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ABSTRACT
Rational strategic reasoning is the process whereby an agent rea-
sons about the best strategy to adopt in a given multi-agent sce-
nario, taking into account the likely behaviour of other participants
in the scenario, and, in particular, how the agent’s choice of strat-
egy will affect the choices of others. We present CATL, a logic
that is intended to facilitate such reasoning. CATL is an extension
of Alternating-time Temporal Logic (ATL), which supports reason-
ing about the abilities of agents and their coalitions in game-like
multi-agent systems. CATL extends ATL with a ternary counterfac-
tual commitment operator of the form Ci(σ, ϕ), with the intended
reading “if it were the case that agent i committed to strategy σ,
then ϕ”. By using this operator in combination with the ability
operators of ATL, it is possible to reason about the implications of
different possible choices by agents. We illustrate the approach by
showing how CATL may be used to express properties of games
such as Nash equilibrium and Pareto efficiency. We also show that
the model checking problem for CATL is tractable, and hence that
efficient implementations of strategic reasoners based on CATL are
feasible.

Categories and Subject Descriptors
I.2.11 [Distributed artificial intelligence]: multiagent systems;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—logics of programs
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Theory
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1. INTRODUCTION
Strategic reasoning is commonplace in the literature of game theory
and multi-agent systems. Strategic reasoning from the well-known
one-shot prisoner’s dilemma game is a good example here [18]:

Suppose my opponent cooperates. Then my best re-
sponse is to defect, since that way I get the best pos-
sible outcome. But suppose he defects. Then, again, I
would get the best outcome by defecting.

Strategic reasoning of this kind is counterfactual, since it involves
suppositions (‘suppose he cooperates. . . suppose he defects . . . ’)
that may be false or that may have an undetermined truth value [17,
22]. For example, the statement “if Napoleon won in 1812 then we
all would speak French” is counterfactual, since it involves a sup-
position (“Napoleon won in 1812”) that is in fact false. Classical
logic is of no use when analysing such reasoning, since in classical
logic, any implication with a false antecedent is by definition true.
So, to capture strategic reasoning of the kind above – in which, in
order to determine the best choice of action, we must make assump-
tions that may be true, false, or undetermined – we need some sort
of counterfactual construction. Our aim in this paper is to present
and evaluate a logic that supports precisely this kind of reasoning.

CATL (which stands for Counterfactual ATL, but it can be also
read as Commitment ATL) is based on ATL, the Alternating-time
Temporal Logic of Alur, Henzinger, and Kupferman [1, 2], a logic
which supports reasoning about the abilities of agents and coali-
tions of agents in game-like multi-agent systems. CATL extends
ATL with ternary counterfactual commitment operators, of the form
Ci(σ, ϕ), with the intended reading “if it were the case that agent
i committed to strategy σ, then ϕ would hold”. The Ci(σ, ϕ) op-
erators are counterfactual because they involve a supposition (that
agent i commits to following strategy σ) which is not known to be
true or false; we say they are commitment operators because they
capture the notion of an agent committing to follow a particular
strategy.1 A formula Ci(σ, ϕ) will be true in a state q of a system
M iff ϕ is true at state q in the system M′, where M′ is exactly like
M except that agent i is only able to perform the actions dictated by
strategy σ.

Our work makes three key contributions to the area of logics for
multi-agent systems:

• First, CATL is, to the best of our knowledge, the first logic

1Note that this is a rather different sense of the term commitment to
that which is more commonly used in the multi-agent systems liter-
ature [16], in particular because commitment as represented in our
counterfactual commitment operators is irrevocable. We present
our preliminary approach to a modal logic of revocable commit-
ments in another paper [15].



which combines reasoning about strategic ability with coun-
terfactual reasoning.

• Second, although there has been previous work on logical
characterisations of game-theoretic solution concepts, we be-
lieve that the combination of ability operators and the strate-
gic counterfactual operator enables to express these proper-
ties much more elegantly and intuitively than has hitherto
been possible.

• Third, our language extends ATL by introducing strategies
as first-class components of the language, in much the same
way that programs are first class components of the language
of dynamic logic [12]. The resulting language not only en-
ables one to reason about what coalitions can achieve, but
also how they can achieve them. As we shall see in Section 4,
the ability to name strategies explicitly within the language
seems essential if we are to express properties such as Nash
equilibrium.

The remainder of the paper is structured as follows. We begin by
introducing Action-based Alternating Transition Systems (AATSs)
which are used to give a semantics to CATL. Next, we describe
the formal syntax and semantics of CATL and show that the model
checking problem for CATL is tractable (i.e., can be solved in de-
terministic polynomial time). To illustrate the power of the logic,
we introduce a simple formal model of games, and show how CATL

can be used to reason about such games. In particular, we define a
notion of correspondence between games and models in the logic,
and show how game-theoretic concepts such as dominated strate-
gies, Pareto optimality, and Nash equilibrium can be expressed as
formulas of CATL. Finally, we present some conclusions. We do
not include proofs of propositions and CATL properties due to lack
of space.

2. ACTION-BASED ATS
Several semantic structures have been proposed for ATL, most

of them equivalent (cf. [11]). As the notion of action plays such an
important role in our framework, we find it convenient to work with
yet another version of such structures, in which actions and action
pre-conditions are first-class citizens. We refer to these structures
as Action-based Alternating Transition Systems (AATSs), and em-
phasise that they are for most purposes equivalent to “conventional”
ATL models. Formally, an AATS is a tuple:

M = 〈Q, q0,Φ, π,Ag,Ac1, . . . , Acn, ρ, τ,Υ1, . . . ,Υn, ‖·‖〉

where:

• Q is a non-empty (and usually finite) set of states of the sys-
tem. We assume that, at any moment, the system is in one of
the states;

• q0 ∈ Q is the initial state;

• Φ is a finite, non-empty set of atomic propositions;

• π : Q → 2Φ is an interpretation function, which gives the set
of primitive propositions satisfied in each state: if p ∈ π(q),
then proposition p is true in state q;

• Ag = {1, . . . , n} is a finite, non-empty set of all agents. A
coalition of agents is simply a subset of Ag, i.e. G ⊆ Ag, and
set Ag is sometimes called the grand coalition of agents;

• Each agent i ∈ Ag is associated with a set Aci of possible
actions, and we assume that these sets of actions are pairwise
disjoint. Formally, Aci is a finite, non-empty set of actions,
for each i ∈ Ag, where Aci ∩ Acj = ∅ for all i 6= j ∈ Ag;

We denote the set of actions associated with a coalition G ⊆
Ag by AcG, so AcG =

�
i∈G Aci. A joint action for a coalition

G is a tuple 〈α1, . . . , αk〉, where αi ∈ Aci, for each i ∈ G.
We denote the set of all joint actions for coalition G by JG, so
JG = � i∈G Aci. Given an element j of JG and agent i ∈ G,
we denote i’s component of j by ji.

• ρ : AcAg → 2Q is an action precondition function, which
for each action α ∈ AcAg defines the set of states ρ(α) from
which α may be executed;

• τ : Q × JAg ⇀ Q is a partial system transition function,
which defines the state τ (q, j) that would result by the per-
formance of j from state q – note that, as this function is
partial, not all joint actions are possible in all states (cf. the
pre-condition function above). Note also that the function
defines deterministic transitions: for a particular state q and
a tuple of valid decisions from all the agents in q, the next
state is completely determined;

• Υ1, . . . ,Υn are the sets of strategy terms for agents 1, . . . , n
respectively. We will define strategies for agents later in this
section. For now, however, all we need to know about strate-
gies is that we name them in formulae of CATL via strategy
terms, and that for each agent i ∈ Ag, Σi will denote the
set of strategies for agent i (as we will see below, given any
model M, the set Σi will be well-defined). We call a strategy
term from Υi, i.e. one that will be interpreted as a strategy for
agent i, simply an i-strategy term. As with the sets of actions
for agents, we assume that all sets Υi and Υj are disjoint for
i 6= j, and define the set of all such terms Υ =

�
i∈Ag Υi;

• ‖·‖M : Υ → (
�

i∈Ag Σi) gives the denotation ‖σ‖M of every
strategy term σ ∈ Υ in model M. We will often omit the
subscript M and just write ‖σ‖.

We require that AATSs satisfy two coherence constraints:

1. Non-triviality. Agents always have at least one legal action:
∀q ∈ Q, ∀i ∈ Ag, ∃α ∈ Aci s.t. q ∈ ρ(α)

2. Consistency. The ρ and τ functions agree on actions that may
be performed: ∀q ∈ Q, ∀j ∈ JAg, (q, j) ∈ dom (τ ) iff ∀i ∈
Ag, q ∈ ρ(ji)

Given an agent i ∈ Ag and a state q ∈ Q, we denote the actions
available to i in q by options(i, q), collecting all α ∈ Aci for which
q ∈ ρ(α). We then say that a strategy for an agent i ∈ Ag is a
function: σi : Q → Aci which must satisfy the legality constraint
that σi(q) ∈ options(i, q) for all q ∈ Q. Thus, a strategy may be
thought of as a conditional plan indicating how an agent is to act
in any given state of the system. A strategy profile for a coalition
G = {a1, . . . , ak} ⊆ Ag is a tuple of strategies 〈σ1, . . . , σk〉, one
for each agent ai ∈ G. We denote by ΣG the set of all strategy
profiles for coalition G ⊆ Ag; if σG ∈ ΣG and i ∈ G, then we
denote i’s component of σG by σi

G.

REMARK 1. This is a deviation from the original semantics of
ATL [2], where strategies assign agents’ choices to sequences of
states, which suggests that agents can recall the whole history of
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Figure 1: The Rocket Domain. The “bold” transitions are the
ones in which agent 3 always chooses nop3 .

each game. In this paper, on the other hand, we employ “memory-
less” strategies. While the choice of one or another notion of strat-
egy affects the semantics of the full ATL* and most ATL variants
for games with incomplete information, perfect and imperfect re-
call strategies eventually yield equivalent semantics for the “pure”
ATL [21].

A computation is an infinite sequence of states λ = q0, q1, . . ..
A computation λ ∈ Qω starting in state q is referred to as a q-
computation; if u ∈ � , then we denote by λ[u] the component
indexed by u in λ (thus λ[0] denotes the first element, λ[1] the
second, and so on). Given a strategy profile σG for some coalition
G, and a state q ∈ Q, we denote by comp(σG, q) the set of possible
computations that may occur if every agent ai ∈ G follows the
corresponding strategy σi, starting when the system is in state q ∈
Q. Notice that, for any grand coalition strategy profile σAg and state
q, the set comp(σAg, q) will be singleton.

2.1 A Running Example: The Rocket Domain
As an example, consider a modified version of the Simple Rocket

Domain from [6]. The task is to ensure that a cargo eventually ar-
rives in Paris (proposition caP), and there is a rocket that can be
used to accomplish the task. Initially, the cargo is at the London air-
port (caL); during the game, it may also lie inside the rocket (caR).
Accordingly, the rocket can be moved between London (roL) and
Paris (roP).

There are three agents: 1 who can load the cargo, unload it, or
move the rocket; 2 who can unload the cargo or move the rocket,
and 3 who can load the cargo or supply the rocket with fuel. Ev-
ery agent can also decide to do nothing at a particular moment (the
nop – “no-operation” actions). The agents act simultaneously. The
“moving” action has the highest priority (so, if one agent tries to
move the rocket and another one wants to, say, load the cargo,
then only the moving is executed). “Loading” is effected when the
rocket does not move and more agents try to load than to unload.
“Unloading” works in a similar way (in a sense, the agents “vote”
whether the cargo should be loaded or unloaded). If the number
of agents trying to load and unload is the same, then the cargo re-
mains where it was. Finally, “fueling” can be accomplished only
when the rocket tank is empty (alone or in parallel with loading or

unloading). The rocket can move only if it has some fuel (fuelOK),
and the fuel must be refilled after each flight. We assume that all
the agents move with the rocket when it flies to another place. The
AATS for the domain is shown in Figure 1 (we will refer to this
system as M1 throughout the rest of the paper). States of the sys-
tem are labeled with natural numbers; we assume that the initial
state is q0 = 1. All the transitions for state 1 (the cargo and the
rocket are in London, no fuel in the rocket) are labeled. Output of
agents’ choices for other states is analogous. We do not give the
algebraic definition of M1 here due to lack of space, but it can be
easily extracted from the description.

2.2 Committing to Strategies
We now want to consider the idea of an agent committing to, or

choosing a strategy. In committing to a strategy, an agent changes
the structure of the AATS in which it is involved. This is because it
eliminates certain possibilities from that structure: if agent i com-
mits to σ, then in future it must choose actions that are consis-
tent with σ. When every agent has made up its mind, the fu-
ture of the system is determined: there will be just one possible
computation of the system. To capture commitment formally, we
introduce a commitment operation †i, where M †i σ is the AATS

obtained from M by eliminating from it all transitions in which
agent i makes a choice that is not consistent with σ. Formally, if
M = 〈Q, q0,Φ, π,Ag,Ac1, . . . , Acn, ρ, τ,Υ1, . . . ,Υn, ‖ · ‖〉 is an
AATS, and σ is a strategy on M, then:

M †i σ = 〈Q, q0, Ag,Ac1, . . . ,Acn, ρ
′
, τ

′
,Φ, π, ‖‖M′ 〉,

where:

1. ∀α ∈ Aci: ρ′(α) = {q | σ(q) = α}

2. ∀q ∈ Q, ∀j ∈ JAg:

τ
′(q, j) =

�
τ (q, j) if (q, j) ∈ dom τ & ji = σ(q)
undefined otherwise

3. Υ′
i = {σ}

4. All other components of M †i σ are as in M.

Thus the †i operator represents an update on systems. Note, how-
ever, that this update does not delete states: only transitions be-
tween states. The operator is very similar to the model update op-
erator already proposed in [14] for the implementation of social
laws in ATL, and has essentially the same properties.

EXAMPLE 1. Let σ be the “lazy” strategy for agent 3, i.e. σ(q)
= nop3 for every q. System M1 †3 σ includes only the transitions
that are indicated with bold face font and thick arrows in Figure 1.

3. CATL
Alternating-time Temporal Logic (ATL) [1, 2] can be understood as
a generalisation of the well-known branching time temporal logic
CTL [9], in which path quantifiers are replaced by cooperation
modalities. A cooperation modality 〈〈G〉〉ϕ, where G is a coali-
tion, expresses that the coalition G can cooperate to ensure that
ϕ; more precisely, that there exists a collective plan (strategy pro-
file) for G such that by following this plan, G can ensure ϕ. Thus,
for example, the system requirement “agents 1 and 2 can coop-
erate to ensure that the system never enters a fail state” may be
captured by the ATL formula 〈〈1, 2〉〉 ¬fail. The temporal op-
erator means “now and forever more”; other temporal connectives
in ATL are U (“until”) and f (“in the next state”). Additional



operator ♦ (“either now or at some point in the future”) can be
defined as♦ϕ =̂ >U ϕ. Every occurrence of a temporal operator
is preceded by exactly one cooperation modality in ATL (which is
sometimes called “vanilla” ATL). The broader language of ATL*,
in which no such restriction is imposed, is not discussed here. It is
worth pointing out that CATL, proposed in this paper, makes use of
terms that describe strategies, and in this sense is very different to
ATL, in which strategies appear only in the semantics and are not
referred to in the object language. In order to capture consequences
of an agent’s commitment to execute a particular strategy, we intro-
duce a ternary modal operator Ci(σ, ϕ) with the intended meaning:
“suppose that agent i chooses the strategy denoted by σ; then ϕ
holds”. Having added formulas of this kind to ATL, we obtain a
new logic that we call “Counterfactual ATL” or “ATL with Commit-
ment” – CATL in short. Formally, the syntax of CATL, (with respect
to a set of agents Ag, primitive propositions Φ, and strategy terms
Υ =

�
i∈Ag Υi), is given by the following grammar:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|Ci(σi, ϕ)|〈〈G〉〉 fϕ|〈〈G〉〉 ϕ|〈〈G〉〉ϕU ϕ

where p ∈ Φ is a propositional variable, i ∈ Ag is an agent, G ⊆ Ag
is a set of agents, and σi ∈ Υi is an i-strategic term. For reasons
that will become clear shortly, we require that no i-strategy term
τi occurs in ϕ in the formula Ci(σi, ϕ). We now first define the
semantics of CATL formulas, and then discuss strategic terms and
their denotations.

3.1 Semantics of CATL
We now give the truth definition of CATL formulas on an AATS

M and a state q:

M, q |= p iff p ∈ π(q) (where p ∈ Φ);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∨ ψ iff M, q |= ϕ or M, q |= ψ;

M, q |= Ci(σ, ϕ) iff (M†i ‖σ‖), q |= ϕ;

M, q |= 〈〈G〉〉 fϕ iff ∃σG ∈ ΣG, such that ∀λ ∈ comp(σG, q), we
have M, λ[1] |= ϕ;

M, q |= 〈〈G〉〉 ϕ iff ∃σG ∈ ΣG, such that ∀λ ∈ comp(σG, q), we
have M, λ[u] |= ϕ for all u ∈ � ;

M, q |= 〈〈G〉〉ϕU ψ iff ∃σG ∈ ΣG, such that ∀λ ∈ comp(σG, q),
there exists some u ∈ � such that M, λ[u] |= ψ, and for all
0 ≤ v < u, we have M, λ[v] |= ϕ.

The other connectives (“∧”, “→”, “↔”) are assumed to be defined
as abbreviations in terms of ¬,∨. Also, 〈〈G〉〉♦ϕ is shorthand for
¬〈〈G〉〉>U ϕ. We omit set brackets in cooperation modalities, wri-
ting 〈〈i, . . . , k〉〉 rather than 〈〈{i, . . . , k}〉〉. Validity and satisfiability
are defined as usual for a modal logic: we write |= ϕ to indicate
that ϕ is valid.

Two cooperation modalities play a special role in the remainder
of the paper, and are worth singling out for special attention. The
cooperation modality 〈〈〉〉 (“the empty set of agents can cooperate
to. . . ”) asserts that its argument is true on all computations, and
thus acts like CTL’s universal path quantifier A. Similarly, the co-
operation modality 〈〈Ag〉〉 asserts that its argument is satisfied on at
least one computation, and thus acts like the CTL path quantifier E.

The following example shows that sometimes, a coalition can
achieve more if another agent commits himself to a strategy.

q0 q1 q2

nop

die

dead

Figure 2: The single agent system

EXAMPLE 2. Let nop3 be the term denoting the “lazy” strat-
egy for agent 3, i.e., the strategy in which he always chooses to do
nothing. Then, M1, 1 |= C3(nop3, 〈〈〉〉 roL), because the rocket
will never move away from London in the system from Figure 1.
Similarly, M1, 1 |= C1(nop1, 〈〈2, 3〉〉♦caP), although M1, 1 |=

¬〈〈2, 3〉〉♦caP when no commitment is considered.

We can now explain why we forbid i-strategic terms τi to occur in
ϕ, in the commitment formula Ci(σi, ϕ). Conceptually this makes
sense because, once i commits to strategy σi, there is no need to
reason about other strategies of i anymore. Technically, recall that
M †i σi is the model that “cuts out” all transitions from M for i, that
do not accord with σi. Hence, in that updated model, a strategy
τi would not have an interpretation any more. Another option to
deal with this would be to allow for partial strategies (cf. [15]),
but for the moment we feel we can stick to our definition of full
strategies as given in Section 2. Given a set of strategy terms Υ, we
say that the AATS model M complies with Υ if every term σ ∈ Υ
corresponds to a strategy ‖σ‖ in M. It is then easy to verify that if
M complies with Υ, and M′ is the result of updating M in order to
evaluate Ci(σi, ϕ), then M′ complies with the set Υ′ of all strategies
named in ϕ.

Note that, so far, we have been only describing individual com-
mitments. Collective commitments can be defined on top of them:

C{1}(〈σ1〉, ϕ) =̂ C1(σ1, ϕ)

C{1,..,k}(〈σ1, .., σk〉, ϕ) =̂ C1(σ1,C{2,..,k}(〈σ2, .., σk〉, ϕ))

This notion is well defined because of the following:

PROPOSITION 1. Commitments are commutative:

|= Ca1(σa1 ,Ca2 (σa2 , ϕ)) ↔ Ca2 (σa2 ,Ca1(σa1 , ϕ)).

3.2 Properties under Commitment
For an AATS M with only finitely many states, actions and agents,

there are clearly only finitely many strategies. Suppose that the set
Υi is rich enough so that it includes a strategy term for every i’s
strategy from Σi. We might expect the following equivalence to
hold in M:

〈〈i〉〉ϕ↔ �
σi∈Υi

Ci(σi, ϕ)

The above property expresses that what i can achieve in a system
M, is exactly all those results that will hold after i has commit-
ted to one of his available strategies. Unfortunately, this is in gen-
eral not true in a framework with irrevocable commitments, which
we can already demonstrate in the one agent case. Consider the
AATS M from Figure 2. Let us abbreviate free ≡ (〈〈i〉〉 fdead ∧
〈〈i〉〉 f¬dead). Note that M, q1 |= free, i.e. the agent has a free
choice to die or stay alive in state q1. On the other hand, as soon as
he irrevocably commits to either of the two available strategies (σ1

with σ1(q1) = nop, and σ2 with σ2(q1) = die), he does not have
the free choice any more:

M, q0 |= 〈〈i〉〉 ffree ∧ ¬Ci(σ1, free) ∧ ¬Ci(σ2, free).



This makes our approach similar to the perspective offered by strate-
gic reasoning in game theory: we can see agents’ commitments as
the result of pre-play reasoning; once the players choose their best
strategies, the structure of the game does not matter any more and
the play is already settled before it begins. We will come back to
the relationship between CATL and game theory in Section 4.

We have pointed out that the commitment semantics we adopt
has essentially the same properties as the constraint implementa-
tion operator from [14]. We now briefly mention two such proper-
ties of the commitment modality in CATL. First, let us point out that
commitment preserves universal properties of transition systems.
Moreover, existential properties that hold under commitments, ap-
ply to the whole system as well. To this end, we define a universal
and an existential sublanguage of ATL, denoted Lu and Le, respec-
tively. These languages are defined by the following grammars:

υ ::= p | ¬p | υ ∧ υ | υ ∨ υ | 〈〈〉〉 fυ | 〈〈〉〉 υ | 〈〈〉〉υ U υ
ε ::= p | ¬p | ε ∧ ε | ε ∨ ε | 〈〈Ag〉〉 fε | 〈〈Ag〉〉 ε | 〈〈Ag〉〉εU ε

where p ∈ Φ, υ ∈ Lu and ε ∈ Le.

PROPOSITION 2. Let σ be a strategic term for i in M, let q be
a state in M, and let υ ∈ Lu and ε ∈ Le. Then:

1. M, q |= υ → Ci(σ, υ).

2. M, q |= Ci(σ, ε) → ε.

The proofs are analogous to those of [14].
Note that when every agent has committed to a strategy the future

of the system is determined, and we have the following:

PROPOSITION 3. |= CAg(σAg, 〈〈〉〉 fϕ↔ 〈〈Ag〉〉 fϕ)

3.3 PDL-like Reasoning about Strategies
One of the advantages of CATL is that the logic enables explicit

reasoning about actions and strategies in the style of Propositional
Dynamic Logic [12]. Reasoning about (single-step) actions can
be naturally extended to reasoning about strategies (that are being
played ad infinitum), yielding a kind of “extended dynamic logic”:

[σG] fϕ =̂ CG(σG, 〈〈〉〉 fϕ)
[σG] ϕ =̂ CG(σG, 〈〈〉〉 ϕ)
[σG]ϕU ψ =̂ CG(σG, 〈〈〉〉ϕU ψ)

EXAMPLE 3. Coming back to our rocket example: every execu-
tion of action fuel by agent 3 in state 1 makes the tank of the rocket
full: M1, 1 |= [fuel]fuelOK. Moreover, if 3 chooses the “lazy”
strategy and the initial state is 1, then the rocket will inevitably stay
in London for ever: M1, 1 |= [nop3] roL.

In [15], we propose a richer language of strategy terms, and dis-
cuss the relationship to PDL in more detail.

3.4 Model Checking and Satisfiability
The model checking problem for CATL is the problem of deter-

mining, for any given CATL formula ϕ, AATS M, and state q in M,
whether or not M, q |= ϕ. If M is an AATS and ϕ is a formula then
we say that ϕ is initially satisfied in M if M, q0 |= ϕ; we indicate
this by writing M |= ϕ. Given M, i, and σ, computing M †i σ can
be done in time O(m) (where m is the number of transitions in M).
All we need do is go through the model deleting transitions where
i performs an action other than that which is dictated by σ (i.e.,
“trim” the model). Finally, to model-check a CATL formula ϕ, it is
sufficient to use the ATL model checking algorithm from [2], and

call the “trimming” procedure every time a subformula of shape
Ci(σ, ϕ occurs. As the ATL model checking algorithm enjoys com-
plexity of O(ml), we obtain the following result.

PROPOSITION 4. Model checking a CATL formula ϕ in model
M can be done in time O(ml), where m is the number of transitions
in M, and l is the length of ϕ.

A formula ϕ is satisfiable if there is some AATS M and state q
in M such that M, q |= ϕ. The satisfiability problem for ATL is the
problem of determining, for any given ATL formula, whether this
formula is satisfiable or not.

4. STRATEGIC REASONING IN CATL
AATSs encapsulate intuitions related to extensive form games as

well as strategic form games: on one hand, every agent acts through
multiple subsequent moves; on the other, many agents play simulta-
neously at each state, and the outcome of a move depends on the ac-
tions of the other players. Thus, on one hand, ATL formulas of type
〈〈G〉〉 fϕ can be seen as a formalization of reasoning about a single
move in a (possibly more complex) game, and operators 〈〈G〉〉

and 〈〈G〉〉♦ as referring to an analysis of the entire game. In this
sense, ATL formalizes reasoning about different aspects of exten-
sive game forms, representing sequences of moves, collectively ef-
fected by the players’ actions. Alternatively, formulas 〈〈G〉〉 fϕ

can be understood as expressing agents’ powers to force outcomes
in a single game, and operators 〈〈G〉〉 and 〈〈G〉〉♦ as referring
to a collection of games played repeatedly ad infinitum. Thus, ATL

can be also interpreted in terms of strategic game forms, in a way
similar to the perspective of Coalition Logic [19]. In our introduc-
tion, we claimed that CATL is appropriate for reasoning about the
outcome of strategies in game-like encounters. We now justify this
claim by showing how CATL can be used to express important prop-
erties of games. We will focus on games in strategic form, but the
concepts can be extended to perfect information games in extensive
form in a natural way (cf. [15]).

4.1 Games and Correspondence
We will compare strategic games with AATS models. To keep

them clearly apart, all entities in the game will have a ĥat. Note
that in a strategic game we do not have to distinguish actions from
strategies. We model a k-player strategic game Γ̂ as a tuple Γ̂ =
〈Âg, {Âci}, {ûi}〉, where: Âg = {1̂, . . . , k̂} is the set of players, Âci

is the set of actions (or strategies) for player i, ĴÂg = Âc1×· · ·×Âgk

is the set of all possible combinations of strategies, and ûi : ĴÂg →
�

is player i’s utility function, which assigns a real-valued utility to
each combination of players’ strategies. Notice that games in this
sense, and our AATSs are very similar: the main differences are that
(i) games are not state dependent, in that the outcome of the game
depends only on the choices of actions made by agents, and not on
the current state of the system; and, more significantly (ii) agents
have preferences over outcomes, determined by their utility func-
tions.

We make the relationship between games and ATSs precise with
the notion of correspondence. Informally, this relationship should
be clear from the notation, but to define the correspondence for-
mally, we need to introduce into ATSs a mechanism for capturing
utilities. One approach to this problem would be to extend the
framework of coalition logic with desire or preference modalities of
some kind. Logics of desire have been widely studied (see e.g. [20,
24]), and modal operators for desires were successfully used in [13]
for a modal characterisation of Nash equilibrium; an attempt to give
a game-theoretic foundation to a logic of desire was also presented



in [23]. The disadvantage of such an approach is that it complicates
the underlying logical framework. An alternative, which we adopt
in this paper, is to label states with propositions that capture agent’s
utilities in these states. This approach is perhaps less elegant than
the modal alternative [5, pp.308–309], but it is nevertheless simpler
from a logical perspective, as we need not complicate the logic with
additional modalities or other connectives.

We follow the approach of Baltag [3]. Let U denote the set of all
utilities that may be assigned by ûi functions in Γ̂. For each utility
value v ∈ U and agent ı̂ ∈ Âg, we introduce a proposition (ui ≥
v) into our set Φ of primitive propositions of the corresponding
AATS model M, and fix the valuation function π so that (ui ≥ v) is
satisfied in state s iff i gets at least v in s. Additionally, we define
ui > v as a shorthand for � v′>v ui ≥ v′.

Consider a strategic game Γ̂ = 〈Âg, {Âci}, {ûi}〉, and a model
M = 〈Q, q0,Φ, π,Ag,Ac1, . . . ,Acn, ρ, τ,Υ1, . . . ,Υn, ‖ · ‖〉 with
state q ∈ Q. We write Γ̂ ' (M, q) to denote the fact that Γ̂ corre-
sponds to M, q, in the sense that:

1. the sets of agents are the same: Âg = Ag;

2. strategies in Γ̂ correspond to actions that can be executed in
M, q: Âci = options(i, q);

3. Υ has a term α for every strategy α̂ in Γ̂. More precisely, we
require that for every α̂ ∈ Âci there is an α ∈ Υi such that
‖α‖ (q) = α̂, i.e. we can use strategy terms to address every
single-step action in q;

4. Φ ⊇ {(uj ≥ v) | ûj ∈ {ûi}, v ∈ U}

5. for all j ∈ JAg with q′ = τ (q, j), we have: (ui ≥ v) ∈ π(q′)
iff ûi(̂) ≥ v.

Thus, states in M are mainly used to represent various possible out-
comes of the strategic game Γ̂.

LEMMA 1. Let Γ̂ be a game, M be an AATS with a state q such
that Γ̂ ' (M, q); let ̂, ̂′ ∈ ĴÂg be strategy profiles in Γ̂, and i be

an agent in Ag = Âg. Then:

1. ûi(̂) > ûi(̂′) iff for some v ∈ U we have
M, τ (q, j) |= (ui ≥ v) and M, τ (q, j′) |= ¬(ui ≥ v);

2. ûi(̂) ≥ ûi(̂′) iff for all v ∈ U, if M, τ (q, j′) |= (ui ≥ v) then
also M, τ (q, j) |= (ui ≥ v).

To keep the definitions and results as readable as possible, we
will from now assume that games have just two agents, 1 and 2.
Moreover, we will write Γ̂ ' (M, q) without explicitly saying that
Γ̂ is a game, and M a system with state q. Since the agents in the
game Γ̂ and the model M are the same, we omit the hat-notation for
them. Finally, in the two-agent case, if i is an agent, k refers to the
other agent.

To look at a simple example, consider a version of the Prisoner’s
Dilemma (PD) presented in Figure 3A. The outcome pair (−5, 0),
for instance, represents that when player 1 cooperates (C) while
player 2 defects (d), the sentence for player 1 is 5 years in prison,
while 2 can go without any punishment. The corresponding AATS

model might have a root q0 and four states: q1, . . . , q4, where q1

would be obtained from q under the profile 〈C, c〉 and satisfy propo-
sitions u1 ≥ −5, u1 ≥ −4, u1 ≥ −2, u2 ≥ −5, u2 ≥ −4 and, final-
ly u2 ≥ −2; the state q2 would be obtained from q under the profile
〈C, d〉 etc. The other game in Figure 3B represents the “Bach or
Stravinsky” game, also known as the “Battle of the Sexes” (BoS).
A corresponding AATS is presented in Figure 3C.

(A)

1 \ 2 c d

C −2,−2 −5, 0
D 0,−5 −4,−4

(B)

1 \ 2 b s

B 2,1 0,0
S 0,0 1,2

(C)
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Figure 3: Strategic games: (A) “Prisoner’s Dilemma”, (B)
“Bach or Stravinsky”; (C) example transition systems corre-
sponding to BOS

4.2 Dominant and Dominated Strategies
The first concept we capture in our logic is that of a strategy be-

ing dominant. Intuitively, a strategy is dominant if it is the best
response to all strategies that may be played by one’s opponents.
The presence of a dominant strategy makes an agent’s reasoning
process simpler: a rational agent will always play a dominant strat-
egy. Notice that “defect” (playing D and d) are dominant strategies
for players 1 and 2 in PD. We focus on weakly dominant strate-
gies, which are “at least as good as” the alternatives. Formally, α̂
is weakly dominant for i in Γ̂ iff for all α̂′ 6= α̂ ∈ Âci, and for all
β̂ ∈ Âck, we have ûi(α̂, β̂) ≥ ûi(α̂′, β̂).

To capture weak dominance in the corresponding model, we de-
fine a unary predicate WDi(α), the idea being that WDi(α) is sat-
isfied in a state iff α is weakly dominant in that state. We start
with a predicate wdi(α), which appears promising, but is in fact
not sufficiently strong:

wdi(α) =̂ �
v∈U

(〈〈i〉〉 f(ui ≥ v) → Ci(α, 〈〈〉〉 f(ui ≥ v)))

The predicate wdi(α) expresses that if i can guarantee a value v,
he can already guarantee it using his strategy α. Unfortunately, this
is too weak to make α weakly dominant, which we will demon-
strate using the BoS example. The best that player 1 can guarantee
is a value 0. He can also obtain this using his strategy α̂ = B,
still in this case B is not a dominant strategy (BoS lacks dominant
strategies). The problem lies in the fact that the outcomes of α
with respect to every opponent’s response β should be considered
separately. This suggests that we need to be able to quantify over
strategies. Indeed, if the number of strategies (actions) for i is finite,
we can express weak dominance by the following:

PROPOSITION 5. For finite Γ̂ and M, if Γ̂ ' (M, q) then α̂ is
weakly dominant for i in Γ̂ iff M, q |= WDi(α), where:

WDi(α) =̂ �
β∈Υj

Cj(β,wdi(α)).

WDi(α) above expresses that α is the best response to every par-
ticular opponent’s strategy β. Notice that characterising weak dom-
inance requires the ability both to quantify over the possible choices
of agents in a system (which is possible in “pure” ATL), and also
to address properties of named strategies (which is not possible in
“pure” ATL, but can be done in CATL).

The notion of a dominated strategy is related to that of a dom-
inant strategy, although when having more than two strategies for
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Figure 4: A rocket game

one player, the notions are independent. It is well-known that iter-
atively eliminating their dominated strategies may lead the game to
an equilibrium state.

We want bti(α1, α2) to mean that α1 guarantees (strictly) bet-
ter outcome than α1 for i, DOi(α1, α2) to mean that strategy α1

is (strongly) dominated by strategy α2 for agent i, and Di(α) to
denote that α is a (strongly) dominated strategy. We define these
predicates as follows:

bti(α1, α2) =̂ �
v∈U

(Ci(α1, 〈〈〉〉 f(ui ≥ v)) ∧

¬Ci(α2, 〈〈〉〉 f(ui ≥ v)))

DOi(α1, α2) =̂ �
β∈Υj

Cj(β,¬bti(α1, α2)) ∧ �
β∈Υj

Cj(β, bti(α2, α1))

Di(α) =̂ �
α′∈Υi

DOi(α, α
′)

PROPOSITION 6. Suppose that Γ̂ ' (M, q), and let α̂ be a
strategy for agent i in Γ̂. Then:

1. α̂1 is dominated by α̂2 in Γ̂ iff M, q |= DOi(α1, α2)

2. α̂ is a dominated strategy in Γ̂ iff M, q |= Di(α).

EXAMPLE 4. Let us consider again the “rocket agents” from
Section 2.1. This time, we would like to add some information
about the agents’ preferences (utilities). Suppose that the cargo
contains some materials that can incriminate agent 1 before the
French police. Thus, 1 does not want the cargo to stand freely at
the London airport, but he is much more afraid that the cargo may
arrive in Paris. The best option for him is when the cargo is in-
side the rocket and the rocket cannot fly (i.e., it has its tank empty);
also, he has a slight preference for the situation when the rocket is
supplied with fuel and the cargo is outside (then the rocket can be
moved to Paris in the next step, which guarantees that the cargo
will remain away from Paris for some time. Agent 3, on the other
hand, gets more bonus when the rocket tank is full; also, he is re-
sponsible for cargo which is on board of the rocket, so he prefers
when no cargo is loaded. We assume that agent 2 chooses to do
nothing throughout the game, and that the agents, cargo and rocket
are initially in London. AATS M2 = M1 †2 nop2 can be augmented
with utility-defining propositions to correspond to the game; Fig-
ure 4 shows the table of utilities for the game as well as the relevant
part of the resulting transition system.

Let α denote an arbitrary strategy in M2 for which α(q) = α.
Note that M2, 1 |= WD3(fuel) and indeed fuel is a dominant ac-
tion for agent 3. Note also that 1 has no dominant action, and

¬WD1(nop
1
) ∧ ¬WD1(load1) ∧ ¬WD1(unload1) appropriately

holds in M2, 1.
Furthermore, M2, 1 |= Di(unload1)∧¬Di(nop

1
)∧¬Di(load1),

and indeed unload1 is the only dominated action of player 1.

Unfortunately, as witnessed by BoS, dominant or dominated strate-
gies seldom exist, and hence alternative solution concepts have
been developed. Of these, Nash equilibrium is the best known and
most important.

4.3 Nash Equilibrium
We say that a pair of strategies 〈α̂1, α̂2〉 for the grand coalition

{1, 2} is in Nash equilibrium in game Γ̂ if these strategies are each
the best response to each other, i.e., if û1(〈α̂1, α̂2〉) ≥ û1(〈α̂′

1
, α̂2)

for all α̂′
1
∈ Âc1, and, similarly, û2(〈α̂1, α̂2〉) ≥ u2(〈α̂1, α̂′

2
) for

all α̂′
2
∈ Âc2. The profile 〈D, d〉 is the only Nash equilibrium in

PD, while BoS has two Nash equilibria, namely 〈B, b〉 and 〈s, S〉.
To express Nash equilibrium, we first characterise the notion of

one strategy being a best response to another. We write BRi(αk, αi)
to denote the fact that i’s best response to k playing αk is αi, and
define it as:

BRi(αG, αi) =̂

Ck(αk, �
v∈U

((〈〈i〉〉 f(ui ≥ v)) → Ci(αi, 〈〈〉〉 f(ui ≥ v)))

This says that if k plays αk, then every utility v that can be achieved
by i can already be achieved by i playing αi.

PROPOSITION 7. Suppose Γ̂ ' (M, q); let α̂k be a strategy for
k in Γ̂, and α̂i a strategy for agent i. Then M, q |= BRi(αk, αi) iff
the best outcome i can obtain assuming k plays α̂k is obtained by
playing α̂i.

When the number of strategies if finite, we could have also char-
acterised BRi(αk, αi) as follows, saying that αi is i best response to
αk, if every utility achieved when i plays an arbitrary β against αk,
can also be achieved by playing αi against αk.

PROPOSITION 8. For finite Γ̂ and M, suppose Γ̂ ' (M, q) and
let αk be a strategy for k in Γ̂, and α̂i a strategy for agent i. Then
the following two statements are equivalent:

1. M, q |= BRi(αk, αi)

2. M, q |= �
βi∈Υi

� v∈U(Ci(β,Ck(αk, (ui ≥ v)) →
Ci(αi,Ck(αk, (ui ≥ v)))).

We can now define a proposition NE(αG) to denote the fact that
strategy profile αG is in Nash equilibrium.

NE(α1, α2) =̂ BR1(α2, α1) ∧ BR2(α1, α2)

The following is now immediate.

PROPOSITION 9. Suppose Γ̂ ' (M, q) and let αi be a strat-
egy for i in Γ̂. Then M, q |= NE(α1, α2) iff 〈α̂1, α̂2〉 is a Nash
equilibrium in Γ̂.

EXAMPLE 5. Consider the game and the corresponding AATS

from Example 4 and Figure 4. Strategy pair 〈 ˆunload1, ˆfuel〉 is a
Nash equilibrium here, and accordingly M2, 1 |= NE(unload1, fuel).
Also, M2, 1 |= ¬NE(load1, load3) and indeed 〈 ˆload1, ˆload3〉 is not
a Nash equilibrium point because agent 3 can get a better payoff
against ˆload1 by playing ˆfuel.



4.4 Pareto Optimality
The next concept we capture is that of Pareto optimality [18]. A

strategy profile 〈α̂, β̂〉 is Pareto optimal if there is no other strategy
profile 〈α̂′, β̂′〉 for {1, 2} that will lead to an increase in utility for
some members of {1, 2} without any of them suffering a decrease
in utility. The game of BoS has two Pareto optimal profiles: 〈B, b〉
and 〈S, s〉, while all combinations of strategies in PD except for
〈D, d〉 are Pareto optimal.

Formally, PO(α, β) is defined as below. We use 〈u1, u2〉 ≥
〈v1, v2〉 as a shorthand for ((u1 ≥ v1) ∧ (u2 ≥ v2)).

PO(α, β)=̂
� v1

� v2
〈〈1, 2〉〉 f(〈u1, u2〉 ≥ 〈v1, v2〉) →
C{1,2}(〈α, β〉, 〈〈〉〉 f(〈u1, u2〉 ≥ 〈v1, v2〉 ∨ ((u1 > v1) ∨ (u2 > v2))))

The displayed formula expresses that if a collective utility cannot
be achieved by coalition {1, 2} while playing strategies α and β
respectively (i.e. at least one of the players is bound to get a worse
outcome), then it cannot be achieved by coalition {1, 2} in general.

PROPOSITION 10. Suppose that Γ̂ ' (M, q) and let 〈α̂, β̂〉 be
a strategy profile for the grand coalition {1, 2} in Γ̂. Then M, q |=

PO(〈α, β〉) iff 〈α̂, β̂〉 is a Pareto optimal strategy profile for {1, 2}
in Γ̂.

EXAMPLE 6. The following strategy profiles in the game from
Example 4 are Pareto optimal: 〈 ˆnop

1
, ˆload3〉, 〈 ˆnop

1
, ˆfuel〉,

〈 ˆload1, ˆnop
3
〉, 〈 ˆload1, ˆload3〉 and 〈 ˆunload1, ˆfuel〉. Accordingly,

M2, 1 |= PO(nop1, load3) ∧ PO(nop
1
, fuel) etc. In the same way,

M2, 1 |= ¬PO(nop
1
, nop

3
) ∧ ¬PO(load1, fuel) and so on.

5. CONCLUSIONS
In recent years, there has been much interest in the use of logic

for representing and reasoning about game-like interactions. Ex-
amples include the development of logics intended for reasoning
about coalitional power in games [1, 2, 19], the use of dynamic
epistemic logics to capture properties of games [4, 3], Bonanno’s
work on the relationship of branching time logic to extensive form
games [7], and of course the use of epistemic logic for capturing
such game theoretic concepts as perfect recall [10].

Our logic CATL adds strategy terms to the vocabulary of modal
logic, enabling one to reason about “what-if” scenarios, which cor-
respond to agents choosing a particular strategy. We showed how
this gives a natural framework within which several well-known so-
lution concepts from game theory can be expressed. Directions for
future research are manyfold. First of all, reasoning about choices
of agents can be done in a more fine-tuned way if we allow for
more structure in strategic terms. This would make the link with
Propositional Dynamic Logic PDL more explicit. Second, yet we
only demonstrated the possible use of CATL; properties in terms
of axiomatization and computational complexity are not resolved.
Finally, it may be worthwhile to use CATL in the area of extensive
games, with utilities assigned to arbitrary states and various notions
of outcome.
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