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Abstract

Multi-agent environments comprise decision makers whose deliberations
involve reasoning about the expected behaviour of other agents. Apposite
concepts of rational choice have been studied and formalized in game theory
and our particular interest is with their integration in a logical specification
language for multi-agent systems. This paper concerns the logical analysis
of the game-theoretical notions of a (subgame perfect) Nash equilibrium and
that of a (subgame perfect) best response strategy. Extensive forms of games
are conceived of as Kripke frames and a version of Propositional Dynamic
Logic (PDL) is employed to describe them. We show how formula schemes
of our language characterize those classes of frames in which the strategic
choices of the agents can be said to be Nash-optimal. Our analysis is focused
on extensive games of perfect information without repetition.

1 Introduction

Agents can be thought of as systems that are capable of reasoning about their own
and other agents’ knowledge, preferences, future and past actions. As an agent may
be confronted with several, mutually exclusive, ways how to act, decision making
is imperative. Which action an agent eventually performs may very well depend on
his beliefs concerning the other agents’ actions and their responses to his actions.
Since game theory is devoted to the study of such reasoning mechanisms and the
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associated notion of strategic rationality, many of its concepts are more than just
relevant to the study of multi-agent systems.

The emphasis of this paper is on the incorporation of some game-theoretical
notions in Propositional Dynamic Logic (cf. Pratt [1976], Harel [1984], Goldblatt
[1992]) as a step in the direction of the development of a comprehensive logical
framework in which multi-agent systems can be described, specified and reasoned
about. Along with the closely related concept of a best response strategy our in-
vestigations focus on the both celebrated and criticized solution concept of a Nash
equilibrium. We also deal with their subgame perfect varieties.

The game theoretical notions are introduced in the next section. The third sec-
tion concerns the logical language and its semantics. Games in extensive form
are linked up to the models of our logical framework in the fourth section. Sub-
sequently, we present the main results of this paper: a logical characterisation of
strategy profiles in (subgame perfect) Nash-equilibrium and those comprising best
response strategies (section 5). The final section deals with related and future re-
search.

2 Some Game Theoretical Notions

2.1 Strategic Considerations

The investigations of this paper concern finite games in extensive form with per-
fect information. Before going into the mathematical technicalities, however, we
would like to draw the reader’s attention to the following informal considerations
concerning games and strategies.

A (pure) strategy for a game, o, consists of a complete plan for a player i how
to play that game. Focusing on extensive games (games in tree-form), a strategy for
a player ¢ can be conceived of as a function from the nodes at which 4 is to move to
succeeding nodes. Strategy profiles, denoted by &, combine strategies, one for each
player, by means of set theoretical union. In virtue of the the rules of the game, a
strategy profile determines for each node a unique outcome, though not necessarily
for each node the same one.

The following example of a game in extensive form will be employed to illus-
trate matters throughout this paper.

Fact 21  Consider the two-person game in extensive form as depicted in Fig-
ure 1. Let RL denote the strategy for player 71 that consists in his going right at
v and going left at v3. RL can be conceived of as the function that maps vy onto



Figure 2.1

Figure 1. An example of a game in extensive form

vg and vz onto z1. The pair of strategies (RL,1l) — where [[ is the strategy for
player i5 which prescribes her to go left at both v; and vy — denotes a strategy
profile and determines the outcome z4, and granting a payoffs of 4 and 3 to ¢; and
19, respectively.

Whether a strategy oy, is a best response for a player 7, is relative to the strate-
gies the other players adopt, i.e., to a strategy profile. Assuming that play com-
mences at the root node, a strategy profile & is said to contain a best response for
player i, if i, cannot increase her payoff by playing another strategy available to
her when the other players stick to their strategies as specified in &. A strategy
profile & is a Nash-equilibrium if none of the players can increase her payoff by
unilaterally playing another strategy. Equivalently, a Nash equilibrium & could be
characterized as a strategy profile which contains a best response strategy for each
players (cf. Osborne and Rubinstein [1994], p. 98).

It has been argued that Nash equilibria do not in general do justice to the se-
quential structure of an extensive game. In our example, (LR, Ir) is, along with
(RL,I1), (RL,rl), (RR,ll) and (RR,rl), a Nash equilibrium. This is, however,
dependent on the fact that i5 going right at vo minimizes 4;’s pay-off rather than
that it maximizes that of 5. Player 49, as it were, threatens to go right at v if 4;
goes right at vy. Player i1, however, need not take this threat seriously if the se-
quentiality of the game is taken into account. The node v will be reached only if
11 moved right at vy at a previous state of the game. Once in vo, Strategic ratio-
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Figure 2: Nash-equilibrium and its interrelationships with some related concepts.

nality prescribes i, to move to z4 rather then go right to zg. As there is nothing in
the description of the game committing 75 to move to zg in vy, the strategy profile
(LR,Ir) should be ruled out as a rational alternative. This is a manifestation of
the more general phenomenon that a strategy profile contains instructions for the
players how to act in nodes that it itself precludes ever to be reached in the course
of the game and in some cases allows for “irrational” moves off the equilibrium
path.

A refinement of the solution concepts of Nash equilibrium that meets this ob-
jection can be achieved by requiring Nash equilibria to be subgame perfect. In
extensive form, a subgame can be conceived of as a cutting of the game tree, which
results in another game in extensive form. A strategy o is a subgame perfect best
response strategy for a player relative to some strategy profile & in a game if it is
a best response strategy with respect to  in all its subgames. A subgame perfect
Nash equilibrium & can duly be understood as a union of strategies each of which a
subgame perfect best response strategy with respect to . Figure 2 summarizes the
above concepts and how they relate to one another.

A strategy profile determines a unique outcome. By deviating unilaterally, a
player can force several outcomes to come about by choosing her strategy. The
one guaranteeing her the highest outcome is her best response strategy with respect
to the respective strategy profile. These outcomes can be represented graphically
by the leaf nodes of the game tree from which are removed all edges that do not
comply with the strategies of the other players as laid down in the strategy profile.
Such a reduced tree we shall call a player’s strategy search space with respect to
a strategy profile. In our example the strategy search space for i1, given a strategy
profile containing 4o’s strategy /7, can be depicted as in Figure 3.



Figure 2.2

Figure 3: Player i1’s strategy search space given that player i5’s plays strategy 1.

Game trees, being graphs, correspond to Kripke structures and as such they can
be described by means of the language of Propositional Dynamic Logic (PDL).
The nodes of the game tree represent the states of the frame and the edges define
the accessibility relation. A strategy for a player 4 is identified with the graph of a
function from the nodes at which 7 can move to successor nodes. A strategy profile
combines strategies of the individual players and as such it is the graph of a function
on the internal nodes of the game tree. In this manner, strategies, strategy profiles
and strategy search spaces can be represented by programs of our dynamic logic.

Fundamental to the present analysis is that frames in which the program repre-
senting a strategy profile & contains a (subgame perfect) best response strategy for
some player or is a (subgame perfect) Nash-equilibrium, possess certain structural
properties which are expressible in P D L. The objective of this paper is to specify
formally which constraints a frame satisfies if the strategy program corresponds to
a strategy profile that is a (subgame perfect) Nash-equilibrium or incorporates a
(subgame perfect) best response strategy. Another, rather more tendentious way of
putting it would be that it is our aim to unearth the formal conditions under which
the strategy program reflects the choices of a community of (omniscient) agents
that employ subgame perfect Nash-equilibrium as a solution concept. We show
how formula schemes of PDL characterize the frames satisfying these structural
properties. As such this study could be taken as an exercise in modal correspon-
dence theory.



2.2 Games& Nash-equilibria

So far the concepts of game theory relevant to this paper have only been presented
in a rather informal fashion. In this section we give a formal account in which
we go a long way in following Bonanno’s (cf. Bonanno [1998]). A game in ex-
tensive form with perfect information without repetition is identified with a a tu-
ple ((V,<,Z,N,.),u), where V is a finite set of vertices and < a relation on V,
representing the possible moves at each vertex. The pair (V, <) is a non-trivial,
irreflexive, finite, and hence finitely branching, tree. Furthermore, Z is the set of
leaves of the tree , and IV is the set of players. The function ¢ assigns a player to
each internal node of the game tree and is supposed to be surjective (onto). Finally,
u specifies the payoffs to the players at each of the vertices.

Definition 2.2 ((Extensive Forms and Games))

o A finite extensive form with perfect information EF isatuple (V, <, Z, N, ),
where (V, <) is a finite, irreflexive, non-trivial tree, Z := {z € V |Vv €
V, z £ v} is the set of leaves, N is a finite set of players,and . : V\Z — N
is a surjective active player assignment. As a notational convention, we use
vp to denote the root and we let, for each 4, V; := {v € V |u(v) = i}. Let
further for each v € V, V,, := {v' € V' |v <* v}, where <* is the reflexive,
transitive closure of <.

e A game G on an extensive form EF is a pair (EF,u) withu : N -V —
N1

When establishing formal properties of finite games on an extensive form a well-
chosen induction measure is often more than just serviceable. The height of a vertex
in a tree turns out to be of particular convenience. Note that it is because we are
dealing with finite trees, that such a notion can suitably be defined.

Definition 2.3  For each game G = (V, <, Z, N, , u), define for each v € V,
the height of v, h(v) as:
h(o) ::{0 ifvEZ
max({h(v')|v <v'})+1  otherwise
Let further V,, := {v € V| h(v) < n} and note that V, = Z.
YFor technical reasons we define the utility function « for each player on all vertices rather than

on the leaves only, as is customary. This, however, does not affect the game-theoretical features we
deal with in this paper.




For each game the notions of a strategy for a player and that of a strategy profile
can now be defined much as one would expect:

Definition 2.4 ((Strategies and Strategy Profiles)) Let G = (V,<,Z, N,,u),
with N = {iy,...,4,}. Define:
e A strategy o for a player : € N is a total function ¢ : V; — V such that for
all v € V; , v < o(v). Let furthermore X (7) denote the set of all strategies
for player 3.
e A strategy profile is a function & : V\Z — V such that there are strategies
0, € Eg(il), 04, € Eg(in) and ¢ = Ulgkgn Ty, -
Let further X be the set of all strategy profiles of G.
Note that & € X is a total function 7 : V\Z — V such that for all
v € V\Z, v < &(v). Each & € X¢ is well-defined as a function, since
Nien Vi, = 2. _
In the sequel, the subscript G in ¥ and X will be omitted when no confusion is
likely. Define further for all 5,5’ € 3, and each W C V:
o Trwd <= YveW: g(v)=7d(v)
o F[Wlg' <= G~p\wa
Hence ¢ ~yw &' denotes that & and &' coincide on their values for W, whereas
a[Wa' signifies that & and ' differ at most in their values for W.

Each strategy profile & determines a unique outcome in the sense that if all
players stick throughout the game to the strategies in &, the game terminates in
precisely one final stage. As such, a strategy profile & gives rise to a function that
maps each internal node v to the leaf node & determines as its outcome when play
is commenced at v. To capture this notion we define for each & € X, the function
o as follows:

Definition 25 For each game G = (V, <, Z, N, +,u), and each & € X, define
¢ : V — Z by induction on h(v), as:

5(v) ::{ v if h(v) = 0

a(a(v))  otherwise

The outcome , o(v), a strategy profile & determines for a particular node v
only depends on the moves it prescribes for nodes that can still be reached. This is
exactly what the following fact says:

Fact 2.6  Forall games G = (V, <, Z, N, ,u) and all 5,5 € %
o~z 0 = 5(v) = 7'(v).



Proof: By an easy induction on A(v). =

The ground has now been cleared to give formal definitions of the game theo-
retical notions of a best response strategy relative to a strategy profile and a Nash-
equilibrium, as well as their subgame perfect (sometimes abbreviated to s.p.) vari-
ations:

Definition 2.7  Let G = (V, <, Z, N, +,u) be a game on an extensive form and
& € 3. Let further vg be the root of G and i € N. Then define:
(1) & comprises a best response strategy for i
1= V&' € ¥:5[V;]6" = u(i) (&' (v0)) < u(i)(5(vo))
(2) & comprises a subgame perfect (s.p.) best response strategy for :
1= Yw e V,Va' € B:5[V;]o" = u(i)(6'(v) < u)(G(v))
(3) & comprises a Nash-equilibrium
1 4= Vi € N,V&' € 3¢ : 6[V;]o! = u(i)(5'(vo)) < u(i)(5(v0))
(4) & comprises a subgame perfect (s.p.) Nash-equilibrium
1= Vi€ N,Yo € V,V&' € Xg:6[V;]6" = u(i)(5'(v)) < u(i)(a(v)).

3 Logical Appliances. Syntax & Semantics
3.1 Modesand Frames

Being graphs, game trees can be correlated with Kripke structures in a straight-
forward manner and modal languages can be deployed to describe them. The for-
malism by means of which the analyses of this paper are conducted is a language
for PDL augmented by a set of modal operators {O;};cn. Reinforced thus, the
language gains expressive power with respect to the players’ preference orderings
on the possible outcomes as they are determined by the payoff structure of the cor-
responding game. The correspondence between games and frames is relative to a
strategy profile. The latter is represented in the language by the so-called strategy
program ¢, which is syntactically atomic. The language also contains an atomic
program for each player. Semantically, each of these is interpreted as the possible
moves the respective player can make at the nodes assigned to them.

The resulting logical language is a multi-modal dynamic language, with the set
of players as atomic programs, a special c-program and a model operator “0;” for
each i € N. For formulae we have furthermore the usual Boolean operations “1”
(falsum) and “— (material implication) and as program connectives, *“;” (sequen-
tialization), “U” (non-deterministic choice) and “x” (iteration) as well as a program
forming operation on formulae “?” (test).



Definition 3.1 ((Syntax of L)) Let @, be a countable set of propostional variables,
with typical element A. Let I be a set of atomic programs, with typical element
a and which includes a finite set N = {i1,...,14,} representing a set of players as
well as the strategy program c. The set of formulae of L, &, with typical element ¢
and the set of programs TI, with typical element « are generated by the following
grammar:

e pu=A[L]p1r—=¢s|[a]p| Oip

e au=alaja | agUas | a* | ¢?

Each modal operator O;, as carefully to be distinguished from [ ], runs over the
relative preference relation, <;, that is going to be defined over the states for each
player. Hence, O, intuitively means that in all worlds preferred by player i to the
local one, ¢ holds. Negation (—¢), conjunction (¢ A1) and disjunction (V) are,
furthermore, introduced as the respective abbreviations of ¢ — L, =(¢ — —))
and —(—p A —1p), as usual. Let further (o), <ip, and "while ¢ do o be
short for —[a]—p, =0;—¢p, and ™ (p?; a)*; ~p?7, respectively. 2

The models for the language L are Kripke structures with the additional feature
of a preference relation on the states being specified for all players.

Definition 3.2 ((Frames and Models for L))
e Aframe F for the language L is a triple (S, { —}aem, { <i}ien), Where S
is a set of states, for each a € IIy and each s € N — and <; are binary
relations on S, i.e. —C S x Sand <,C S x S.

e A model M on frame F is atuple (F, I) with I being a function that assigns
subsets of S to the propositional variables, i.e., I : &, — 25,

We are now in a position to interprete the language L on the models as they
have been specified above and, subsequently, a notion of logical validity:

Definition 3.3 ((Semantics for L)) Define for each program « € II the accessi-
bility relation R, for a model M = (F, I) as a subset of S x S recursively as:
o R, = 23

o Ruia, :={(s,8)|3s" €S : sRy, " & s"Ry,s'}

e Ry uay = Ra, UR,,

o R, = R}, I.e., the ancestral, or reflexive and transitive closure, of R,,
e Ry ={(s,8) | M,s = ¢}

2Throughout this paper we will use Quine quotes, “™ and “”, sparingly and only if they enhance
readability.



Define simultaneously satisfaction of a formula ¢ in a model M = (F, I) as:

e M,sEA <= sel(4)

o M,shE1

e MsEp—1y <= M,sltpor M,sE=1v

o M,s |k [ay <= Vs €S sRys = M,s'Eo
e M,s DO = VéeS:s<;df = Mo

We will use sR,, as an abbreviation for {s’ € S| sR,s'}.

Definition 3.4 ((Logical validity)) Define for all ¢ € ®, and for all frames
F = (8,{%}aem,, {<i}ien) and all models M:
MEgp:< forallse S: M,sl=¢
F,s =@ : <= forallmodels M on F: M,s|= ¢
F =¢:<= forallmodels M on F: M |= ¢
= :<= forallframes F: F = ¢

4 GamesasFrames

41 A Classof Frames

The investigations of this paper will be restricted to a particular class of frames. In
the next subsection we will establish a correspondence between games and frames
and show that each frame corresponding to a game belongs to this class. The prop-
erties a frame has to satisfy if the strategy profile of the corresponding game is a
Nash equilibrium can be characterized by formulae (schemes) of L with respect to
this class.

The class of frames we are going to consider satisfies certain properties that
reflect its interpretation as a set of games and which are axiomatized by the schemes
T;, 4; and G1- G4

T; e (reflexivity of <;)
4; Oip — 0,00 (transitivity of <;)
D¢ (c)p = [c]p (determinacy of c)

Gl (o) = Vienli)e

G2 Vien@®T = (T

G3i ()T = Njemyali 1L

G4 (e Ae)) = ((a)(p A i) V(@) ($ A Qi)

The preference relation for each player on the final states is thought of as being
induced by the payoff structure of a game; the higher the payoff awarded to a player

10



in a state, the higher the respective player values that state. Any such preference
relation will induce a total preorder on the states. Hence, T; and 4;, which reflect re-
flexivity and transitivity of <;. The axiom scheme G'4§* captures, for each program
«, the comparability with respect to <; of any two states in which « terminates. We
also assume determinacy of the strategy program (D¢) as a strategy profile induces
a path through the game tree and determines a unique outcome. G1 assures that
the strategy profile only prescribes moves the players can perform. Moreover, G2
makes certain that, whenever a player program is enabled so is the strategy program
(a player cannot adopt the strategy not to move at all at any of his nodes). Finally,
G3; guarantees that no two players can move at the same stage of the game.

Proposition 41  For all frames F = (S, {—5}aemy, {<itien), @ € @ and

(i) FEGl <= R.CUyRi

i) FEG2 <= Vs,se€SVie N:i€N,sRs = 35" € S5,sR.s"

i) FEG3 <= Vs,seSVjeN: j+#i&k sRis = Vs" € S:not sR;s"
) FEGA} <= Vs,5',s" € §:(sRys' & sRys") = s’ <; 8" ors” <;

Proof:  All proofs are straightforward. o

Let C be the class of frames F' for which <; is reflexive and transitive for all 7 €
N and which satisfy the conditions on the right-hand side of the equivalences in
proposition 4.1. Let K'T'D4G be the smallest normal logic containing the schemata
T;, 4, G1, G2, G3; and G4 forall s € N and all o € II.

Conjecture 4.2 (Soundness and Completeness) KT D4G is sound and com-
plete with respect to the class of frames C.

Proof: = Check whether the Fisher & Ladner filtration of the canonical model for
KTDAG is based on a frame that belongs to the class C. -

4.2 Linking up Gamesand Frames

Games in extensive form are defined as trees and as such can be correlated to the
frames that serve as semantical entities of our logic. The players of a game are
identified with the actions they can perform at the nodes at which they are to make
a move. The program c is interpreted as the functional relation a strategy profile
defines on the tree, here denoted by R.. Accordingly, vR.v' <= a&(v) = v'.

11



G(vo) = v1;6(v1) = v3; 26 <ip 21 <ip 22 <iy 23 <iy 24 <iy 25
(v2) = 2z4;5(v3) = 22 26 <ig 25 <ig 24 <ig 23 <ig 22 <iy 21

Figure 4.1

Figure 4: Correspondence between games and frames: G ~; F where & is such
that Vg > V1, V1 > V9,V —> 24 and V3 > 29.

This makes that the correspondence between the games and frames is relative to a
strategy profile . The payoff structure straightforwardly induces for each player
a preference order on the final states of the frame. In this manner, each game in
extensive form is associated with a frame for L.

Definition 43  Let G = (V,<,Z,M,,u) a game, & € % a strategy profile
and F = (S, {5 }aemo, {<i}ien) @ frame for language L with N U {c¢} C TI,,
then define G ~3 F as:

To illustrate this definition, the frame F' corresponding to the game of example 2.1,
G, given a strategy profile such that 3(vo) = v1;6(v1) = v3;5(v2) = 2456 (v3) =
22, is depicted alongside with G itself in Figure 4.

As a rule, 7 is a non-deterministic program, because a player in a game has
several options how to act when it is his turn to move. In contrast, the program c,
which, linked to strategy profile & as it is, will be a deterministic program, defined
on each of the internal nodes. We also use ¢ as a notational device in the context
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of frames. Accordingly, for any frame F = (S, {—}aem,, { <i}ien) for which
there is a game G and a strategy profile € ¥ such that G ~; F, 1(s) denotes the
‘agent program’ that can be executed in state s.

As a final result of this section the following fact is obtained.

Fact 44  Forall games G, 5 € %, frames F such that G ~; F: F €C.

Proof:  (Sketch.) Consider arbitrary G and F such that G ~; F for some & € X.
It suffices to show that F' satisfies the K'T'D4G-axioms. Since u defines a total
preorder on the set of states S in G for each 1 € N, <; satisfies reflexivity and
transitivity. For the same reason <; is defined for s € NV on all nodes. Hence, G45
also holds in F'. The functionality of & makes that R, is deterministic and so D¢
is validated in F'. The functionality of . warrants the validity of G3; in F'. Finally,
each edge of the game tree corresponds to a possible move by one of the players.
This makes that there are no edges on which ¢ could be defined that are not labelled
by one of the players. So, finally, ' = G1 and F = G2. —

In our treatment of Nash equilibria we restricted our attention to finite games.
As PDL cannot distinguish in general between such frames and infinite ones, the
class of frames for which there are games G and & € ¥ such that G ~; F cannot
be characterized within our logical system.

5 Characterizing Nash Equilibria

51 Thea«a(M)-Program

Having introduced the logical symbolism and the correspondence that obtains be-
tween frames and games, properties of the c-program that reflect the corresponding
strategy profile comprising a (s.p.) best response strategy or a (s.p.) Nash equilib-
rium still remain to be defined. To this end we introduce, for each subset of players
M C N, acomplex non-deterministic program, «(M), as an auxiliary notion.

Definition 5.1 For each M = {iyp,...,ix} C N, let [JM be the program
io U ... U ix. Define for any M C N the program (M) as:

a(M):=while ()T do UMUc
Usually we will abbreviate «({7}) to (7). Note further that:

a(@)=while ()T do

13



The intuition behind this definition becomes clear when we concentrate on
frames in the class C. The program a(M) is non-deterministic if any of the i € M
is. Foreach M C N, a(M) executes any of the atomic programs i € M if enabled
in a state, the strategy program c otherwise. The program terminates when ¢ is no
longer enabled. In any frame satisfying G2 no i € N will then be enabled either.
In contradistinction, a(@) reduces to a deterministic program that repeats ¢ until it
terminates.

Inany frame F' € C, R, C R|j n, and so the program a(N'), when executed in

state s, terminates exactly those states s’ that are reachable by a path s = so —
. sp = & (4m € N for 1 < m < k) such that for all j € N and states

s" € S, s'—/»s". The larger the set M, the more non-determinism is brought into
the program «(M), with the deterministic a(@) on the one end of the spectrum
and a(N) on the other.

Fact 5.2  Forall F = (S,{-%}acny, {<i}ien) € Cand all M, M’ C N:
MCM = Ro(ary € Roqur

Proof:  Consider an arbitrary frame F' € C as well as M C N. Assume for
arbitrary s, s’ € S that sRy M)s' . Hence there is a sequence of states such that
such that s = soRyaucs1--- Sn—1Rymucsn = s’ and s'Rjpu. = 9. By
definition of U also s = so Ry arucst - - - Sn—1 R mruesn = s'- Moreover, since
s'Rj mue = @ certainly also s'R. = @. For the same reason and because F' = G2
foralli € N, s'R; = @. Hence s'R ypru. = @, Which concludes the proof.

If G ~; F, for some game G and strategy profile &, when executed in s,
a(N) will exactly terminate in the leaf nodes still reachable from s. With the
program ¢ encoding a strategy profile &, commencing in s, «(2) terminates pre-
cisely in that node which & determines as its unique outcome, i.e. sRyg)s' <=
s' = &(s) (cf. lemma 5.8(iv), below). Moreover, as the program i is interpreted
as the moves available to player i, the possible runs of the program «(%) termi-
nate in exactly the leaf nodes which, by choosing her strategy, 7 can guarantee
the game to end if the other players stick to their respective strategies as spec-
ified in . As such, «(%) represents the strategy search space of player i given
fixed strategies of the other players (cf. page 5). In our example, R, is the set
{{vo, 21), (vo, 22), (vo, 24), (v1, 21), (v1, 22), (V2, 24), (3, 21), (v3, 22) }, and (1)
can duly be pictured as in Figure 5. The reader compare it to Figure 3!

It is precisely this insight that is exploited in the next subsection to characterize
frames for which the strategy program ¢ matches the Nash optimal strategy profile

14



Figure 5.1

Figure 5: The program «(%) if voR.vaR.z4 and v R.vsR.21 .

of the corresponding games.

5.2 Player Preference

In order to obtain expressive power with respect to the game theoretical notions we
set out to model, the syntax of L includes a set of modal operators {O;};cn. At
each stage of the game the preference order of the players with respect to the still
reachable outcomes are relevant to establishing whether the strategy profile under
consideration comprises a (subgame-perfect) Nash-equilibrium or best response
strategy for a player. Hence, we would like to have some device in our logic to
refer to these still possible outcome states and the player’s preferences with respect
to them. To this end we introduce the following abbreviation:

Definition 53 B := [a(N)](¢ — D;)

Intuitively, H;¢ holds in a state if and only if the player i prefers any of the still
a(N)-reachable outcome states in which ¢ holds to any in which the latter is not
the case. The following lemma shows that this informal interpretation is warranted
for any frames F' € C.

Lemmab.4  Forall frames F = (S, {-"}aet,, {<i}ien) € C, all models M
onFands € S:

If M,skE=Hp then

Vs’ s" € St (sRynys' & sRynys" & M,s' = o & M, s" | o) = 5" <; &'
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Proof:  Consider arbitrary frame F' € C, s € S and ¢ € N. Assume for contra-
position that for some s’, s” € S we have:

(i) sRBagvys' (i) sRagmys” (i) s' oo (i) 8"l (0) o i o'
Since F = G4§’<N), s <; s"ors” <; s'and so with (v), s’ <; s”. Having as-
sumed (iv), s’ = O;p and as both s’ |= ¢ and sRy(nys', finally s [~ [a(N)](¢ —
Dip) (= Hip). 5

Note that the opposite direction of this lemma does not hold. It is perfectly
well possible that the antecedent holds for a model and a state but that there is
another state more preferred than any of the «(V)-reachable states in which ¢
does not hold. Such a state could rightly be described as utopian. This shows that in
modelling Nash equilibria we abstract from preferences with respect to unatainable
states.

5.3 Some Properties of Framesand Ther Characterization

The program «(@), as it boils down to an iterated execution of the ¢ program until
a final state is reached, combines the strategies of the players as encoded in the
strategy profile concerned. Different choices in this respect by the players, some
of which may be Nash-optimal, will give rise to different a(@) programs. The
question that is addressed in this section is which structural properties a frame
should comply to, if the program a(@) is to mirror a strategy profile that contains
a (subgame perfect) best response strategy for a player or one that is in a (subgame
perfect) Nash-equilibrium. Eventually, we show that each class of frames that sat-
isfies one of these structural properties can be characterized by means of a formula
scheme in L.

If a player ¢ acts in accordance with his own interest, one would expect ¢ to
choose that strategy in his strategy search space which guarantees him the highest
payoff. In terms of frames, this would render ¢ to be such that, if from some state
both a final state z is reachable by the «(&) program and another final state 2z’ by
a(i), 1 either prefers z to 2’ or is indifferent between them. Otherwise, i could alter
his strategy in such a way that (@) terminates in z. These considerations give rise
to the following properties, which some frames satisfy and others do not. In the
next subsection we will demonstrate that they are the model theoretic counterparts
of the game theoretical notions elaborated upon above, viz. (subgame perfect) best
response strategies and (subgame perfect) Nash-equilibria.

Definition 5.5 For all frames F' = (S, {5 }aemo, { <i }ien), define:
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26 <iy 21 <ip 22 <iy 23 <iy 24 <iy 25
26 <ig 25 <ig 24 <ig 23 <ig 22 <iy 21

Figure 5.2

Figure 6: The frame corresponding to the game of Figure 2.1

(1) R, is i beneficial in s <= Vs, e S:
sRo(2)8' & sRy(;ys" = s" <; &'
(2) Ristotally i beneficial :<= Vs e S, R is 1 beneficial in s
(3) RisNashinducedins :<= Vi€ N, R.isi beneficial in s
(4) R istotally Nash induced : <= Vi € N, R, is totally 7 beneficial

By way of illustration, the reader consider once more our example (cf. Fig-
ure 6). If R, = {(vo,v1), (v1,23), (v3,21), (v2, 25)}, R is not totally Nash in-
duced. For a counterexample, observe that vg Ry (g)23 and vo Ry (i, )vs, but 23 <;,
z5. However, if R, = {(vg,v2), (ve, 24), (v1,v3), (v3, 22) }, R, is totally Nash in-
duced, as can easily be established. Moreover, it is exactly in these circumstances
that R, coincides with the graph of a strategy profile that is in a subgame perfect
Nash-equilibrium. In the sequel we prove that this is no coincidence.

The formula scheme ™ (H;¢ A (a(i))p) — [a(2)]p™ turns out to characterize
frames for which R, is totally i beneficial. This is established in theorem 5.6. In
spite of its apparent inscrutability, an intuitive interpretation can be attached to the
formula scheme. In any model satisfying "(H;¢ A (a(i))p) — [a(2)]e7, at each
state s of the frame, 7 prefers any a(NN) reachable final state in which ¢ holds to
any in which ¢ does not (H;). Moreover, if a final state in which ¢ holds is in i’s
search space below s ({«(%))¢), then a final state in which ¢ holds will be reached
if 4 adheres to his strategy as it is encoded in the c-program ([a(@)]¢). Since this
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should hold for any formulae ¢, it means that given the strategies of the other play-
ers, 4’s strategy as it is incorporated in ¢, serves 4’s interests best. If R, is totally
Nash induced, not surprisingly, " (E;o A {(a(i))p) — [a(@)]e™ should hold for
each player 4 € N. Since the set N is assumed to be finite, this ‘quantification’
over all players can be achieved by conjunction. The formula scheme obtained
thus, " A,;cn (Big A {a(i))p) — [a(@)]p)7, can, in point of fact, be proved to
characterize frames with R, totally Nash induced. By requiring the respective for-
mula schemes to hold at the root node only, one obtains the ‘partial’ versions of
these results.

Theorem 5.6  Letd; = (Hip A (a(i))p) — [a(D)]e. For all frames F' € C
and all players i € N:

(1) R isi beneficial in v < Fvl19;

(i) R istotally i beneficial <= F [=4;

(éii) RcisNashinducedinv <= F,ofE \jcy 9

(iv) Ristotally Nashinduced <= F = A;cy i

Proof:  Consider an arbitrary F = (S, { -} sem,, {<:i}ien) € C and an equally

arbitrary player i € N. The proofs for (i)—(iv) are all analogous. Here we confine

ourselves to demonstrating (iv).

=: (Contraposition) Let M be a model on F'. Assume that for some s € S and

1 €N :
(1) M,s|=Bip, (i) M,s|=(ai))p, and (iii) M,s = [a(2)]e
From (ii) we obtain that for some z € S, sR,(;yz and M, z |= . By (i),
however, there is also an 2’ € S such that s R, (g2’ and M, 2’ [~ ¢. Fact 5.2
gives Us sR,(nyz and sR,(y)2'. By (i) and lemma 5.4 we are entitled to
conclude that 2’ <; z and, ultimately, that R, is not totally Nash induced.

<: Assume for an arbitrary model on F' and for some i € N, s,s’,s" € S:
(i) sRye)s', (#9) sRq(s", and (i13) s" £; s
Set I in such a way that for A € Prop and eacht € S:
tel(d): <= " <t
Let M = (F,I). We are now in a position to establish subsequently that:
(a) M,s~[a(@)]A4, (b)) M,s = (a(i))A, and (¢) M,sE=H;A.
(a) holds because of (7), (i42) and the definition of the interpretation function
I. Invoking (74) instead of (), much the same applies to (). For (c) consider
an arbitrary ¢ € S such that sR,(y)t. As, by fact 5.2 and (ii), sRy(n)s".

With F = G4§’(N) we may assume that either s” <; tort <; s”. In
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either case M,t = A — 0O; A (note that <; can be assumed to be transitive).
Finally, from (a)—(c) together we have F' [= A,y 9. =

5.4 Characterizing Nash Equilibria

So far we have not ventured far outside the bounds of modal correspondence theory.
In this section, however, we prove that a game-theoretic interpretation of the notions
of a strategy profile being (totally) ¢ beneficial and that of a strategy profile being
(totally) Nash induced is justified. The graph of the choice program in a frame
turns out to be ¢ beneficial in vy if and only if the corresponding strategy profile
& comprises a best response strategy for 4 in the corresponding game. In a similar
manner, totality can be linked to subgame perfection and R, being Nash induced to
& comprising a Nash-equilibrium.

Before these results can be presented, however, some logical handiwork has still
to be carried out. The following fact and lemma clear the ground in this respect.

Fact 5.7  For all frames F = (S,{—}aeu,, {<i}ien), all finite games on
an extensive form G = (V, <, Z, N, ., u) and strategy profiles & € X such that
G~z F,andallv e V\Z, z € Z:

vR.z if u(v) ¢ M & h(v) =1

R VR, ()2 if u(v) e M & h(v) =1
Via(n? ) 3y eV R Ro(nr)2 if (v) ¢ M & h(v) > 1
' eV R Rynyz  ifu(v) € M & h(v) > 1

Proof: (Sketch.) Consider an arbitrary frame F = (S, {-"}aeny, {<itien),
and an arbitrary game on a finite extensive form G = (V, <, Z, N, ¢, u) such that
for some strategy profile & € £, G ~5 F. Itis sufficient to observe that in virtue
of G ~5 F, foreach v € V\Z: | J;cy vR; = vR,(,), and that in general for each
v € Vi vR. C vR,,). Hence, at each v € V\Z we have vR|j yue = vR,, if
t(v) ¢ M, and vRjpue = vR,(y), if1(v) € M. =

Lemma5.8 LetG = (V,<,Z,N,.,u) be a finitt game, ¢ € ¥ and F =
(S, {5} aemy, {<i}ien), a frame such that G ~5 F. Then for all v,v' € V,
MuU{i} C Nand&',5" € X

(i) vR v < Jo'e€3g: d'(w) =

(it) vRapv' = 35 € X 5(Ujep Vilo' & 7' (v) =2
(i) wRy@yv' =  a(v) =7
(i) VR < 37 € aVi]g" &' (v) =2
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Proof: Item () is straightforward. (ziz) and (iv), as can easily be recognized, are
the special cases of (iz). The proof of the latter is by an induction on A(v) of which
we here only present the =--direction of the induction step, h(v) = n = h(v) =
n+ 1.
Consider an arbitrary game G and frame F such that G ~, F for some & € X.
Consider arbitrary v,»' € V and &/,5" € X.
=: Assume vR, v’ Either (a) «(v) ¢ M or (b) «(v) € M. If the former,
by fact 5.7, for some v" € V', vRcv" Ry (aryv’. If (b), also by fact 5.7, there is
av” € V such that vR,(,)v" Ry (aryv’. In either case, in virtue of the induc-
tion hypothesis, we may assume the existence of a strategy profile ' € X
such that o[ J;c, Vilo' and o’ (v") = v'. Now define 6" : V\Z — V as:
I 0 ifw=uv
o' (w) = { a'(w)  otherwise
Clearly, both " € ¥ and h(v") < h(v). Note further that 5'[{v}]a". If
(b), it follows immediately that o[\ J;c,, Vile”. If (a), observe that from
vR.v" and definition 4.3 we obtain 5(v) = v” = "(v). So in this case
d[Uiens Vila". In either case: 6"(v) =py>0 0" (6" (v)) = 3"(v") =
o' (v") =;p. v'. Note that the last equality holds because of fact 2.6 as
v ¢ Vyrandso g’ ~y \ G". =

The following theorem establishes that R, satisfies the property of being (to-
tally) < beneficial in a frame F', exactly if the corresponding strategy profile & com-
prises a (subgame perfect) best response strategy for i. In a similar fashion, R,
being (totally) Nash induced can be proved to reflect that the strategy profile con-
cerned is a (subgame perfect) Nash-equilibrium.

Theorem 5.9  For each game on gfinite extensive form, G = (V, <, Z, N, 1, u),
with vy as the root node, each & € S, and each frame F = (S, {—}aemy, {<i
}ien) such that G ~5 F', and each i € N:

(1) R is i beneficial in vy <= g comprises a best response for ;
(17) R, is totally 7 beneficial <= & comprises a s.p. best response for
(71) R, is Nash induced in v <= & is aNash-equilibrium
(tv) R, istotally Nash induced <= ¢ isins.p. Nash-equilibrium

Proof: ~ We restrict ourselves to proving (iv) only as the proofs for (i)—(%i7)
are analogous. Consider an arbitrary game on a finite extensive form G = (V, <
,Z,N,u,u), as well as an equally arbitrary & € ¢, and frame F = (S, {-%
}aEHoa {Sz}zeN) such that G ~5 F.
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=: (Contraposition) Suppose that R, is not totally Nash induced. Then there is
ans € N as well as there are v, v’,v” € V such that:
(@) vRyg)v' (0) vRyiyv" (c) v &
Since G ~; F, F € C (fact 4.4) and so (c) implies: (d) v’ <; v". It follows,
from (a) and 5.8.(7i7), that: (1) 6(v) =o', and, from (b) and 5.8.(iv):
(2) there is some &’ € X such that 5[V;]a” and &' (v) = v".
Consider this '. From (d) we obtain:
(3) u(@)(v") < u(@)(¥"), ie u(i)(a(v)) < u(i)(@ (v)). From (1)-(3)
together follows that & is not a subgame perfect Nash-equilibrium.
<: (Contraposition) Suppose that & does not comprise a subgame perfect Nash-
equilibrium, which means that for some v € V\Z, some i € N and some
o' € X both: (a) a[V;]a’, and: (b) u(i)(a(v)) < u(i)(é'(v)). Consider
these i, v and &’. Since G ~5 F, from the latter: (c) a(v) <; &'(v). More-
over, from (a) and 5.8.(iv) we obtain that: (d) vRy;)a' (v). With 5.8.(id4):
(e) vRy(z)0(v). Finally, (c)-(e) together entail that R, is not totally Nash
induced. a

The results of the last two subsection can be combined and we can top things of
with the following corollary:

Corollary 510  Letd; = (Bip A (a(i))p) — [a()]p. Then for all games G,
with vg as root node, & € ¥ and each frame F, such that G ~5 F and for each
1€ N.:

(i) o comprises a best response for 4 <~ F,uy =9
(1) @ comprises a s.p. best response for; <« F E9;
(#93) & is a Nash-equilibrium = FuF N\ien Y
(iv) & is as.p. Nash-equilibrium = F = Nien Y
Proof:  Immediately from the theorems 5.9 and 5.6, above. -

This result establishes that some model checking settles the question whether, in
circumstances that can be described as an extensive game of perfect information,
the strategies the agents adopt are (subgame perfect) best responses or constitute a
(subgame perfect) Nash equilibrium. One can also view the matter from an opposite
angle. The program ¢ could be regarded as a specification of agents are required to
decide on strategies that are in (subgame perfect) Nash-equilibria. An interesting
question in this respect is whether the program ¢ can be formulated as a complex
program that is employed by the players as an algorithm to compute a Nash-optimal
choice in each possible circumstance. Still, this issue should be committed to future
research.
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6 Related and Future Research

Under the heading of related research, Bonanno’s paper on prediction and backward
induction (cf. Bonanno [1998]) should come first and foremost. His work inspired
the writing of this paper and his method is comparable to ours in that his papers also
deal with the formalization of the concept of a subgame perfect Nash-equilibrium
within a logical framework. It differs, however, in three respects. Firstly, Bonanno
uses computational tree logic (CTL) rather than dynamic logic. Moreover, his em-
phasis is on the logical foundations of game-theory rather than the incorporation of
game-theoretical notions in logic. Thirdly, his analyses are confined to the notion
of backward induction, an algorithm designed to generate subgame perfect Nash-
equilibria. Backward induction, however, is only guaranteed to provide a solution
in generic games, i.e. games in which the payoff a player receives is different in
each leaf node.

Independent investigations into the logical formalization of Nash-equilibria,
which are, nevertheless, quite congenial to our approach, are Alexandru Baltag’s
as reported in Baltag [1999]. Although his concern is primarily with the epistemic
aspects of games, he also proposes a dynamic logical framework in which Nash-
equilibria and related concepts can be characterized. The main difference with our
work is the way he maps games in extensive form onto Kripke structures.

In our future research we will address other game-theoretical concepts, such
as dominating and dominated strategies, strategy profiles that give rise to Pareto
optimal outcomes or coordination equilibria (cf. Lewis [1969]), to name only a
few. We trust that the logical analyses of these notions can be conducted within
a logical framework very similar to the one presented in this paper. A similar
remark applies to the issue raised in the last paragraph of the previous section. So
far, our attention has been concentrated on extensive games of perfect information
without either repetition or chance moves. In the light of purported applications to
the specification of fully-fledged multi-agent systems, this could be taken to be a
considerable concession. One of the areas where the agent metaphor particularly
bears fruit is where the players can only be ascribed partial knowledge of their
environment. Similar caveats are apposite with respect to topics as synchronous
actions, stochastic games, repeated games and chance moves. These matters merit
thorough investigation, as do the intricate epistemic issues of game theory and those
related to coalition formation.
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