1 Introduction

[EK89] introduced the notion of an abductive framework and proposed stable models as a semantics for abduction. They showed that abductive frameworks can be used to provide an alternative basis for negation-as-failure in logic programming. [KM90] introduced the notion of generalized stable models by suitably extending the definition of stable models. The semantics of generalized stable models clarifies the meaning of integrity constraints within an abductive framework. In ([SI92]) a goal-directed method for computing the generalized stable models of an abductive framework has been proposed. Their method is correct for any consistent abductive framework. Whereas abductive frameworks correspond to normal logic programs with integrity constraints, I propose an extension to disjunctive normal logic programs. Disjunctive normal logic programs extend normal logic programs to full first-order expressibility.

2 Abductive Frameworks

Definition 2.1 (Abductive framework)

An atom is an expression $P(t_1, \ldots, t_n)$, where P is a predicate symbol and t_1, \ldots, t_n are terms. A positive literal is an atom, a negative literal is an expression $\neg A_1$, where A_1 is an atom. A literal is either a positive or a negative literal. Let L be a literal. Then L^\perp denotes the complement of L.

A clause is either of the form

$$A_1 \lor \ldots \lor A_m \leftarrow L_1 \land \ldots \land L_n,$$

where A_1, \ldots, A_m, $m \geq 1$ are atoms, and L_1, \ldots, L_n are literals, or

$$\bot \leftarrow L_1 \land \ldots \land L_n,$$

where L_1, \ldots, L_n are literals. The left hand side of a clause is the head, denoted by $head(C)$, the right hand side is the body of the clause, denoted by $body(C)$.

A program is a set of clauses. An abductive framework is a pair (T, A) where A is a set of predicate symbols, called abducible predicates, and T is a set of clauses such that no predicate symbols of head atoms are in A. A set of ground atoms for predicates in A is called abducibles. The set of all abducibles is denoted by A.

Given an abductive framework (T, A), $pos(C)$ is the set of positive literals in the body of a clause C which are not abducibles, $neg(C)$ is the set of negative literals in the body of C, $abd(C)$ is the set of abducibles in the body of C.

The Herbrand base of a program T is denoted by $HB(T)$, its Herbrand universe by $HU(T)$.

We impose the restriction that the clauses of a program must be range-restricted, i.e. any variable in a clause C must occur in $pos(C)$. Any clause can be transformed to a range-restricted clause by
inserting for every variable violating the range-restrictedness condition a predicate \(\text{dom} \) describing the Herbrand universe.

Definition 2.2 (Minimal Model)
An interpretation \(I \) for a program \(T \) is a subset of \(HB(T) \). An interpretation \(I \) satisfies a ground atom \(A_1 \) iff \(A_1 \in I \). It satisfies a ground literal \(\text{not}(A_1) \) iff \(A_1 \notin I \). No interpretation satisfies \(\bot \). An interpretation \(I \) satisfies a clause
\[
A_1 \lor \ldots \lor A_m \leftarrow L_1 \land \ldots \land L_n,
\]
iff for every ground substitution \(\sigma \) either one of \(A_1 \sigma, \ldots, A_m \sigma \) is satisfied by \(I \) or one of \(L_1 \sigma, \ldots, L_n \sigma \) is not satisfied by \(I \).

An interpretation \(I \) is a model of \(T \) if \(I \) satisfies every clause in \(T \). An model \(I \) of \(T \) is minimal if there is no interpretation \(I' \subset I \) such that \(I' \) is a model of \(T \). △

Definition 2.3 (Gelfond-Lifschitz Transformation)
Let \(T \) be a program and \(I \) be an interpretation. The Gelfond-Lifschitz Transformation \(GL(T, I) \) of \(T \) is defined by
\[
GL(T, I) = \{ (A_1 \land \ldots \land A_m \leftarrow B_1 \land \ldots \land B_n) \theta \mid
\begin{align*}
A_1 \land \ldots \land A_m & \leftarrow B_1 \land \ldots \land B_n \land \text{not}(C_1) \land \ldots \land \text{not}(C_k) \in T, \\
\theta & \text{ is a ground substitution}, \\
C_1 \theta, \ldots, C_k \theta & \notin I\}
\end{align*}
\]
△

Definition 2.4 (Generalized Stable Model)
An interpretation \(I \) is a stable model of \(T \) iff \(I \) is a minimal model of \(GL(T, I) \).

Let \(\langle T, A \rangle \) be an abductive framework and \(\Delta \) be a set of abducibles. A generalized stable model \(M(\Delta) \) of \(\langle T, A \rangle \) is a stable model of \(T \cup \{ H \leftarrow | H \in \Delta \} \). △

An abductive framework \(\langle T, A \rangle \) is consistent if there exists a generalized stable model \(M(\Delta) \) of \(\langle T, A \rangle \) for some set \(\Delta \). In the following, we restrict our intention to consistent abductive frameworks.

3 Proof Procedure for Abductive Frameworks

Definition 3.1 (Goal)
A goal is a disjunction of conjunctions of literals, written
\[
(L_1^1 \land \ldots \land L_n^1) \lor \ldots \lor (L_1^m \land \ldots \land L_n^m).
\]

An interpretation \(I \) satisfies a goal if there exists a ground substitution \(\sigma \) such that for some \(i, 1 \leq i \leq m \), \(I \) satisfies \(L_i^j \sigma \) for every \(1 \leq j \leq n \). △

Let \(D \) be a disjunction of atoms \(A_1 \lor \ldots \lor A_m \). Then \(D^e \) denotes the conjunction of negative literals \(A_1^e \land \ldots \land A_m^e \).

Definition 3.2 (Abductive Explanation)
Let \(\langle T, A \rangle \) be an abductive framework and \(G \) a goal. We call a set of abducibles \(\Delta \) an abductive explanation for \(G \) if there exists a generalized stable model \(M(\Delta) \) that satisfies \(G \). △
We can define an abductive proof procedure generating abductive explanations by combining the proof procedure given in ([SI92]) with a proof procedure for programs. Such a proof procedure is described in ([RLS91]). We need the following definition for the description of the abductive proof procedure.

Definition 3.3

Let $\langle T, A \rangle$ be an abductive framework and L be a ground literal. Then the set of resolvents with respect to L and T, $\text{resolve}(L, T)$, is defined by

$$\text{resolve}(L, T) =\{ (H_1 \lor \ldots \lor H_{i-1} \lor H_{i+1} \lor \ldots \lor H_k \leftarrow L_1 \land \ldots \land L_m)\theta \mid \begin{array}{l}
L \text{ is negative and } \\
(H_1 \lor \ldots \lor H_k \leftarrow L_1 \land \ldots \land L_m) \in T \text{ and } \\
L^c = H_i\theta \text{ by a ground substitution } \theta \end{array} \} \cup \{ (H_1 \lor \ldots \lor H_k \leftarrow L_1 \land \ldots \land L_m)\theta \mid \\
(H_1 \lor \ldots \lor H_k \leftarrow L_1 \land \ldots \land L_m) \in T \text{ and } \\
L = L_i\theta \text{ by a ground substitution } \theta \}$$

The set of deleted clauses with respect to L and T, $\text{delete}(L, T)$, is defined by

$$\text{delete}(L, T) =\{ (H_1 \lor \ldots \lor H_k \leftarrow L_1 \land \ldots \land L_m)\theta \mid \\
(H_1 \lor \ldots \lor H_k \leftarrow L_1 \land \ldots \land L_m) \in T \text{ and } \\
L^c = L_i\theta \text{ by a ground substitution } \theta \}$$

Definition 3.4 (Deduction rules)

Instead of using a kind of pseudo-code to describe the abductive proof procedure, we will provide inference rules for deriving judgements of the form

$$\langle \langle T, A \rangle, \Delta_1 \rangle \vdash_a \langle G, \sigma, \Delta_2 \rangle,$$

where $\langle T, A \rangle$ is an abductive framework, Δ_1, Δ_2 are sets of abducibles, G is a goal, and σ is a substitution. Intuitively, the judgement above means that Δ_2 is an abductive explanation for $G\sigma$. To define the inference rules for \vdash_a, we need additional judgements of the form

$$\langle \langle T, A \rangle, \Delta_1 \rangle \vdash_p \langle G, \sigma, \Delta_2 \rangle,$$

$$\langle \langle T, A \rangle, \Delta_1 \rangle \vdash_i \langle L_1, \Delta_2 \rangle,$$

$$\langle \langle T, A \rangle, \Delta_1 \rangle \vdash_d \langle \mathcal{C}, \Delta_2 \rangle,$$

where L_1 is a literal and \mathcal{C} is a set of clause. We will provide inference rules for these judgements too.

Abductive Inference

$$\langle \langle T, A \rangle, \Delta \rangle \vdash_a \langle K_1 \lor \ldots \lor K_n, \sigma, \Delta \rangle$$

if $\langle \langle T, A \rangle, \Delta \cup \{ \bot \} \rangle \vdash_p \langle \bot, \sigma, \Delta \cup \{ \bot \} \rangle$

$$\langle \langle T, A \rangle, \Delta \rangle \vdash_a \langle K_1 \lor \ldots \lor K_n, \sigma, \Delta' \rangle$$

if $\langle \langle T \cup \{ q(\overline{x}) \leftarrow K_1, \ldots, q(\overline{x}) \leftarrow K_n \}, A \rangle, \Delta \rangle \vdash_p \langle q(\overline{x}), \sigma, \Delta' \rangle$

where K_1, \ldots, K_n are conjunctions of literals, q is a fresh predicate symbol, and \overline{x} are the free variables of K_1, \ldots, K_n.

Hypothesis Rule
\[\langle T, A \rangle, \Delta \cup \{A_1\} \vdash_p \langle B_1 \land B_2 \land \ldots \land B_k, \sigma \theta, \Delta_2 \rangle \]
if \[\langle T, A \rangle, \Delta \cup \{A_1\} \vdash_p \langle B_2 \sigma \land \ldots \land B_k \sigma, \theta, \Delta_2 \rangle \]
where \(\sigma \) is the most general unifier of \(A_1 \) and \(B_1 \).

Resolution Rule
\[\langle T \cup \{A_1 \leftarrow L_1 \land \ldots \land L_n\}, A, \Delta_1 \rangle \vdash_p \langle B_1 \land B_2 \land \ldots \land B_k, \sigma \theta, \Delta_3 \rangle \]
if \[\langle T \cup \{A_i \leftarrow L_1 \land \ldots \land L_n\}, A, \Delta_1 \rangle \vdash_p \langle L_1 \sigma \land \ldots \land L_n \sigma \land B_2 \sigma \land \ldots \land B_k \sigma, \theta, \Delta_2 \rangle \]
and \[\langle T, A, \Delta_2 \rangle \vdash_l \langle A_1 \sigma \theta, \Delta_3 \rangle, \]
where \(\sigma \) is the most general unifier of \(A_1 \) and \(B_1 \).

Abduction Rule
\[\langle T, A, \Delta_1 \rangle \vdash_p \langle A_1 \land L_2 \land \ldots \land L_m, \sigma, \Delta_3 \rangle \]
if \[\langle T, A, \Delta_1 \rangle \vdash_l \langle A_1, \Delta_2 \rangle, \]
\[\langle T, A, \Delta_2 \rangle \vdash_p \langle L_2 \land \ldots \land L_m, \sigma, \Delta_3 \rangle, \]
a\(\Delta_1 \) is in \(A \).

Negation Rule
\[\langle T, A, \Delta_1 \rangle \vdash_p \langle \text{not} (A_1) \land L_2 \ldots \land L_m, \sigma, \Delta_3 \rangle \]
if \[\langle T, A, \Delta_1 \rangle \vdash_l \langle \text{not} (A_1), \Delta_2 \rangle \]
and \[\langle T, A, \Delta_2 \rangle \vdash_p \langle L_2 \land \ldots \land L_m, \sigma, \Delta_3 \rangle. \]

Splitting Rule
\[\langle T \cup \{A_1 \lor \ldots \lor A_m \leftarrow L_1 \land \ldots \land L_n\}, A, \Delta_1 \rangle \vdash_p \langle G, \Delta_{m+1} \rangle \]
if \[\langle T \cup \{A_i \leftarrow L_1 \land \ldots \land L_n\}, A, \Delta_1 \rangle \vdash_p \langle G, \Delta_2 \rangle \] for some \(1 \leq i \leq m \),
\[\langle T \cup \{A_j \}, A, \Delta_{j+1} \rangle \vdash_a \langle G, \Delta_{j+2} \rangle \] for each \(j = 1, \ldots, i - 1 \), and
\[\langle T \cup \{A_j \}, A, \Delta_j \rangle \vdash_a \langle G, \Delta_{j+1} \rangle \] for each \(j = i + 1, \ldots, m \).

Consistency of literals \(\vdash_l \)
\[\langle T, A, \Delta_1 \cup \{\bot\} \rangle \vdash_l \langle L, \Delta_1 \cup \{\bot\} \rangle \]
\[\langle T, A, \Delta_1 \cup \{L\} \rangle \vdash_l \langle L, \Delta_1 \cup \{L\} \rangle \]
\[\langle T, A, \Delta_1 \rangle \vdash_l \langle L, \Delta_3 \rangle \]
if \[\langle T, A, \Delta_1 \cup \{L\} \rangle \vdash_r \langle \text{resolve}(L, T), \Delta_2 \rangle, \]
\[\langle T, A, \Delta_2 \rangle \vdash_d \langle \text{delete}(L, T), \Delta_3 \rangle, \]
and \(L \) is not \(\bot \).

Consistency of rule deletions \(\vdash_d \)
\[\langle T, A, \Delta_1 \rangle \vdash_d \langle \{C\} \cup \mathcal{C}, \Delta_3 \rangle \]
if \[\langle T, A, \Delta_1 \rangle \vdash_p \langle \text{head}(C), c^1, \Delta_2 \rangle \]
and \[\langle T, A, \Delta_2 \rangle \vdash_d \langle \mathcal{C}, \Delta_3 \rangle, \]
\[\langle T, A, \Delta_1 \rangle \vdash_d \langle \{C\} \cup \mathcal{C}, \Delta_3 \rangle \]
if \[\langle T, A, \Delta_1 \rangle \vdash_l \langle \text{head}(C)^c, \Delta_2 \rangle \]
and \[\langle T, A, \Delta_2 \rangle \vdash_d \langle \mathcal{C}, \Delta_3 \rangle, \]
\[\langle T, A, \Delta_1 \rangle \vdash_d \langle \emptyset, \Delta_1 \rangle \]

\(^1\)The identity substitution is denoted by \(\epsilon \)
Consistency of rules \vdash_r

$$\langle\langle T, A \rangle, \Delta_1 \rangle \vdash_r \langle\{C\} \cup \mathcal{C}, \Delta_3 \rangle$$

if $$\langle\langle T, A \rangle, \Delta_1 \rangle \vdash_p \langle L, \epsilon, \Delta_2 \rangle$$ for some literal L in the body of C and

$$\langle\langle T, A \rangle, \Delta_2 \rangle \vdash_d \langle \mathcal{C}, \Delta_3 \rangle.$$

$$\langle\langle T, A \rangle, \Delta_1 \rangle \vdash_r \langle\{C\} \cup \mathcal{C}, \Delta_1 \rangle$$

if $$\langle\langle T, A \rangle, \Delta_1 \rangle \vdash_p \langle \text{body}(C), \epsilon, \Delta_2 \rangle,$$

$$\langle\langle T, A \rangle, \Delta_2 \rangle \vdash_d \langle H_1, \Delta_3 \rangle$$ for some atom H_1 in the head of C, and

$$\langle\langle T, A \rangle, \Delta_3 \rangle \vdash_d \langle \mathcal{C}, \Delta_4 \rangle.$$

$$\langle\langle T, A \rangle, \Delta_1 \rangle \vdash_r \langle\emptyset, \Delta_1 \rangle$$

\[\square \]

Theorem 3.5 Let (T, A) be an consistent abductive framework and G a goal. Then G has an abductive explanation Δ iff

$$\langle\langle T, A \rangle, \emptyset \rangle \vdash_p \langle G, \sigma, \Delta' \rangle$$

can be derived for some substitution σ and a set of literals Δ', such that $\Delta' \cap A \subseteq \Delta$.

4 Future Work

[S192] introduced the notion of the relevant ground program Ω_T for a normal logic program T which is a subset of the set of ground rules obtainable from T. Using the relevant ground program it is possible to reduce the size of the sets $\text{resolve}(L, T)$ and $\text{delete}(L, T)$. Only if these two sets are finite, the proposed abductive proof procedure is applicable. Although there is a notion of the relevant ground program for a disjunctive normal logic program, it is not obvious that it can be used to reduce the size of $\text{resolve}(L, T)$ and $\text{delete}(L, T)$ without losing correctness of the abductive proof procedure.

References

