the effects of performing a put action: After any action put(X,Y ) the block Y
is on X and X is no longer clear. The axioms (N1) to (N4) describe properties
of the blocks world which remain unchanged by performing an action. For
example, if block Z is clear and not equal to some block X , then putting
some arbitrary block Y (possibly identical to Z) on X leaves Z clear (axiom
(N1)). Additionally, the axioms themselves remain true irrespective of the
actions which are performed.

AEput(X,Y ) ≡ (is clear(X) ∧ is clear(Y ) ∧X 6= Y ∧ Y 6= c)(A1)

[doi(put(X,Y ))](is on(X,Y ) ∧ ¬is clear(X))(E1)

(is clear(Z) ∧ Z 6= X) → [doi(put(X,Y ))](is clear(Z))(N1)

(is on(V, Z) ∧ Z 6= Y ) → [doi(put(X,Y )))](is on(V, Z))(N2)

(X = Y ) ∧ (U 6= V ) → [doi(α)](X = Y ∧ U 6= V )(N3)

(on floor(Z) ∧ Z 6= Y ) → [doi(put(X,Y ))]on floor(Z)(N4)

In the axioms above i is an element of {A,E} where A and E denote Adam
and Eve.

Recall that in the core KARO logic we identify Aiα with 〈doi(α)〉>. Con-
sequently, the axiom (A1) becomes

〈doE(put(X,Y ))〉> ≡ (is clear(X) ∧ is clear(Y ) ∧X 6= Y ∧ Y 6= c)(A′
1)

A tower is defined as follows.

tower(X1, X2, X3, X4) ≡
∧

i6=j(Xi 6= Xj) ∧ on floor(X1)

∧ is on(X1, X2) ∧ is on(X2, X3)
∧ is on(X3, X4) ∧ is clear(X4)

(C1)

That is, a tower consists of four distinct blocks such that the first block is on
the floor, the second block is on top of the first block, the third block on top
of the second block, the fourth block on top of the third block, and the fourth
block is clear.

We are given the initial condition

KEis on(a, b) ∧ KEis clear(b) ∧ KEis clear(c)
∧ KEis clear(d) ∧ KEon floor(a)

(I)

Axiom (I) states that Eve knows that block b is on block a, block b, c, and d
are clear, and block a is on the floor.

In Sections 3 and 4 we will prove, using our two proof methods, that the
axioms (A1) to (C1) together with (I) imply that if Eve knows that Adam
puts block c on block b, then she knows that she can implement the tower
(a, b, c, d), that is, we show that the assumption

KE〈doA(put(b, c))〉> ∧ ¬KE♦Etower(a, b, c, d)(K1)
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leads to a contradiction.
Although the problem is presented in a first-order setting, as we have

a finite domain we can easily form all ground instances of the axioms in
our specification. Thus, in the following, an expression ‘is on(a, b)’ denotes
a propositional variable uniquely associated with the atom is on(a, b) in our
specification. Due to axiom (N3) which states that equality and inequality
of blocks remains unaffected by Eve’s actions, we can eliminate all equations
from the instantiated axioms.

3 Proof by Translation

The translation approach to modal reasoning is based on the idea that in-
ference in (combinations of) modal logics can be carried out by translating
modal formulae into first-order logic and using conventional first-order theo-
rem proving techniques. The basic idea underlying the translation approach
is that first-order logic is sufficiently expressive to encode the semantics of a
wide range of modal logics. For example, take the informal semantics given
in Section 2: In defining the semantics of the various operators of KARO
logic we have used the boolean connectives (negation, conjunction, and dis-
junction) and the universal and existential quantifier. This is exactly how our
translation in Table 2 is devised. The only exception is unbounded repetition
(excluded from the core KARO logic) which has been defined using the re-
flexive, transitive closure of a relation. The reflexive, transitive closure of a
relation cannot be defined in first-order logic.

Various translation morphisms exist and their properties vary with regards
the extent to which they are able to map modal logics into first-order logic, the
decidability of the fragments of first-order logic into which modal formulae are
translated, and the computational behaviour of first-order theorem provers on
these fragments, see e.g. [8, 14, 21, 23, 36, 37].

In the following we present a decision procedure for the satisfiability prob-
lem in the core KARO logic consisting of three components: (i) a normalisation
function which reduces complex action formulae to atomic action subformulae,
(ii) a particular translation of normalised formulae into a fragment of first-
order logic, (iii) a particular transformation of this fragment of first-order logic
into the clausal class DL∗, and (iv) a resolution-based decision procedure for
DL∗. The first two steps of the procedure could be merged into one. It is
perfectly possible to devise a translation morphism for arbitrary formulae of
core KARO logic without normalising them first. However, the definition of
this translation morphism would be rather tedious and difficult to understand.
Introducing normalisation as a first step, allows a concise and straightforward
definition of the translation morphism.
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¬〈doi(α)〉ψ ⇒ [doi(α)]¬ψ ¬[doi(α)]ψ ⇒ 〈doi(α)〉¬ψ

〈doi(α ∨ β)〉ψ ⇒ 〈doi(α)〉ψ ∨ 〈doi(β)〉ψ [doi(α ∨ β)]ψ ⇒ [doi(α)]ψ ∧ [doi(β)]ψ

〈doi(α ; β)〉ψ ⇒ 〈doi(α)〉〈doi(β)〉ψ [doi(α ; β)]ψ ⇒ [doi(α)][doi(β)]ψ

〈doi(id)〉ψ ⇒ ψ [doi(id)]ψ ⇒ ψ

〈doi(φ!)〉ψ ⇒ φ ∧ ψ [doi(φ!)]ψ ⇒ ¬φ ∨ ψ

〈doi(α
(1))〉ψ ⇒ 〈doi(α)〉ψ [doi(α

(1))]ψ ⇒ [doi(α)]ψ

〈doi(α
(n+1))〉ψ ⇒ 〈doi(α)〉〈doi(α

(n))〉ψ [doi(α
(n+1))]ψ ⇒ [doi(α)][doi(α

(n))]ψ

Table 1. Transformation rules for the core KARO logic

Reduction of complex actions

Using the rewrite rules given in Table 1 and similar rules for Oiα and Aiα, the
normalisation function maps any formula ϕ of the core KARO logic to a nor-
mal form ϕ↓. The basic idea underlying these rewrite rules is to ‘break down’
any non-atomic actions occurring in formulae of core KARO logic until only
atomic actions remain. It is straightforward to see that the rewrite relation
defined by these rules is confluent and terminating, that is, the order in which
we apply the rewrite rules will not alter the final result and we can be sure
that after a finite number of applications of the rewrite rules no further rule
applications will be possible. The normal form ϕ↓ of ϕ is logically equivalent
to ϕ, it is unique, and in the absence of the unbounded repetition operator,
ϕ↓ contains no non-atomic action formulae.

Lemma 1. Let ϕ be a formula in the core KARO logic. Then ϕ↓ is logically
equivalent to ϕ, and ϕ↓ does not contain any non-atomic action formulae.

Translation to first-order logic

The idea underlying the particular translation we use was first proposed in
[7] and has been developed further in [38], where it has been called axiomatic
translation and can be seen as a special case of the T-encoding introduced in
[31]. It allows for conceptually simple decision procedures for extensions of K4

by ordered resolution. As compared to tableaux-based procedures a feature of
this approach is the absence of loop checking mechanisms for transitive modal
logics.

Without loss of generality we assume that the modal formulae under con-
sideration are normalised and in negation normal form. We define the trans-
lation function π as given in Table 2. Let Π(ψ) be the formula

∃xπ(ψ, x) ∧
∧

Kiϕ∈ΓK(ψ) Ax(Kiϕ),

where ΓK(ψ) is the set of subformulae of the form Kiϕ in ψ, and Ax(Kiϕ) is
the formula
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π([doi(a)]ϕ, x) = ∀y (R(i,a)(x, y) → π(ϕ, y)) π(>, x) = >

π(〈doi(a)〉ϕ, x) = ∃y (R(i,a)(x, y) ∧ π(ϕ, y)) π(p, x) = Qp(x)

π(Oiα, x) = π(〈doi(α)〉>, x) π(¬ϕ, x) = ¬π(ϕ, x)

π(Aiα, x) = π(〈doi(α)〉>, x) π(ϕ ∨ ψ, x) = π(ϕ, x) ∨ π(ψ, x)

π(Kiϕ, x) = QKiϕ(x)

where a is an atomic action, p is a propositional variable, Qp is a unary predicate
symbol uniquely associated with p, QKiϕ is a predicate symbol uniquely associated
with Kiϕ, and R(i,a) is a binary predicate symbol uniquely associated with a and i,
which represents the relation r(i,a) in the semantics.

Table 2. Translation morphism π

∀x (QKiϕ(x) ↔ ∀y (R(i,K)(x, y) → π(ϕ, y)))

∧ ∀x, y (QKiϕ(x) ∧ R(i,K)(x, y) → QKiϕ(y))

∧ ∀x, y (QKiϕ(y) ∧ R(i,K)(x, y) → QKiϕ(x))

∧ ∀x R(i,K)(x, x).

Here R(i,K) is a binary predicate symbol uniquely associated with the modal
operator Ki. No additional definition of R(i,K) is required, in particular, Π
does not state the symmetry or transitivity of R(i,K). Note that the transla-
tion Π preserves the structure of the core KARO formula, that is, with every
subformula occurrence ψ in a core KARO formula ϕ we can associate a par-
ticular subformula occurrence ϑ in Π(ϕ) such that ϑ = π(ψ). Based on the
close correspondence between the translation morphism Π and the semantics
of the core KARO logic it is possible to prove the following.

Theorem 1. A formula ϕ of the core KARO logic is satisfiable iff Π(ϕ) is
first-order satisfiable.

One of the advantages of using the axiomatic translation morphism is the fact
that for any formula ϕ of the core KARO logic Π(ϕ) can easily be seen to
belong to a number of well-known solvable first-order classes, including the
two-variable fragment of first-order logic [30], the guarded fragment [1], or the
clausal class DL∗ [8].

A clause C is a DL∗-clause iff (i) all literals are unary, or binary, (ii) there
is no nesting of function symbols, (iii) every functional term in C contains
all variables of C, and (iv) every binary literal (even if it has no functional
terms) contains all variables of C. A set of clauses N belongs to the class DL∗

iff all clauses in N are DL∗-clauses.

Transformation into DL∗

We will now present a structural transformation of first-order formulae into
clausal form which will transform translated formulae of the core KARO logic
into sets of first-order clauses belonging to the class DL∗.
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Let Pos(ϕ) be the set of positions of a first-order formula ϕ. If λ is a
position in ϕ, then ϕ|λ denotes the subformula of ϕ at position λ and ϕ[ψ 7→ λ]
is the result of replacing ϕ|λ at position λ by ψ. The polarity of (occurrences
of) first-order subformulae is defined as usual: Any occurrence of a subformula
of an equivalence has zero polarity. For occurrences of subformulae not below
a ‘↔’ symbol, an occurrence of a subformula has positive polarity if it is one
inside the scope of an even number of (explicit or implicit) negations, and it
has negative polarity if it is one inside the scope of an odd number of negations.

Structural transformation, also referred to as renaming, associates with
each element λ of a set Λ ⊆ Pos(ϕ) a predicate symbol Qλ and a literal
Qλ(x1, . . . , xn), where x1, . . . , xn are the free variables of ϕ|λ, the symbol Qλ
does not occur in ϕ and two symbols Qλ and Qλ′ are equal only if ϕ|λ and
ϕ|λ′ are equivalent formulae. Let

Def+λ (ϕ) = ∀x1 . . . xn. Qλ(x1, . . . , xn) → ϕ|λ and

Def−λ (ϕ) = ∀x1 . . . xn. ϕ|λ → Qλ(x1, . . . , xn).

The definition of Qλ is the formula

Defλ(ϕ) =











Def+λ (ϕ) if ϕ|λ has positive polarity

Def−λ (ϕ) if ϕ|λ has negative polarity

Def+λ (ϕ) ∧ Def−λ (ϕ) otherwise.

Based on Defλ we can inductively define DefΛ(ϕ), where Λ ⊆ Pos(ϕ), by:

Def∅(ϕ) = ϕ and

DefΛ∪{λ}(ϕ) = DefΛ(ϕ[Qλ(x1, . . . , xn) 7→ λ]) ∧ Defλ(ϕ).

Here λ is maximal in Λ∪{λ} with respect to the prefix ordering on positions.
A definitional form of ϕ is DefΛ(ϕ), where Λ is a subset of all positions of
subformulae (usually, non-atomic or non-literal subformulae).

Theorem 2. Let ϕ be a first-order formula.

1. ϕ is satisfiable iff DefΛ(ϕ) is satisfiable, for any Λ ⊆ Pos(ϕ).
2. DefΛ(ϕ) can be computed in linear time, provided Λ includes all positions

of non-literal subformula occurrences and ϕ is linearised.

Recall that with every subformula occurrence ψ in a core KARO formula
ϕ we can associate a particular subformula occurrence ϑ in Π(ϕ) such that
ϑ = π(ψ). So, for every core KARO formula ϕ we can define a set of Λ(ϕ) of
positions in Π(ϕ) by

Λ(ϕ) = {λ | there is a non-literal subformula ϕ|λ′ of ϕ and
Π(ϕ)|λ = π(ϕ|λ′ )}.

Then we can show the following.

Lemma 2. Let ϕ be a formula of the core KARO logic. Then every clause in
the clausal form of DefΛ(ϕ)(Π(ϕ)) is a DL∗-clause.



12 Hustadt, Dixon, Schmidt, Fisher, Meyer, van der Hoek

N

N ∪ {Cond(C)}
Deduce:

if C is either a resolvent or a factor of clauses in N , and Cond(C) is the
condensation of C.

N ∪ {C}

N
Delete:

if C is a tautology or N contains a clause which is a variant of C.

N ∪ {C ∨ D}

N ∪ {C} | N ∪ {D}
Split:

if C and D are variable-disjoint.

Resolvents and factors are derived by the following rules.

C ∨ A1 ¬A2 ∨ D

(C ∨ D)σ
Resolution:

where (i) σ is a most general unifier of A1 and A2, (ii) no literal in C is
selected, and A1σ is strictly �-maximal with respect to Cσ, and (iii) ¬A2

is either selected, or ¬A2σ is maximal with respect to Dσ and no literal
in D is selected.

C∨A1 is called the positive premise and ¬A2∨D the negative premise. We implicitly
assume that the premises have no common variables.

C ∨ A1 ∨ A2

(C ∨ A1)σ
Factoring:

where (i) σ is a most general unifier of A1 and A2, and (ii) no literal in C
is selected and A1σ is �-maximal with respect to Cσ.

Table 3. Expansion and inference rules

A first-order resolution calculus

For the clausal class DL∗ a decision procedure can be formulated in the res-
olution framework of Bachmair and Ganzinger [2]. In this framework, the
resolution calculus is parameterised by two parameters: an admissible order-
ing � and a selection function S. Essentially, an admissible ordering is a
total (well-founded) strict ordering on the ground level such that for literals
. . . � ¬An � An � . . . � ¬A1 � A1 holds. This is extended to the non-ground
level in a canonical manner. A selection function assigns to each clause a
possibly empty set of occurrences of negative literals and no restrictions are
imposed on the selection function.

The calculus itself consists of general expansion rules of the form:

N

N1 | · · · | Nn
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Each represents a finite derivation of alternatives N1, . . . , Nn from N . The
rules given Table 3 describe how derivation trees can be expanded at the
leaves. A derivation from a set of clauses N is a finitely branching, ordered
tree T with root N and nodes being sets of clauses. The tree is constructed by
applications of the expansion rules to the leaves so that factoring, splitting and
resolution are applied in this order. We assume that no resolution or factoring
inference is computed twice on the same branch of the derivation. Any path
N(= N0), N1, . . . in a derivation T is called a closed branch in T iff the clause
set

⋃

j Nj contains the empty clause, otherwise it is called an open branch. A
derivation T is a refutation iff every path N(= N0), N1, . . . in it is a closed
branch. A derivation T from N is called fair iff for any path N(= N0), N1, . . .

in T , with limit N∞ =
⋃

j

⋂

k≥j Nk, it is the case that each clause C that
can be deduced from non-redundant premises in N∞ is contained in some Nj .
Note that for a finite path N(= N0), N1, . . .Nn, the limit N∞ is equal to Nn.

The calculus is refutationally complete and compatible with a general no-
tion of redundancy for clauses and inferences, with which additional don’t-care
non-deterministic simplification and deletion rules can be applied [2]. For our
purposes it is sufficient that tautological clauses and variant clauses are elim-
inated from the clause set during a derivation.

Theorem 3 ([3]). Let T be a fair derivation from a set N of clauses. Then,

1. if N(= N0), N1, . . . is a path with limit N∞, N∞ is saturated up to redun-
dancy.

2. N is satisfiable if and only if there exists a path in T with limit N∞ such
that N∞ is satisfiable.

3. N is unsatisfiable if and only if for every path N(= N0), N1, . . . the clause
set

⋃

j Nj contains the empty clause.

A decision procedure for DL∗

A decision procedure for DL∗ can be obtained using an ordering � defined as
follows. Let >d be an ordering on terms which is defined by s >d t if s is deeper
than t, and every variable that occurs in t, occurs deeper in s. Then define
P (s1, . . . , sn) �A Q(t1, . . . , tn) by {s1, . . . , sn} >

mul

d {t1, . . . , tn}, where >mul

d

is the multiset extension of >d. Finally, for a negative literal ¬A let ms(A)
denote the multiset {A,A}, while for a positive literal A, ms(A) denotes {A}.
We define an ordering � on literals by L1 � L2 iff ms(L1) �A ms(L2).

Theorem 4 ([8, Theorem 5.4]). Let N be a set of DL∗-clauses and � be
the ordering of literals defined above. Then,

1. � is an admissible ordering;
2. any derivation from N based on � terminates in time double exponential

in the size of the signature of N .
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A decision procedure for core KARO logic

We can now put together the four components of our first decision procedure
for core KARO logic. Given a formulae ϕ in the core KARO logic, we proceed
by normalising ϕ using the rules in Table 1, translating the result to first-order
logic using the translation morphism Π , transforming the resulting first-order
formula to clausal form using DefΛ and a standard clause form transformation,
and finally applying the resolution calculus with the ordering� specified above
to the set of clauses we obtain.

Theorem 5 (Soundness, completeness, and termination). Let ϕ be a
formula of core KARO logic and let N be the clausal form of DefΛ(ϕ)(Π(ϕ)).
Then,

1. any derivation from N based on � terminates in time exponential in the
size of the signature of N ;

2. ϕ is unsatisfiable iff all branches in any fair derivation with root N are
closed.

The computation of ϕ↓ using the transformation rules given in Table 1 may
require exponential time and the size of ϕ↓ can be exponential in the size of
ϕ. The translation of ϕ↓ to first-order logic and the transformation to clausal
form requires only linear time. The size of the signature of the resulting clause
set N is linear in the size of ϕ↓. By Theorem 5 the saturation of N requires
exponential time in the size of the signature of N . Overall this gives a decision
procedure which requires time double exponential in the size of ϕ.

A variation of the approach can be used to show that the satisfiability
problem of core KARO logic is actually PSPACE-complete and to obtain a
decision procedure for core KARO logic which requires only polynomial space.
Basically, two modifications are required. First, we have to ensure applications
of the normalisation function to formulae of the form 〈doi(α∨β)〉ψ and [doi(α∨
β)]ψ do not result in formulae in which the subformula ψ occurs twice. This
can be achieved by replacing ψ with a new propositional variable q and adding
a definition ∀(q ↔ ψ) for q to the formula, where ∀ is the universal modality
(see Section 5 for a definition of its semantics). Second, we reduce formulae
of S5(m) to K(m). Let ϕ be the result of the first transformation and let n
be the number of subformula occurrences of the form Kiψ in ϕ for arbitrary
i ∈ Ag. Let k be a new atomic action not occurring in ϕ. For each subformula
occurrence Kiψ we introduce two new propositional variables qψ and qKiψ ,
and we let

Γ (Kiψ) = ∀(qψ ↔ ψ) ∧
∀(qKiψ ↔ [doi(k)]qψ) ∧
(qKiψ → (qKiψ ∧ [doi(k)]qKiψ ∧ . . . ∧ [doi(k)]

nqKiψ)) ∧
(¬qKiψ → (¬qKiψ ∧ [doi(k)]¬qKiψ ∧ . . . ∧ [doi(k)]

n¬qKiψ))

where [doi(k)]
n is an abbreviation for [doi(k)] repeated n times. Then the

second transformation consists of a series of rewrite steps
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ϕ[Kiψ] ⇒ ϕ[qKiψ] ∧ Γ (Kiψ),

where ψ itself does not contain any occurrence of a modal operator Kj , until
a normal form has been computed. The result ϕ�� of the two transformations
is satisfiability equivalent to the original formula ϕ. It can be computed in
time polynomial in the size of ϕ, and is of size quadratic in the size of ϕ.
The target logic of the translation can be seen as a notational variant of ALC
with acyclic TBoxes whose satisfiability problem is PSPACE-complete [25].
Therefore:

Theorem 6. The satisfiability problem of the core KARO logic is PSPACE-
complete.

A computationally space optimal decision procedure for ALC with acyclic
TBoxes, based on translation and a refinement of the resolution calculus us-
ing a particular selection function instead of an ordering refinement, can be
developed along the lines of [16]. This alternative decision procedure uses only
polynomial space in the worst case.

Solving the Eve example by translation

We will now show how we obtain a refutation for the specification of Eve’s
blocks world using the translation approach. To deal with implementa-
bility in the translation approach, we extend the translation morphism π by
π(♦iϕ, x) = ∃y . π(ϕ, y). We will discuss the appropriateness of both defini-
tions in Section 5.

Let ψ be the conjunction of the axioms (A1) to (C1), (I), and (K1). Then
CLDL∗(Π(ψ)) contains among others the following clauses which will be used
in our refutation. The axioms from which a particular clause originates are
indicated in square brackets to the left of the clause. Recall that π(p, x) =
Qp(x) where Qp is a unary predicate symbol uniquely associated with the
propositional variable p. To simplify our notation we will write ‘is on(a, b, x)’
instead of ‘Qis on(a,b)(x)’. Note that the translation of the axiom (A′

1) and
the left conjunction of (K1) contain existential quantifiers which lead to the
introduction of Skolem functions during the transformation to clausal normal
form. Consequently, the clauses (1) and (17) contain unary Skolem functions
gc
b

and gd
c
, respectively. These Skolem functions are associated with particular

actions, namely, put(b, c) and put(c, d), respectively. In addition, the Skolem
constant ε is introduced by Π itself.

[A′
1] (1) ¬is clear(c, y) ∨ ¬is clear(d, y) ∨R(E,put(c,d))(x, g

d
c (x))∗

[E1] (2) ¬R(A,put(b,c))(x, y)∗ ∨ is on(b, c, y)

[E1] (3) ¬R(E,put(c,d))(x, y)∗ ∨ is on(c, d, y)

[N1] (4) ¬is clear(c, x) ∨ ¬R(A,put(b,c))(x, y)∗ ∨ is clear(c, y)

[N1] (5) ¬is clear(d, x) ∨ ¬R(A,put(b,c))(x, y)∗ ∨ is clear(d, y)

[N1] (6) ¬is clear(d, x) ∨ ¬R(E,put(c,d))(x, y)∗ ∨ is clear(d, y)

[N2] (7) ¬is on(a, b, x) ∨ ¬R(A,put(b,c))(x, y)∗ ∨ is on(a, b, y)

[N2] (8) ¬is on(a, b, x) ∨ ¬R(E,put(c,d))(x, y)∗ ∨ is on(a, b, y)
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[N2] (9) ¬is on(b, c, x) ∨ ¬R(E,put(c,d))(x, y)∗ ∨ is on(b, c, y)

[N3] (10) ¬on floor(a, x) ∨ ¬R(A,put(b,c))(x, y)∗ ∨ on floor(a, y)

[N3] (11) ¬on floor(a, x) ∨ ¬R(E,put(c,d))(x, y)∗ ∨ on floor(a, y)

[C1] (12) ¬on floor(a, y) ∨ ¬is on(a, b, y) ∨ ¬is on(b, c, y)

∨ ¬is on(c, d, y) ∨ ¬is clear(d, y) ∨ tower(a, b, c, d, y)∗
[K1] (13) QKE〈doE(put(b,c))〉>(ε)

[K1] (14) ¬QKEtower(a,b,c,d)(ε)

[K1] (15) QKEtower(a,b,c,d)(x) ∨R(E,K)(x, hKE
(x))∗

[K1] (16) QKEtower(a,b,c,d)(x) ∨ ¬tower(a, b, c, d, y)∗
[Ax] (17) ¬QKE〈doE(put(b,c))〉>(x) ∨ ¬R(E,K)(x, y)∗ ∨Q〈doE(put(b,c))〉>(y)

[Ax] (18) ¬Q〈doE(put(b,c))〉>(x) ∨ R(A,put(b,c))(x, g
c
b(x))∗

[Ax] (19) ¬QKE is on(a,b)(x) ∨ ¬R(E,K)(x, y)∗ ∨ is on(a, b, y)

[Ax] (20) ¬QKE is clear(b)(x) ∨ ¬R(E,K)(x, y)∗ ∨ is clear(b, y)

[Ax] (21) ¬QKE is clear(c)(x) ∨ ¬R(E,K)(x, y)∗ ∨ is clear(c, y)

[Ax] (22) ¬QKE is clear(d)(x) ∨ ¬R(E,K)(x, y)∗ ∨ is clear(d, y)

[Ax] (23) ¬QKEon floor(a)(x) ∨ ¬R(E,K)(x, y)∗ ∨ on floor(a, y)

[I] (24) QKE is on(a,b)(ε)

[I] (25) QKE is clear(b)(ε)

[I] (26) QKE is clear(c)(ε)

[I] (27) QKE is clear(d)(ε)

[I] (28) QKEon floor(a)(ε)

We have obtained the refutation of CLDL∗(Π(ψ)) by using the first-order the-
orem prover spass 1.0.0 [46] which implements the resolution framework of [2].
As an ordering we used a recursive path ordering. Since any recursive path
ordering is compatible with the strict subterm ordering, spass is a decision
procedure by Theorem 5. In every non-unit clause we marked the maximal
literal of the clause by an index ·∗. Thus, inference steps are restricted to these
literals. Finding the refutation takes spass less than 0.01 seconds.

We observe that clause (16) consists of two variable-disjoint subclauses.
This clause will be subject to splitting which introduces two branches into our
search space: One on which the unit clause QKEtower(a,b,c,d)(x) is an element
of the clause set and one on which the unit clause ¬tower(a, b, c, d, y) is an
element of the clause set instead. For the first set of clauses we directly obtain
a contradiction using clause (14). For the second set of clauses

[ 16.2] (29) ¬tower(a, b, c, d, y)∗

replaces clause (16). We see that among the clause (1) to (16), only (1), (12),
(18), and (15) contain a positive literal which is maximal and can thus serve as
positive premises in resolution steps. We can derive among others the following
clauses.

[ 15.2, 17.7] (30) ¬QKE〈doE(put(b,c))〉>(x) ∨Q〈doE(put(b,c))〉>(hKE
(x))∗

[ 18.2, 2.2] (31) ¬Q〈doE(put(b,c))〉>(x) ∨ is on(b, c, gcb(x))∗
[ 18.2, 4.2] (32) ¬is clear(c, x) ∨ ¬Q〈doE(put(b,c))〉>(x) ∨ is clear(c, gcb(x))∗
[ 18.2, 5.2] (33) ¬is clear(d, x) ∨ ¬Q〈doE(put(b,c))〉>(x) ∨ is clear(d, gcb(x))∗
[ 18.2, 7.2] (34) ¬is on(a, b, x) ∨ ¬Q〈doE(put(b,c))〉>(x) ∨ is on(a, b, gcb(x))∗
[ 18.2, 10.2] (35) ¬on floor(a, x) ∨ ¬Q〈doE(put(b,c))〉>(x) ∨ on floor(a, gcb(x))∗
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[ 1.3, 3.1] (36) ¬is clear(c, x) ∨ ¬is clear(d, x) ∨ is on(c, d, gdc (x))∗
[ 1.3, 6.2] (37) ¬is clear(c, x) ∨ ¬is clear(d, x) ∨ is clear(d, gdc (x))∗
[ 1.3, 8.2] (38) ¬is clear(c, x) ∨ ¬is clear(d, x)

∨ ¬is on(a, b, x) ∨ is on(a, b, gdc (x))∗
[ 1.3, 9.2] (39) ¬is clear(c, x) ∨ ¬is clear(d, x)

∨ ¬is on(b, c, x) ∨ is on(b, c, gdc (x))∗
[ 1.3, 11.2] (40) ¬is clear(c, x) ∨ ¬is clear(d, x) ∨ ¬on floor(a, x)

∨ on floor(a, gdc (x))∗
[ 12.6, 29.1] (41) ¬on floor(a, x) ∨ ¬is clear(d, x) ∨ ¬is on(b, c, x)

∨ ¬is on(c, d, x) ∨ ¬is on(a, b, x)∗

Intuitively, clause (41) says that there is no situation x in which the blocks
a, b, c, and d form a tower. The remainder of the derivation shows that
this assumption leads to a contradiction. We choose clause (38) to derive the
following clause.

[ 38.4, 41.2] (42) ¬is clear(d, x) ∨ ¬is clear(c, x) ∨ ¬is on(a, b, x)
∨ ¬is clear(d, gdc (x)) ∨ ¬on floor(a, gdc (x))
∨ ¬is on(c, d, gdc (x)) ∨ ¬is on(b, c, gdc (x))∗

Note that in clause (42) all literals containing a Skolem term originate from
the negative premise (41) while all the remaining literals originate from the
positive premise (38). Intuitively, literals containing the Skolem term gd

c
(x)

impose constraints on the situation we are in after performing a put(c, d)
action in a situation x, while the remaining literals which have x as their final
argument impose constraints on situation x itself.

Since literals containing a Skolem term are deeper than the remaining lit-
erals, the ordering restrictions on the resolution inference rule restrict applica-
tions of resolution to these literals. In the following part of the derivation we
consecutively eliminate these literals by resolution inferences with the clauses
(36), (37), (39), and (40) and obtain

(43) ¬is clear(d, x) ∨ ¬is clear(c, x) ∨ ¬is on(a, b, x)∗
∨ ¬on floor(a, x) ∨ ¬is on(b, c, x)

Here again the literal ¬is on(a, b, x) is maximal. This time we choose clause
(34) which is related to a put(b, c) action as positive premise.

[ 34.4, 43.3] (44) ¬Q〈doE(put(b,c))〉>(x) ∨ ¬is on(a, b, x)
∨ ¬is clear(d, gcb(x)) ∨ ¬is clear(c, gcb(x))
∨ ¬on floor(a, gcb(x)) ∨ ¬is on(b, c, gcb(x))∗

By inference steps with the clauses (31), (32), (33), and (35) we eliminate all
literals containing Skolem terms and obtain

(45) ¬Q〈doE(put(b,c))〉>(x) ∨ ¬is on(a, b, x)∗ ∨ ¬is clear(d, x)
∨ ¬is clear(c, x) ∨ ¬on floor(a, x)

Intuitively, this part of the derivation has established that in any situation x
where clause (43) is false, it is possible to perform a put(b, c) action which
results in a situation x′ where is on(b, c, x′) is true.

Using clause (15), and (19) to (23) we derive



18 Hustadt, Dixon, Schmidt, Fisher, Meyer, van der Hoek

[ 15.2, 19.2] (46) ¬QKE is on(a,b)(x) ∨ is on(a, b, hKE
(x))∗

which is then used to derive

(47) ¬Q〈doE(put(b,c))〉>(x) ∨ ¬QKE is on(a,b)(x) ∨ ¬QKE is clear(d)(x)
∨ ¬QKE is clear(c)(x) ∨ ¬QKEon floor(a)(x)

from clause (45). Using clauses (24) to (28) we derive from (47):

(48) ¬Q〈doE(put(b,c))〉>(hKE (x))

[ 30.2, 48.1] (49) ¬QKE〈doE(put(b,c))〉>(x)

[ 13.1, 49.1] (50) 2

4 Proof by Clausal Temporal Resolution

Here we use the simple observation that the use of PDL in the KARO frame-
work is very similar to the use of branching time temporal logic. Thus, we
attempt to use a simple CTL branching time temporal logic to represent the
dynamic component of the core KARO logic, while the epistemic component
of core KARO logic remains unchanged. Clausal resolution-based theorem
proving is then applied to this branching time temporal logic of knowledge,
that is, the fusion of CTL and S5(m). Resolution-based proof methods for the
combination of linear time temporal logic with the modal logic of knowledge
S5 are given in [11] and the branching time logic CTL and the modal logic of
belief KD45 are presented in [10].

In the subsequent pages we give (i) a translation from the core of KARO
to the fusion of CTL and S5(m), (ii) a translation of formulae in CTL⊕S5(m)

into a normal form for this logic, and (iii) a resolution decision procedure for
these clauses.

Translation into CTL⊕S5(m)

We begin by presenting the syntax and semantics for CTL⊕ S5(m). Given a
countably infinite set P of propositional variables and a set Ag of agent names,
formulae of CTL⊕ S5(m) are defined inductively as follows: > is a CTL⊕S5(m)

formula, every propositional variable in P is a CTL⊕ S5(m) formula, if ϕ and
ψ are CTL⊕ S5(m) formulae, then ¬ϕ, ϕ∨ψ, A3ϕ, A2ϕ, A(ϕUψ), A(ϕWψ),
A#ϕ, E3ϕ, E2ϕ, E(ϕUψ), E(ϕWψ), and E#ϕ are CTL⊕ S5(m) formulae,
if ϕ is a CTL⊕S5(m) formula and i is an agent name in Ag, then Kiϕ is a
CTL⊕ S5(m) formula.

The semantics of CTL⊕S5(m) formulae is as follows. Let S be a set of
states. A tree is a structure (S, η), where S is the set of states and η ⊆ S×S is a
relation between states such that (i) s0 ∈ S is a unique root node (i.e. ¬∃si ∈ S

such that (si, s0) ∈ η), (ii) for each si ∈ S there exists sj ∈ S such that
(si, sj) ∈ η, and (iii) for all si, sj , sk ∈ S if (sj , si) ∈ η and (sk, si) ∈ η then
sj = sk. A timeline, t, is an infinitely long, linear, discrete sequence of states,
indexed by the natural numbers. Note that timelines correspond to the runs
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M, (t, u) |= >
M, (t, u) |= p iff (t, u) ∈ V (p) where p ∈ P

M, (t, u) |= ¬ϕ iff M, (t, u) 6|= ϕ

M, (t, u) |= ϕ ∨ ψ iff M, (t, u) |= ϕ or M, (t, u) |= ψ

M, (t, u) |= Aϕ iff M, (t′, u) |= ϕ for all timelines t′ extending (t, u)
M, (t, u) |= Eϕ iff M, (t′, u) |= ϕ for some timeline t′ extending (t, u)
M, (t, u) |= #ϕ iff M, (t, u+ 1) |= ϕ

M, (t, u) |= 2ϕ iff for all u′ ∈ N if (u ≤ u′) then M, (t, u′) |= ϕ

M, (t, u) |= 3ϕ iff there exists u′ ∈ N such that (u ≤ u′) and M, (t, u′) |= ϕ

M, (t, u) |= ϕUψ iff there exists u′ ∈ N such that (u′ ≥ u) and M, (t, u′) |= ψ

and for all u′′ ∈ N if (u ≤ u′′ < u′) then M, (t, u′′) |= ϕ

M, (t, u) |= ϕWψ iff M, (t, u) |= ϕUψ or M, (t, u) |= 2ϕ

M, (t, u) |= Kiϕ iff for all timelines t′ and for all u′ ∈ N if ((t, u), (t′, u′)) ∈ Ri

then M, (t′, u′) |= ϕ

Table 4. Semantics of CTL ⊕ S5(m)

of Halpern and Vardi [18, 19]. Given a set of trees T , the set of timelines can
be extracted by taking the union of the infinite branches that start at the root
node of each tree in T . Let TLT be the set of all timelines in T . A point, p, is
a pair p = (t, u), where t ∈ TLT is a timeline and u ∈ N is a temporal index
into t. Given T , a set of trees, let TLines be the set of timelines constructed
from T . Two timelines t and t′ coincide up to point (t, n) if, and only if,
(t, n′) = (t′, n′) for all n′ ≤ n. A timeline t′ extends (t, n) if, and only if, t and
t′ coincide up to (t, n). Let PT be the set of all points.

An interpretation M for CTL⊕S5(m) is a structure M = (T,R, V ) where
(i) T is a set of infinite trees, with a distinguished tree r0, (ii) for every
i ∈ Ag, R contains an equivalence relation Ri ⊆ PT ×PT , and (iii) V maps P

to subsets of PT .
The semantics of CTL⊕ S5(m) formula is defined in Table 4. For any for-

mula ϕ, if there is some interpretation M such that M, (t0, 0) |= ϕ, for any
timeline t0 extracted from the distinguished tree r0, then ϕ is said to be sat-
isfiable and M is a model of ϕ. If M, (t0, 0) |= ϕ for all interpretations M,
for any timeline t0 extracted from the distinguished tree r0, then ϕ is said to
be valid.

We assume that formulae of the core KARO logic are normalised using
the rewrite rules of Table 1. We define a translation τ from core KARO logic
into the fusion of CTL and S5(m) as given in Table 5.

Theorem 7. Let ϕ be formula of the core KARO logic. Then ϕ is satisfiable
iff τ(ϕ↓) is.

Transformation to separated normal form (SNFkaro)

We intend to use a resolution-based calculus to prove or disprove the sat-
isfiability of formulae in CTL⊕S5(m). As most resolution-based calculi, the
inference rules of the calculus only deal with formulae in a particular clausal
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τ ([doi(a)]ϕ) = A#(donea
i → τ (ϕ)) τ (>) = >

τ (〈doi(a)〉ϕ) = E#(donea
i ∧ τ (ϕ)) τ (p) = p

τ (Oiα) = τ (〈doi(α)〉>) τ (¬ϕ) = ¬τ (ϕ)

τ (Aiα) = τ (〈doi(α)〉>) τ (ϕ ∨ ψ) = τ (ϕ) ∨ τ (ψ)

τ (Kiϕ) = Kiτ (ϕ)

where a is an atomic action, p is a propositional variable, and donea
i is a propositional

variable uniquely associated with a and i.

Table 5. Translation morphism τ

normal form. So, as an intermediate step we have to rewrite formulae in the
fusion of CTL and S5(m) into such a normal form, called SNFkaro here. A par-
ticular property of this normal form is that it separates temporal and modal
aspects (as is done in [11]). Formulae in SNFkaro are of the general form

A2
∗ ∧

i Ti

where each Ti is known as a clause and must be one of the following forms and
A2∗ is the universal relation (which can be defined in terms of the operators
‘everyone knows’ and ‘common knowledge’)

start →
∨n
k=1 Lk (initial clauses)

∧m
j=1 L

′
j → A#

∨n
k=1 Lk (allpath step clauses)

∧m
j=1 L

′
j → E#(

∨n
k=1 Lk)〈ci〉 (somepath step clauses)

∧m
j=1 L

′
j → A3L (allpath sometime clauses)

∧m
j=1 L

′
j → E3L〈ci〉 (somepaths sometime clauses)

true →
∨n
k=1M

i
k (Ki clauses)

true →
∨n
k=1 Lk (literal clauses)

where L′
j , Lk, and L are literals and M i

k are either literals, or modal literals
involving the modal operator Ki. Further, each Ki clause has at least one
disjunct that is a modal literal. Ki clauses are sometimes known as knowledge
clauses . Each step and sometime clause that involves the E-operator is labelled
by an index of the form 〈ci〉 similar to the use of Skolem constants in first-order
logic. This index indicates a particular path and arises from the translation
of formulae such as E(LUL′). During the translation to the normal form
such formulae are translated into several E step clauses and an E sometime
clause (which ensures that L′ must actually hold). To indicate that all these
clauses refer to the same path they are annotated with an index. The outer
‘A2∗’ operator that surrounds the conjunction of clauses is usually omitted.
Similarly, for convenience the conjunction is dropped and we consider just the
set of clauses Ti. We denote the transformation of formulae in CTL⊕S5(m)

into SNFkaro by SNF.



Verification within the KARO Agent Theory 21

Theorem 8. Let ϕ be a formula in CTL⊕S5(m). Then,

1. ϕ is satisfiable iff SNF(ϕ) is satisfiable.
2. SNF(ϕ) can be computed in polynomial time.

A resolution calculus for SNFkaro

In the following we present a resolution-based calculus for SNFkaro. In contrast
to the translation approach described in the previous section, this calculus
works directly on SNFkaro formulae. The underlying idea is to extend a reso-
lution calculus for propositional logic to temporal and modal logic. The basic
insight underlying propositional resolution is that a propositional variable p
and its negation ¬p cannot be both true. So, if two propositional clauses C∨p
and D ∨ ¬p are both supposed to be true, then also C ∨D must be true. We
now simply have to extend this insight to the logic we are dealing with here.
For example, it cannot be both true that an agent i knows ϕ and also knows
¬ϕ. So, Kiϕ and Ki¬ϕ cannot both be true, and if two clauses C ∨Kiϕ and
D ∨ Ki¬ϕ are both supposed to be true, then so must be C ∨D. This is the
basis for rule KRES2 below. However, there are many more cases that need
to be considered and instead of just one resolution rule as for propositional
logic, we need 17 inference rules to cover all of them.

The inference rules are divided into initial resolution rules, knowledge res-
olution rules, step resolution rules, and temporal resolution rules, which will
be described in the following.

In the following, if L is a literal, then ∼L denotes A if L = ¬A and it
denotes ¬L, otherwise. A literal clause may be resolved with an initial clause
(IRES1) or two initial clauses may be resolved together (IRES2) as follows
where C and D are disjunctions of literals.

IRES1:

true → (C ∨ L)
start → (D ∨ ∼L)

start → (C ∨D)
IRES2:

start → (C ∨ L)
start → (D ∨ ∼L)

start → (C ∨D)

During knowledge resolution we apply the following rules which are based on
the modal resolution system introduced by Mints [29]. In general we may only
apply a (knowledge) resolution rule between two literal clauses, a knowledge
and a literal clause, or between two knowledge clauses relating to the same
modal operator e.g. two K1 clauses.

KRES1:

true → C ∨M
true → D ∨ ∼M

true → C ∨D
KRES2:

true → C ∨ KiL

true → D ∨ Ki∼L

true → C ∨D

KRES3:

true → C ∨ KiL

true → D ∨ ∼L

true → C ∨D
KRES4:

true → C ∨ ¬KiL

true → D ∨ L

true → C ∨ modi(D)

The function modi(D), where i is an agent name, used in KRES4 is defined
on disjunctions D of literals or modal literals, as follows.
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modi(A ∨B) = modi(A) ∨ modi(B)
modi(KiL) = KiL

modi(¬KiL) = ¬KiL

modi(L) = ¬Ki∼L

The last resolution rule requires explanation. Take KRES4 and distribute in
the external Ki operator from the surrounding A2∗ operator into the second
premise obtaining true → ¬Ki¬D ∨KiL where D is a disjunction of literals
or modal literals. Since, in S5, from axioms 4, 5 and D we have

` ¬KiKiϕ ⇐⇒ ¬Kiϕ

` ¬Ki¬Ki¬ϕ ⇐⇒ Ki¬ϕ.

so we can delete ¬Ki¬ from any of the disjuncts in D that are modal literals
and obtain the required resolvent.

Finally we require the following rewrite rule to allow us to obtain the most
comprehensive set of literal clauses for use during step and temporal resolution

KRES5:
true → D ∨ KiL1 ∨ KiL2 ∨ . . .

true → D ∨ L1 ∨ L2 ∨ . . .

where D is a disjunction of literals.
‘Step’ resolution consists of the application of standard classical resolution

to formulae representing constraints at a particular moment in time, together
with simplification rules for transferring contradictions within states to con-
straints on previous states.

Pairs of step clauses may be resolved using the (step resolution) rules
SRES1, SRES2, and SRES3.

SRES1:

P → A#(F ∨ L)
Q→ A#(G ∨ ∼L)

(P ∧Q) → A#(F ∨G)
SRES2:

P → E#(F ∨ L)〈ci〉
Q→ A#(G ∨ ∼L)

(P ∧Q) → E#(F ∨G)〈ci〉

SRES3:

P → E#(F ∨ L)〈ci〉
Q→ E#(G ∨ ∼L)〈ci〉

(P ∧Q) → E#(F ∨G)〈ci〉

A step clause may be resolved with a literal clause (where G is a disjunction
of literals) and any index is carried to the resolvent to give resolution rules
SRES4 and SRES5.

SRES4:

P → A#(F ∨ L)
true → (G ∨ ∼L)

P → A#(F ∨G)
SRES5:

P → E#(F ∨ L)〈ci〉
true → (G ∨ ∼L)

P → E#(F ∨G)〈ci〉

Once a contradiction within a state is found, the following rule can be used
to generate extra global constraints.

SRES6:
Q→ P#false

true → ∼Q

where P is either path operator.
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Rule SRES6 states that if, by satisfying Q in the last moment in time a
contradiction is produced, then P must never be satisfied in any moment in
time. The new constraint therefore represents A2∗∼Q.

During temporal resolution the aim is to resolve one of the sometime
clauses, Q ⇒ P3L, with a set of clauses that together imply 2∼L along
the same path, for example a set of clauses that together have the effect of
F → #2∼L. However the interaction between the ‘#’ and ‘2’ operators makes
the definition of such a rule non-trivial and further the translation to SNFkaro
will have removed all but the outer level of 2-operators. So, resolution will
be between a sometime clause and a set of clauses that together imply an
2-formula that occurs on the same path, which will contradict the 3-clause.

TRES1:

P → A#A2L

Q→ A3∼L

Q→ A(∼PW∼L)
TRES2:

P → A#A2L

Q→ E3∼L〈ci〉

Q→ E(∼PW∼L)〈ci〉

TRES3:

P → E#E2L〈ci〉

Q→ A3∼L

Q→ A(∼PW∼L)
TRES4:

P → E#E2L〈ci〉

Q→ E3∼L〈ci〉

Q→ E(∼PW∼L)〈ci〉

In each case the resolvent ensures that once Q has been satisfied, meaning that
the eventuality 3∼L must be satisfied on some or all paths, the conditions for
triggering a 2-formula are not allowed to occur, that is, P must be false, until
the eventuality (∼L) has been satisfied. It may be surprising that resolving a
A-formula with a E-formula in TRES3 results in a A-formula. This is because
the eventuality ∼L must appear on all paths so similarly the resolvent will
also hold on all paths

Given a set N of SNFkaro clauses to be to be tested for satisfiability, the
following steps are performed.

1. Perform initial, knowledge and step resolution (including simplification
and subsumption) on N until either
a) false is derived: terminate noting that N is unsatisfiable; or
b) no new resolvents are generated: continue to step (2).

2. Select an eventuality from the right-hand side of a sometime clause within
N . Search for a set of clauses with which one of the temporal resolution
rules can be applied.

3. If the resolvent is new (i.e. is not subsumed by previously detected re-
solvents) translate into SNFkaro and go to step (1). Otherwise if no new
resolvents have been found for any eventuality, terminate declaring N

satisfiable, else go to step (2).

Theorem 9. Let N be a set of SNFkaro clauses. Then,

1. any derivation from N terminates;
2. N is unsatisfiable iff N has a refutation by the temporal resolution proce-

dure described above.
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A decision procedure for core KARO logic

We can now put the four components of our second decision procedure for
core KARO logic together. Given a formula ϕ in the core KARO logic, we
proceed by normalising ϕ using the rules in Table 1, translate the result into
the fusion of CTL and S5(m), transforming the resulting formula to SNFkaro,
and finally applying the temporal resolution procedure for SNFkaro to the set
of SNFkaro clauses we obtain.

Theorem 10 (Soundness, completeness, and termination). Let ϕ be a
formula of the core KARO logic and let N = SNF(τ(ϕ↓)). Then,

1. any derivation from N terminates;
2. ϕ is unsatisfiable iff N has a refutation by the temporal resolution proce-

dure described above.

Solving the Eve example by temporal resolution

We will now show how to obtain a refutation for the specification of Eve’s
blocks world using clausal temporal resolution. To deal with implementability,
we extend the translation morphism τ by τ(♦iϕ) = E3τ(ϕ). We will discuss
the appropriateness of both definitions in the following section.

The specification of the problem can then be written as formulae in the
normal form as follows. For example (E1) instantiated whereX = a and Y = b

can be written as the following two rules.

true → A#(¬done
put(a,b)
E ∨ is on(a, b))

true → A#(¬done
put(a,b)
E ∨ ¬is clear(a))

The conjunction of initial conditions is rewritten by a new proposition v and
each conjunct, e.g. KE is on(a, b) can be can be written as follows

start → v(I0)

true → ¬v ∨ KE is on(a, b)(I1)

and similarly with the conjuncts KE is clear(b), KE is clear(c), KE is clear(d)
and KEon floor(a) (giving I0–I5). We try to prove

KE〈doA(put(b, c))〉> → KE♦Etower(a, b, c, d)

Firstly we translate as follows.

KEE#(done
put(b,c)
A ) → KEE3tower(a, b, c, d)

Next we must negate and look for a contradiction with the specification above,
i.e.

KEE#(done
put(b,c)
A ) ∧ ¬KEE3tower(a, b, c, d).

Next we rewrite into the normal form introducing new variables w, x, y, z and
replacing tower(a, b, c, d) with its definition.
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start → w(G1)

true → ¬w ∨ KEy(G2)

y → E#(done
put(b,c)
A )(G3)

true → ¬w ∨ ¬KE¬z(G4)

true → ¬z ∨ x(G5)

x→ A#x(G6)

true → ¬x ∨ ¬on floor(a) ∨ ¬is on(a, b) ∨ ¬is on(b, c)
∨ ¬is on(c, d) ∨ ¬is clear(d)

(G7)

Firstly, we apply the rules SRES1, SRES2 and SRES4 to (G6), (G7), and the
instantiations of (N1), (N2), (N4), (E1), and (A1) given below

is clear(d) → A#(¬done
put(c,d)
E ∨ is clear(d))(N1)

is on(a, b) → A#(¬done
put(c,d)
E ∨ is on(a, b))(N2)

is on(b, c) → A#(¬done
put(c,d)
E ∨ is on(b, c))(N2)

on floor(a) → A#(¬done
put(c,d)
E ∨ on floor(a))(N4)

true → A#(¬done
put(c,d)
E ∨ is on(c, d))(E1)

is clear(c) → E#done
put(c,d)
E 〈c1〉

(A1)

obtaining

x ∧ is clear(d) ∧ is on(a, b) ∧ is on(b, c) ∧ on floor(a) ∧ is clear(c) → E#false〈c1〉.

An application of SRES6 to this step clause results in

true → ¬x ∨ ¬is clear(d) ∨ ¬is on(a, b) ∨ ¬is on(b, c)
∨ ¬on floor(a) ∨ ¬is clear(c)

(G8)

Next we again apply the rules SRES1, SRES2, and SRES4 to (G6), (G8), and
instantiations of (N1), (N2), (N4), (E1), and (G3) obtaining the following

is clear(c) ∧ is clear(d) ∧ is on(a, b) ∧ on floor(a) ∧ x ∧ y → E#false〈c2〉.

With an application of SRES6 to this clause we obtain

true → ¬x ∨ ¬y ∨ ¬is clear(c) ∨ ¬is clear(d)
∨ ¬is on(a, b) ∨ ¬on floor(a)

(G9)

Resolving (G9) with (G5) using KRES1 and then with (G4) using KRES4 we
obtain

true → ¬z ∨ ¬KEy ∨ ¬KE is clear(c) ∨ ¬KEis clear(d)
∨ ¬KE is on(a, b) ∨ ¬KEon floor(a)

(G10)

which can be resolved with the initial conditions (I1), (I3), (I4), (I5), and
(G2) using KRES1 to obtain

true → ¬w ∨ ¬v.(G11)

Finally, resolving (G11) with (I0) and (G1) using IRES1 and IRES2 the con-
tradiction

start → false

is obtained.
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5 Beyond the Core KARO Logic

In Sections 3 and 4 we have presented two methods for modal reasoning in a
restricted core of the KARO logic. We will now consider whether and how each
method can be extended to cover a larger fragment of the KARO logic, and
then indicate how KARO can be put to work in more complex environments
than the blocks world.

In the full framework opportunities Oiα and abilities Aiα are not the
same. There Oiα=〈doi(α)〉>, and Aiα is defined as in Section 2. Conse-
quently, we can extend the normalisation function defined by the rewrite rules
in Table 1 to reduce any formula ϕ with occurrences of Oiα, Aiα, or [doi(α)]ψ
where α is a non-atomic action formula to a formula ϕ↓ which is logically
equivalent to ϕ and in the absence of the unbounded repetition operator ϕ↓
contains no non-atomic action formulae.

In the translation approach the translation function π has to be modified
such that π(Aia, x) = cai (x) where a is an atomic action, and cai represents the
relation c(i,a) in our semantics. In the clausal temporal resolution approach
Aiα is simply represented by propositional variables cαi uniquely associated
with i and α. It seems an alternative for both approaches that would incor-
porate also a commitment operator could exploit the ideas of [39].

We have also excluded wishes in our presentation. In the full KARO frame-
work, Ws

i is a KD modality. The incorporation of wishes into the translation
approach presents no difficulties. The translation function π is extended by
π(Ws

iϕ, x) = ∀y .R(i,W)(x, y) → π(ϕ, y), where R(i,W) is a binary predicate
symbol uniquely associated with the modal operator Ws

i , and Π(ψ) contains
additional conjuncts ∀x ∃y R(i,W)(x, y) for every agent i, ensuring that the bi-
nary relations R(i,W) are serial. For the clausal temporal resolution approach
the addition of wishes to the core of KARO requires (i) an extension of the
normal form which allows for clauses for the wishes of each agent, and (ii)
additional sound and complete resolution rules for the KD modalities Ws

i .
The implementability operator ♦i excluded from core KARO logic is one

of the most interesting operators of KARO logic. The formula ♦iϕ is true
in world w, that is, an agent i can implement ϕ in world w, iff there ex-
ists a natural number k ≥ 0, and atomic actions a1, . . . , ak such that
PracPossi(a1; . . . ; ak, ϕ) is true in w. Formally, the semantics of ♦i is de-
fined by

M, w |= ♦iϕ iff ∃k ∈ N ∃a1, . . . , ak ∈ Acat.

M, w |= PracPossi(a1; . . . ; ak, ϕ)

where PracPossi(α, ϕ) is an abbreviation for 〈doi(α)〉ϕ ∧ Aiα. So, ♦iϕ holds
if we can find atomic actions a1, . . . , ak such that agent i is able to perform the
sequence a1; . . . ; ak and performing this sequence possibly leads to a situation
in which ϕ is true. Intuitively, proving ♦iϕ requires that we find a plan which
might bring about a situation in which ϕ is true. In other words, the intention
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for including the implementability operator into KARO logic is to internalise
the planning problem in the logic.

However, it turns out that this intuition is slightly misleading. To give a
precise analysis of the implementability operator, let us add modal operators
∀ and ∃ to our language with the following semantics.

M, w |= ∀ϕ iff ∀v ∈W.M, v |= ϕ

M, w |= ∃ϕ iff ∃v ∈W.M, v |= ϕ

The modal operator ∀ is the universal modality while ∃ is the dual universal
modality.

Furthermore, if ϕ[ψ1] is a formula containing a subformula occurrence
of ψ1, then by ϕ[ψ′

1] we denote the formula obtained by replacing in ϕ the
subformula occurrence of ψ1 by the formulae ψ′

1.

Lemma 3. 1. Let ϕ[♦iψ] be a formula of KARO logic with a positive sub-
formula occurrence of ♦iψ and no negative subformula occurrences of the
form ♦jϑ. Then ϕ[♦iψ] is satisfiable iff ϕ[∃ψ] is satisfiable.

2. Let ϕ[♦iϑ] be a formula of KARO logic with a negative subformula occur-
rence of ♦iϑ. Then the unsatisfiability of ϕ[♦iϑ] implies the unsatisfiability
of ϕ[∃ϑ], but not vice versa.

Thus, positive occurrences of ♦i give little indication of the existence of a
plan. The mapping of ♦iϕ to ∃y π(ϕ, y) by the translation morphism π as
defined in Section 3 is only correct for positive occurrences of ♦iϕ, but not for
negative occurrences. There is no straightforward way to translate negative
occurrences of ♦i that correctly reflects its semantics.

Although the language of SNFkaro contains with A2∗ a combination of
operators corresponding to the master modality, A2∗ can only occur at one
particular position, that is, surrounding a conjunction of clauses. For positive
occurrences of ♦i we can show that E3τ(ϕ) is a correct translation of ♦iϕ

by extending the model transformation sketched in the proof of Theorem 7.
Again, there is no straightforward way to translate negative occurrences of
♦i.

However, it is clear that the current semantical definition of ♦i fails to cor-
respond to our intuitive understanding of implementability. A more accurate
semantical definition restricts the choice of atomic actions a1, . . . , ak, which
an agent i performs to bring about a situation where ϕ holds, to a particular
finite set of actions, for example, the set of atomic actions occurring in the
formula under consideration. So, if Acatψ denotes the finite set of atomic ac-
tions occurring in a formula ψ, then the modified semantical definition could
be as follows,

M, w |= ♦iϕ iff ∃k ∈ N ∃a1, . . . , ak ∈ Acatψ.

M, w |= PracPossi(a1; . . . ; ak, ϕ)

where ψ is a specific KARO formula. In this case the existential quantifier in
the definition of ♦iϕ can be replaced by a disjunction over all actions in Acatψ.
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Then ♦iϕ can be embedded into CTL∗ as ϕ∨E(
∨

a∈Acatψ
(cai ∧#doneai )))Uϕ).

Although this formula is not in CTL, it can be rewritten into a satisfiability
equivalent set of SNFkaro clauses making use of the additional expressiveness
of SNFkaro clauses due to the index labels we can attach to step clauses.

Also the use of the unbounded repetition operation on actions is excluded
from the core KARO logic we have considered. This operation is not first-order
definable and there can be no translation into first-order logic based solely on
the semantics of the unbounded repetition operation. Unbounded repetition
also presents problems for the clausal temporal resolution approach as we
require that only atomic actions a occur in [doi(a)]ϕ and Aia. In the presence
of unbounded repetition we are not able to remove occurrences of α? or non-
atomic action below unbounded repetition using the rules of Table 1 or similar
rewrite rules. However, one possibility which may be fruitful is to translate
formulae such as 〈doi(a

?)〉ϕ, where a is an atomic action, directly into CTL

as ϕ ∨ E#(E(doneai U(ϕ ∧ doneai ))). This could be further rewritten into the
normal form SNFkaro.

It is important to note that embeddings of the extension of core KARO
logic by unbounded repetition into first-order logic and CTL⊕S5(m) do exist.
There are polynomial time computable, satisfiability equivalence preserving
embeddings of S5(m) into Converse PDL [43] and of Converse PDL into PDL [6].
The combination of these two embeddings allows us to reduce the satisfiability
problem of the extension of core KARO logic by unbounded repetition to the
satisfiability problem of PDL. The satisfiability problem of PDL is EXPTIME-
complete [15, 32] and so are the satisfiability problem of the guarded fragment
with relations of bounded arity GFk [17] and CTL [12]. Thus, there are again
polynomial time computable embeddings τGFk and τPDL mapping formulae
of PDL to satisfiability equivalent formulae in GFk and CTL, respectively.
However, these embeddings are based on the fact that any polynomial space
alternating Turing machine T and its input I can be embedded into GFk
and PDL in such a way that the resulting formula ϕ(T,I) is satisfiable iff the
original Turing machine T halts on I in an accepting state. So, given a decision
procedure for PDL as a polynomial space alternating Turing machine MPDL,
τGFk and τPDL can be used to translate MPDL together with a PDL formula
ψ into a formula ϕ(MPDL,ψ) of the target logic which satisfies the property
stated above. Thus, these embeddings together with the appropriate decision
procedures for the target logics provide us with decision procedures for the
extension of core KARO logic by unbounded repetition.

While this approach is an appropriate way to establish the complexity of a
class of problems, it is doubtful whether it can be used to obtain practical proof
methods. The embeddings τGFk and τPDL induce mappings from computations
of a decision procedure MPDL for the source logic PDL to interpretations of
the target logic. So, we can only expect to be as efficient as the decision
procedure MPDL. In contrast, the embeddings Π and τ described in Sections
3 and 4, respectively, constitute mappings from interpretations of the source
logic to interpretations of the target logic. The embeddings do not impose any
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constraints on the way we solve the satisfiability problem in the target logic.
This means, we can take advantage of the sophisticated techniques available
for the target logics.

In the full KARO framework interaction between the dynamic logic and
epistemic logic components of KARO logic is allowed and various additional
properties of the modal operators have been investigated [45]. Of particu-
lar interest is accordance, formalised by the axiom schema Ki[doi(α)]ϕ →
[doi(α)]Kiϕ. This is similar to the interaction axiom between linear time tem-
poral logic and S5(m), Ki#ϕ → #Kiϕ, given in [13], known as synchrony and
perfect recall and is known to make the validity problem much more complex.
For example in the single agent case allowing this interaction between propo-
sitional linear time temporal logic and S5 turns the satisfiability problem from
a PSPACE-complete problem into a double exponential time complete prob-
lem [18]. However, in many cases the addition of such interactions even leads
to undecidability [18] so care is needed here. Resolution-based proof methods
for the single agent case of linear time temporal logics of knowledge allowing
synchrony and perfect recall in are given in [9]. Also, some recent positive
results have been shown in [40, 41, 42].

Further it is interesting to consider what fragment of the fusion of CTL

and S5(m) we obtain when translating from KARO specifications in this way.
For example is it ever possible to obtain A3L from translating from the core
of KARO? Our conjecture is it is not possible and therefore we do not require
the temporal resolution rules TRES1 and TRES3.

Although the blocks world is a well accepted test-bed for planning and
AI, we are also aiming at applying KARO in other areas. Breunesse [5] used
a subset of KARO to reason about soccer players in the simulation league of
RoboCup [35], where, as in the blocks world, the number of atomic actions is
limited, but, unlike the blocks world, the result of these actions is not precise.
Thus, in [5], besides knowledge, probabilities are added to the framework. His
work shows that to overcome the accumulating uncertainties after a sequence
of actions, there is a need to incorporate some notion of sensing to KARO,
which, together with the notions of updating an agent’s belief in a KARO
setting, gives the agents a richer and dynamic epistemic attitude.

Another KARO issue still in research is the question how to realise agents
that are specified in KARO. A first step toward this end was taken in [26],
where we try to link KARO to agent programming languages. In essence,
an agent programming language enables the programmer to program (the
dynamics of) mental states. Thus, the semantics of such a program can be
conceived of as ‘mental state transformers’. KARO should be a suitable veri-
fication language for such a programming language. In [26], we analysed the
language 3APL [20] of which the semantics is given in terms of a goal-base
(KARO: commitments) and a belief-base (KARO: knowledge) of the agent,
and were able to identify a number of 3APL-specific properties about them.
In particular, we gave a number of properties that the practical reasoning rule
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of 3APL satisfies. Explaining this in detail would require too much additional
definitions here. For further details the reader is referred to [26].

6 Conclusion

Although there exist a number of theories of rational agency which are formu-
lated in the framework of combinations of modal logics, the work on practical
proof methods for the expressive logics involved in these theories has been
sparse. Examples are the tableaux-based proof methods developed by Rao
and Georgeff for propositional BDI logics [34], and the resolution-based proof
methods developed by Dixon, Fisher, and Wooldridge for temporal logics of
knowledge [11]. In this paper we presented the current state of our attempt
to provide proof methods for the logics of the KARO framework, whose ex-
pressiveness exceeds those of previous theories of rational agency.

The presentation of the proof methods in Sections 3 and 4, and the dis-
cussion in Section 5, shows that although our proof methods already cover
an interesting core fragment of the KARO framework, there are still essen-
tial gaps. We believe that this is not a sign that our approach is insufficient,
but due to the fact that combinations of interacting logic inherently pose
difficult proof theoretical problems, which have not received the necessary
attention. Recent experiments support the view that even for rather simple
classes of temporal and dynamic logic formulae the performance of various
theorem provers varies greatly [24]. This indicates that the theoretical and
practical problems of theorem proving in temporal and dynamic logic, and
their extensions, is not yet well investigated.

One of the motivations for pursuing two different approaches at the same
time is the fact that the strength of the approaches lies within different areas
of the KARO framework. The translation approach allows a quite elegant
treatment of the informational component of KARO. On the other hand,
the clausal temporal resolution approach has a better potential to provide a
complete calculus for the dynamic component of KARO, in particular, in the
presence of unbounded repetition.

A promising approach is the possibility of combining both proof methods.
In [22] we present a combination of clausal temporal resolution (restricted
to a linear time temporal logic) and the translation approach plus first-order
resolution (restricted to extension of the multi-modal logic K(m)), and we were
able to show soundness, completeness, and termination of this combination of
logics.
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