Model Checking Russian Cards

H.P. van Ditmarsch1,2

Computer Science, University of Otago, Dunedin, New Zealand

W. van der Hoek3

Computer Science, University of Liverpool, United Kingdom

R. van der Meyden4

School of Computer Science and Engineering, University of New South Wales & National ICT Australia, Sydney, Australia

J. Ruan5

Computer Science, University of Otago, Dunedin, New Zealand

Abstract

We implement a specific protocol for bit exchange among card-playing agents in three different state-of-the-art epistemic model checkers and compare the results.

Keywords: Cryptography, unconditional security, model checking, information-based protocols, epistemic logic.
1 Introduction

The security of cryptographic protocols generally depends upon the truth of several assumptions: that the agents are computationally limited and that certain computational problems are intractable given these computational limits. In protocols based on public key encryption schemes such as RSA, for example, decryption of messages is tractable for the intended recipient but assumed to be impossible for an eavesdropper, because it requires factoring a large product of primes, a problem assumed to be intractable. There do exist, however, unconditionally secure protocols, whose security does not rely upon such assumptions. These protocols can be shown to be secure even against adversaries with unlimited computational powers, because they ensure that the adversary cannot learn secrets for information theoretic rather than computational reasons.

A popular approach to the verification of cryptographic protocols has been to analyse them in terms of information flow as expressed using logics of knowledge and belief [3,12]. In general, the semantics of these logics do not capture the dimension of computational complexity upon which the security of the protocols rest: instead, they treat agents as purely information theoretic reasoners, having computational powers extending even beyond the recursive enumerable. However, this very feature makes these logics a highly appropriate tool for the analysis of unconditionally secure protocols.

In this paper, we consider the application of the logic of knowledge to unconditionally secure protocols based on the exchange of information grounded in correlations arising from a deck of cards having been dealt to the agents. A player can communicate secret bits such as card ownership to another player.

1 This research has been carried out with support from AOARD (Asian Organization for Airforce Research and Development) research grant AOARD-05-4017. National ICT Australia is funded through the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian Research Council. Hans van Ditmarsch and Ji Ruan closely collaborated while Ji visited Hans in Otago. Hans thanks Jan van Eijck for the exciting interaction during DEMO’s development, and for his suggestions. Wiebe van der Hoek has been involved in ‘Russian Cards’ matters for a long time, since visiting Otago in 2002 as a William Evans Fellow. Ron van der Meyden wrote the first version of what ultimately became the MCK program, as well as the basis for a first attempt at the MCK program for announcements from arbitrary initial states, during Hans’ visit to Sydney in 2003. Hans and Ji later completed these. Ron later developed much faster versions of both MCK programs. We kindly acknowledge Franco Raimondi’s very helpful assistance while completing the MCMAS program. We also thank the anonymous referees supplied by the MoChArt 05 organization for their comments.

2 Email: hans@cs.otago.ac.nz

3 Email: wiebe@csc.liv.ac.uk

4 Email: meyden@cse.unsw.edu.au

5 Email: jruan@cs.otago.ac.nz
without revealing these secrets to a third player (eavesdropper). This has been investigated in [6,16,10,1,17]. A typical example is the ‘Russian Cards Problem’: two players each draw three cards from a pack of seven cards, and the remaining player (eavesdropper) gets the last card. The ‘problem’ is to find protocols that allow the sender and receiver to learn each other’s hand of cards, without revealing this information to the eavesdropper. In [16], protocols of length two are presented that solve this problem. Protocols of length greater than two are investigated in [17].

In such card protocols, the required postconditions are not always clear or not easy to verify, publicly known protocol features may involve fairly complex nested dynamic epistemic formulas, and enumeration of all possible protocols is an issue as well. Model checkers are promising tools with which to address these complexities. A model checking analysis has been partially carried out for the Russian Cards problem in [20]: epistemic properties of the scenario are translated into (linear time) LTL, and then verified using the model checker SPIN. A deal of cards together with a number of announcements corresponds to a time line. Uncertainty of the agents is represented by exploiting local propositions proposed in [4], see also [13]. This approach to model checking epistemic logic has a number of disadvantages: the need for translation means that the epistemic aspects are only implicit in the analysis, it requires that the appropriate local propositions – which may be difficult to identify – be explicitly provided by the user, and in the case of negative occurrences of the knowledge operator, multiple runs of the model checker are necessary to conduct the verification.

In this contribution, we take a more direct approach, verifying protocol properties in model checkers which work with epistemic logic explicitly. We conduct a comparative study of a number of systems, based on a variety of approaches to representing the evolution of knowledge: combinations of the logic of knowledge with linear and/or branching time [5,9,14], and dynamic epistemic logics [8,2,15]. Specifically, we consider the model checkers MCK [7] which deals with the logic of knowledge and both linear and branching time using BDD based algorithms, MCMAS [11] which handles knowledge and branching time using BDD based algorithms, and DEMO [18], which is an explicit state model checker based on a dynamic epistemic logic.

We have selected one specific Russian Cards protocol, the ‘five hands protocol’, implemented it in these quite different dedicated ‘epistemic’ model checkers, and verified its relevant properties. This involved reinterpreting dynamic epistemic concepts in temporal epistemic terms; this theoretical exercise was carried out successfully and increased our understanding of dynamic epistemic features. All three implementations were carried out within a rea-
sonable development time and all were successful. Some additional Russian
Cards protocol features, in particular for protocols of length greater than two,
have been kept outside this comparison. Also, incorrect protocols (such as
for non-solutions of the Russian Cards problem) can be easily shown to be
so by establishing failure of (commonly known or other) epistemic conditions.
This only requires (almost) trivial changes in the scripts presented below for
a correct protocol.

In Section 2 we present the Russian Cards problem. Sections 3 to 5 are ded-
icated to the implementation of the ‘five hands’ protocol for the Russian Cards
problem in the model checkers, respectively, MCK, DEMO, and MCMAS. Sec-
tion 6 compares the results. The MCK, DEMO, and MCMAS input scripts
can be found on http://www.cs.otago.ac.nz/staffpriv/hans/aoard/.

2 Russian Cards

From a pack of seven known cards two players each draw three cards and a
third player gets the remaining card. How can the players with three cards
openly inform each other about their cards, without the third player learning
from any of their cards who holds it?

This ‘Russian Cards’ problem originated at the Moscow Math Olympiad
2000. Call the players Anne, Bill and Cath, and the cards 0, ..., 6, and suppose
Anne holds \{0, 1, 2\}, Bill \{3, 4, 5\}, and Cath card 6. For the hand of cards
\{0, 1, 2\}, write 012 instead, for the card deal, write 012.345.6, etc. Assume
from now on that 012.345.6 is the actual card deal. All announcements must
be public and truthful. There are not many things Anne can safely say. Ob-
nviously, she cannot say “I have 0 or 6,” because then Cath learns that Anne
has 0. But Anne can also not say “I have 0 or 3,” because Anne does not
know if Cath has 3 or another card, and if Cath had card 3, she would have
learnt that Anne has card 0. But Anne can also not say “I have 0 or 1.” Even
though Anne holds both 0 and 1, so that she does not appear to risk that
Cath eliminates either card and thus gains knowledge about single card own-
ership (weaker knowledge, about alternatives, is allowed), Cath knows that
Anne will not say anything from which Cath may learn her cards. And thus
Cath can conclude that Anne will only say “I have 0 or 1” if she actually holds
both 0 and 1. And in that way Cath learns two cards at once! The appa-
rent contradiction between Cath not knowing and Cath knowing is not really
there, because these observations are about different information states: it is
merely the case that announcements may induce further updates that contain
yet other information.

Whenever after Anne’s announcement it is (at least) not common knowl-
edge to Anne, Bill, and Cath, that Cath remains ignorant of any of Anne’s or Bill’s cards, this may be informative to Cath after all. A typical example is when Anne says that she either holds 012 or not any of those cards, after which Bill says that Cath holds card 6. For details, see [16]. Indeed, a solution requirement is that Cath’s ignorance remains public knowledge after any announcement. Such announcements are called safe.

A solution to the Russian Cards problem is a sequence of safe announcements after which it is commonly known to Anne and Bill (not necessarily including Cath) that Anne knows Bill’s hand and Bill knows Anne’s hand. This (instance of a) five hands protocol is a solution:

Anne says “My hand of cards is one of 012, 034, 056, 135, 246,” after which Bill says “Cath has card 6.”

Note that Bill’s announcement is equivalent to “My hand of cards is one of 345, 125, 024.” After this sequence, it is even publicly known that Anne knows Bill’s hand and Bill knows Anne’s hand. If we extend Anne’s announcement with one more hand, namely 245, and if it is public knowledge that the protocols used by Anne and Bill are of finite length (so may consist of more than two announcements), then it is ‘merely’ common knowledge to Anne and Bill that they know each other’s hand, but (disregarding further analysis) Cath considers it possible that they do not know each other’s hand of cards. This is a useful security feature for Anne and Bill, as Cath plays the role of the eavesdropper. A further postcondition is that all safe announcements by Anne ensure at least one safe response from Bill, and vice versa. This recursive requirement results in a more complex condition. See [17].

Public announcement logic The Russian Cards problem can be modelled in public announcement logic with common knowledge. We give a concise overview of the language and its semantics.

Given are a set of agents N and a set of atoms P. An epistemic model $M = \langle S, \sim, V \rangle$ consists of a domain S of (factual) states (or ‘worlds’), accessibility $\sim : N \rightarrow \mathcal{P}(S \times S)$, and a valuation $V : P \rightarrow \mathcal{P}(S)$. For $s \in S$, (M, s) is an epistemic state. For $\sim(n)$ we write \sim_n, and for $V(p)$ we write V_p. So, access \sim can be seen as a set of equivalence relations \sim_n, and V as a set of valuations V_p. For $(\bigcup_{n \in G} \sim_n)^*$, write \sim_G: this is access to interpret common knowledge for group G.

The language of public announcements is inductively defined as

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \psi) \mid K_n \varphi \mid C_G \varphi \mid [\varphi] \psi$$

where $p \in P$, $n \in N$, and $G \subseteq N$ are arbitrary. For $K_n \varphi$, read ‘agent n
knows formula ϕ. For $C_G \phi$, read ‘group of agents G commonly know formula ϕ’. For $[\phi] \psi$, read ‘after public announcement of ϕ, formula ψ (is true)’. The effect of the public announcement of ϕ is the restriction of the epistemic state to all worlds where ϕ holds. So, ‘announce ϕ’ can be seen as an information state transformer, with a corresponding dynamic modal operator $[\phi]$.

The semantics is as follows. Given is an epistemic model $M = \langle S, \sim, V \rangle$.

$$M, s \models p \quad \text{iff} \quad s \in V_p$$

$$M, s \models \neg \phi \quad \text{iff} \quad M, s \not\models \phi$$

$$M, s \models \phi \land \psi \quad \text{iff} \quad M, s \models \phi \quad \text{and} \quad M, s \models \psi$$

$$M, s \models K_n \phi \quad \text{iff for all} \quad t \in S : s \sim_n t \text{ implies } M, t \models \phi$$

$$M, s \models C_G \phi \quad \text{iff for all} \quad t \in S : s \sim_G t \text{ implies } M, t \models \phi$$

$$M, s \models [\phi] \psi \quad \text{iff} \quad M, s \models \phi \text{ implies } M|\varphi, s \models \psi$$

Model $M|\varphi = \langle S', \sim', V' \rangle$ is defined as

$$S' \equiv \{ s' \in S \mid M, s' \models \phi \}$$

$$\sim'_n \equiv \sim_n \cap (S' \times S')$$

$$V'_p \equiv V_p \cap S'$$

In other words: the model $M|\varphi$ is the model M restricted to all the states where φ holds, including access between states. Formula φ is valid on model M, notation $M \models \varphi$, if and only if for all states s in the domain of M: $M, s \models \varphi$. Formula φ is valid, notation $\models \varphi$, if and only if for all models M: $M \models \varphi$.

We now model the Russian Cards problem in this logic. Given a stack of known cards and some players, the players blindly draw some cards from the stack. In a state where cards are dealt in that way, but where no game actions of whatever kind have been done, it is commonly known what the cards are, that they are all different, how many cards each player holds, and that players only know their own cards. From the last it follows that two deals are the same for an agent, if she holds the same cards in both, and if all players hold the same number of cards in both. This induces an equivalence relation on deals.

An epistemic model $(Rus, 012.345.6)$ for the deal 012.345.6 that we investigate, encodes the knowledge of the players Anne, Bill and Cath (a, b, c) in
this card deal. It consists of \(\binom{7}{3} \binom{4}{3} \binom{1}{1} = 140 \) deals. For each player, access between states is induced by the equivalence above, for example, 012.345.6 \(\sim_a \) 012.346.5 says that Anne cannot tell these two card deals apart (as her hand is 012 in both). Facts about card ownership written as \(q_n \), for ‘card \(q \) is held by player \(n \)’. The valuation \(V_{0a} \) of fact 0 (Anne holds card 0) consists of all 60 deals where 0 occurs in Anne’s hand, etc.

After a sequence of announcements that is a solution of the Russian Cards problem, it should hold that Anne knows Bill’s cards, that Bill knows Anne’s cards, and that Cath doesn’t know any of Anne’s or Bill’s cards:

\[
\begin{align*}
\text{a_knows_bs} & \equiv \bigwedge_{q=0..6} (K_{a}q_b \lor K_{a} \neg q_b) \\
\text{b_knows_as} & \equiv \bigwedge_{q=0..6} (K_{b}q_a \lor K_{b} \neg q_a) \\
\text{c_ignorant} & \equiv \bigwedge_{q=0..6} (\neg K_{c}q_a \land \neg K_{c}q_b)
\end{align*}
\]

We suggested in the previous section that these conditions are too weak. This can be exemplified by the observation that, e.g.,

\[
\text{Rus, 012.345.6} \models [K_{a}(012_{a} \lor (\neg 0_{a} \land \neg 1_{a} \land \neg 2_{a}))][\text{c_ignorant}] \neg \text{c_ignorant}
\]

After Anne says that her hand is 012 or that she does not hold any of those cards, \(\text{c_ignorant} \) is true, but a further update with that (in other words: when Cath can assume that this is true) makes Cath learn some of Anne’s cards, so that \(\text{c_ignorant} \) is false. The actually required postconditions avoiding such complications are: after every announcement of an executed protocol, it is publicly known that Cath is ignorant, and after the execution of the entire protocol it is commonly known to Anne and Bill that: Anne knows that Bill knows her hand of cards, and Bill knows that Anne knows his hand of cards. Also using that \(C_{ab}(K_{b}\text{a_knows_bs} \land K_{a}\text{b_knows_as}) \) is equivalent to \(C_{ab}(\text{a_knows_bs} \land \text{b_knows_as}) \) this is formalized as

\[
\begin{align*}
C_{ab}(\text{a_knows_bs} \land \text{b_knows_as}) \\
C_{abc}\text{c_ignorant}
\end{align*}
\]

Concerning protocols: when Anne announces ‘\(\varphi \)’, this should be interpreted as ‘\(K_{a}\varphi \)’ given that she knows what she says, and even as ‘\(K_{a}\varphi \land [K_{a}\varphi]K_{a}\text{c_ignorant} \)’ given her intention, and beyond that even as ‘\(K_{a}\varphi \land [K_{a}\varphi]C_{abc}K_{a}\text{c_ignorant} \)’ given that her intention is public. One can then show that

\[
\text{Rus, 012.345.6} \models [K_{a}\varphi \land [K_{a}\varphi]C_{abc}\text{c_ignorant}]C_{abc}\text{c_ignorant}
\]
So in this case the intention is indeed realized, unlike above: the announcement is safe. We ignore the further complication that safe announcements require safe responses in this submission. The solution given in Section 2 consists of the successive announcements

\[
\text{a宣布} \equiv 012_a \lor 034_a \lor 056_a \lor 135_a \lor 246_a
\]

\[
\text{b宣布} \equiv 6_c
\]

Temporal epistemic logics Two of the model checkers that we present require interpreted system representations and / or verification of temporal epistemic logical formulas. Therefore, some words are in order on how these compare to a dynamic epistemic setting.

An interpreted system \(\mathcal{I} \) is a pair \((\mathcal{G}, \mathcal{R})\) consisting of a set of global states \(\mathcal{G} \) and a set of runs \(\mathcal{R} \) relating those states. A global state \(g \in \mathcal{G} \) is a tuple consisting of local states \(g_n \) for each agent and a state \(g_e \) of the environment. A run \(r \in \mathcal{R} \) is a sequence of global states. The \(m \)-th global state occurring in a run \(r \) is referred to as \(r(m) \), and the local state for agent \(n \) in a global state \(r(m) \) is written as \(r_n(m) \).

A point \((r, m)\) is a pair consisting of a run and a point in time \(m \) – this is the proper abstract domain object when defining epistemic models for interpreted systems. In an interpreted system, agents can distinguish global states from one another iff they have the same local state in both, which induces

\[
(r, m) \sim_n (r', m') \text{ iff } r(m) \sim_n r'(m') \text{ iff } r_n(m) = r'_n(m')
\]

With the obvious valuation for local and environmental state values, that defines an epistemic model. For convenience we keep writing \(\mathcal{I} \) for that. Given an actual point \((r', m')\), we thus get an epistemic state \((\mathcal{I}, (r', m')) \). Epistemic and (LTL) temporal (next) operators have the interpretation

\[
\mathcal{I}, (r, m) \models X \varphi \text{ iff } \mathcal{I}, (r, m + 1) \models \varphi \\
\mathcal{I}, (r, m) \models K_n \varphi \text{ iff for all } (r', m') : (r, m) \sim_n (r', m') \text{ implies } \mathcal{I}, (r', m') \models \varphi
\]

We now outline the relation between ‘next’ and announcement operators. An announcement is seen as a completely observable clock tick, synchronizing the system. Announcing \(\varphi \) at time \(m \) is simulated in \(\mathcal{I} \) by changing the value of some environmental variable \(p \) for exactly those points where \(\varphi \) is true, when transiting from point \((r, m)\) to point \((r, m+1)\), and passing on that information to the local states of the agents. The static information available at time \(m \) is contained in the restriction \(\mathcal{I}|m \) of the interpreted system \(\mathcal{I} \) to all points for
This determines the meaning of purely epistemic formulas. But for formulas containing epistemic and ‘next’-temporal operators the situation is more complex. Assume that for each time \(m \) there is a formula \(\varphi \) such that the only transitions allowed at \(m \) are those induced by announcement of \(\varphi \). We can define a translation \(* \) where, given an epistemic state and a formula, each \(X \)-operator in that formula is replaced by a corresponding dynamic operator \([\varphi]\). The following now are all equivalent

\[
\begin{align*}
\text{if } & \mathcal{I}, (r, m) \models \varphi, \text{ then } \mathcal{I}, (r, m + 1) \models \psi \\
\text{if } & \mathcal{I}, (r, m) \models \varphi, \text{ then } \mathcal{I}, (r, m + 1) \models \psi \\
\text{if } & \mathcal{I}|m, (r, m) \models \varphi^*, \text{ then } \mathcal{I}|m|\varphi^*, (r, m) \models \psi^* \\
\mathcal{I}|m, (r, m) \models [\varphi^*]\psi^*
\end{align*}
\]

In case \(\varphi \) and \(\psi \) are both purely epistemic, so that \(\varphi^* = \varphi \), and \(\psi^* = \psi \), we have that

\[
\mathcal{I}, (r, m + 1) \models \psi \text{ corresponds to } \mathcal{I}|m|\varphi, (r, m) \models \psi
\]

It is interesting to observe, that checking \(\psi \) in the former involves (given synchronous perfect recall) the entire domain of \(\mathcal{I}|(m + 1) \), whereas checking \(\psi \) in the latter only involves the \(\varphi \)-states of its predecessor \(\mathcal{I}|m \), corresponding to only one value of the environmental variable that is reset in the transition from \(m \) to \(m + 1 \). For ‘Russian Cards’, the first announcement reduces the domain from 140 to 20 points, and the second from 20 to 3 points.

3 Model Checker MCK

MCK, for ‘Model Checking Knowledge’, is a prototype model checker for temporal and knowledge specifications, developed by Peter Gammie and Ron van der Meyden [7]. The overall setup supposes a number of agents acting in an environment, by temporal development. This is modelled by an interpreted system where agents perform actions according to a protocol. Actions and the environment may be only partially observable at each instant in time.

Different approaches to the temporal and epistemic interaction and development are implemented. Knowledge may be based on current observations only, on current observations and clock value, and on the history of all observations and clock value. The last corresponds to synchronous perfect recall. We have used that approach. In the temporal dimension, the specification formulas may describe the evolution of the system along
a single computation, i.e., using linear time temporal logic (LTL), or they may describe the branching structure of all possible computations, i.e, using branching time or computation tree logic (CTL). We have used LTL. See http://www.cse.unsw.edu.au/~mck/ for more information.

Russian Cards in MCK In MCK, we have to reinterpret the dynamic epistemics of Section 2 in temporal epistemic terms. In a program rus.mck we successively introduce environmental variables and initialize those; we create three agents A, B, and C with corresponding protocols "anne", "bill" and "cath"; a main part of the program specifies the (temporal) transitions, induced by card dealing and the announcements, that relate different information states for these players; finally rus.mck contains a part with various to be verified properties of the timelines created.

A hand of cards of an agent is encoded by a list of seven booleans, for example a_hand : Bool[7] specifies for all of the cards 0, ..., 6 whether they are held by Anne or not, such that anne.cards[0] is true when Anne holds card 0, etc. Initially, such variables are set to false.

Agent A, for Anne, is created by

agent A "anne" (a_hand, a_announce, b_announce, stage)

The name of the agent is A. It uses protocol "anne". It can interact with, and potentially observe the variables between parentheses. The first of those is, obviously, only observable by Anne, the others will reappear in the other agent definitions, as they are publicly observable. The variable stage is the ‘clock tick’.

The transitions part of rus.mck specify what happens in different stages of the execution of the protocol. We distinguish stages (clock ticks) 0, 1, 2, and 3. In stage 0 the cards are dealt to the players, in the order 0, ..., 6. We show it up to the dealing of card 0.

stage == 0 ->
begin if
 na < 3 -> begin a_hand[0]:=True; na:= na+1 end []
 nb < 3 -> begin b_hand[0]:=True; nb:= nb+1 end []
 nc == 0 -> begin c_hand[0]:=True; nc:= 1 end
fi;

Variables na, nb, and nc are counters to record how many cards agents have, and [] means nondeterministic choice. In this part of the transitions, 140 different deals are created, represented as 140 different timelines.

In stage 1, Anne announces that her hands is one of 012, 034, 056, 135, and 246. This is done indirectly by executing the protocol "anne", that contains a
condition corresponding to these five deals, which causes the action **Announce** to be executed. This then results in the atom `a_announce` becoming true.

\[
\text{stage} == 1 \lor \text{A.Announce} \rightarrow \text{a_announce} := \text{True}
\]

In stage 2, Bill announces that Cath holds card 6. Alternatively, one can model that Bill announces Cath’s card – whatever it is. Bill’s announcement is by way of an action `B.Announce`, and results in the variable `b_announce` to become true. This is the transition to stage 3, the final stage. We can imagine the whole system to consist of 140 different runs. Whether variables `a_announce` and `b_announce` are true in stage 2 and stage 3, respectively, depends on the deal in that run.

The protocol for Anne is

```plaintext
protocol "anne" (cards: observable Bool[7],
    a_announce: observable Bool, b_announce: observable Bool,
    stage: observable Counter)
begin
    skip; if
    -> <<Announce>>
    fi
end
```

The ‘begin-end’ part of this protocol specifies for each of the stages 0, 1, and 2 what happens in that stage. In stage 0 nothing happens: `skip`. In stage 1, the action **Announce** – that is, whatever is found between `<<` and `>>` – is executed. Actually, the value or instance of `cards` for Anne is `a_cards`; see above, where Anne is created. Alternatively to five actual hands, a much longer protocol creates five arbitrary hands of cards based on Anne’s actual hand. Nothing is specified for stage 2: this is therefore `skip` again by default. Bill has a similar protocol but his protocol starts with `skip ; skip`, as his announcement is in stage 2. And Cath does not act at all, which carries the protocol `skip ; skip ; skip`.

The knowledge of the agents evolves with every stage, via the agents’ limited access to the environment. Initially, they only observe their own hand of cards, and Anne’s and Bill’s public announcement is accessed by all agents. Anne cannot distinguish two states iff her observations are the same in those states. For example, in stage 1 Anne cannot distinguish the timelines for deals
012.345.6 and 012.346.5, because: both have the same \texttt{a_hand} values (for all seven variables), \texttt{a_announce} is true in both cases, and \texttt{b_announce} is false is both cases. But in stage 3, Anne can distinguish these timelines, since \texttt{b_announce} is true for the former and false for the latter.

A final part of \texttt{rus.mck} lists various temporal epistemic properties to be checked. For example, we want to verify that $Rus,012.345.6 \models [a_{\text{announce}} \wedge b_{\text{announce}}]C_{ab}a_{\text{knows bs}}$. The current version (0.2.0) of MCK does not support common knowledge operators for specification in the perfect recall module. Therefore we verify instead that in stage 3, $a_{\text{knows bs}}$ is valid in the model. This corresponds to $Rus|a_{\text{announce}}|b_{\text{announce}} \models a_{\text{knows bs}}$ which ensures that $Rus|a_{\text{announce}}|b_{\text{announce}},012.345.6 \models C_{abc}a_{\text{knows bs}}$. And in this specific model $C_{ab}a_{\text{knows bs}} \leftrightarrow C_{abc}a_{\text{knows bs}}$ is also valid.

\begin{verbatim}
spec_spr_xn = X 3 ((a_{\text{announce}} \wedge ! b_{\text{announce}}) =>
 ((((Knows A b_hand[0]) \lor (Knows A neg b_hand[0])))) \land
 ((((Knows A b_hand[6]) \lor (Knows A neg b_hand[6])))))
The part \texttt{spec_spr_xn} means that we are using the perfect recall module of MCK, and \texttt{X 3} is the triple ‘next state’ temporal operator, counting from stage 0. Therefore, the formula bound by the operator is checked in stage 3. Similarly, other properties of the five hands protocol are verified.
\end{verbatim}

4 Model Checker DEMO

The tool DEMO is developed by Jan van Eijck [18]. DEMO is short for Dynamic Epistemic MOdelling. It allows modelling epistemic updates, graphical display of Kripke structures involved (i.e., epistemic or state models, and action models that represent epistemic actions), formula evaluation in epistemic states, etc. Epistemic models are minimized under bisimulation, and action models are minimized under the (more appropriate, weaker) notion of action emulation [19]. DEMO is written in the functional programming language Haskell. See also \url{http://www.cwi.nl/~jve/papers/04/demo/}.

The model checker DEMO implements the dynamic epistemic logic of [2]. In this ‘action model logic’ the global state of the multi-agent system is represented by an epistemic model (multi-agent Kripke model), and the agents’ action is represented by an action model. An action model is also based on a multi-agent Kripke frame, but instead of carrying a valuation it has a precondition function which assigns a precondition to each point in the action model, which stands for an atomic action. The state change in the system is via an operation called update product. This is a restricted modal product. In this submission we restrict our attention to action models for public an-
nouncements. Such action models have a singleton domain. We refrain from
details and proceed with the recursive definition of formulas in DEMO.

\[
\text{Form} = \text{Top} \mid \text{Prop Prop} \mid \text{Neg Form} \mid \text{Conj [Form]} \mid \text{Disj [Form]} \\
\mid \text{K Agent Form} \mid \text{CK [Agent] Form}
\]

Formula \(\text{Top} \) stands for \(\top \), \(\text{Prop Prop} \) for atomic propositional letters (the first occurrence of \(\text{Prop} \) means that the datatype is ‘propositional atom’, whereas the second occurrence of \(\text{Prop} \) is the placeholder for an actual proposition letter, such as \(\text{P0} \)), \(\text{Neg} \) for negation, \(\text{Conj [Form]} \) stands for the conjunction of a list of formulas of type \(\text{Form} \), similarly for \(\text{Disj} \), \(\text{K Agent} \) stands for the individual knowledge operator for agent \(\text{Agent} \), and \(\text{CK [Agent]} \) for common knowledge operator for the group of agents listed in \(\text{[Agent]} \).

A pointed (and singleton) action model for a public announcement is cre-
ated by a function \(\text{public} \) with a precondition (formula) as argument. The
update operation is specified as

\[
\text{upd} :: \text{EpistM} \rightarrow \text{PoAM} \rightarrow \text{EpistM}
\]

Here, \(\text{EpistM} \) is an epistemic state and \(\text{PoAM} \) is a pointed action model. The
update generates a new epistemic state as specified above. Formula checking
is defined as

\[
\text{isTrue} :: \text{EpistM} \rightarrow \text{Form} \rightarrow \text{Bool}
\]

Its arguments are an epistemic state and a formula, and it returns a boolean
value.

Russian Cards in DEMO In DEMO, one is restricted to propositional
letters starting with lower case \(p, q \) and \(r \), so we cannot write, for example, \(0_a \)
for the atomic proposition that Anne holds card 0, as in Section 2. Instead,
atoms \(\{ p, \ldots, p6, q, \ldots, q6, r, \ldots, r6 \} \) represent such atomic propositions. The
name \(p4 \) – Anne holds card 4 – actually stands for \(\text{Prop (P 4)} \), etc. Instead
of \(p0 \) we write, somewhat arbitrarily, \(p \), and similarly for \(q \) and \(r \).

The initial epistemic state \(\text{rus} \) representing the knowledge in card deal
012.345.6 is constructed as follows. A set of integers \([0..139]\) represents the
140 different deals. Each integer is associated with seven propositional letters
– the valuation of facts in that state. The first two deals correspond to the valuations

\[
(0, [P 0, P 1, P 2, Q 3, Q 4, Q 5, R 6]),
(1, [P 0, P 1, P 2, Q 3, Q 4, Q 6, R 5])
\]

The deal numbered 0 stands for actual deal 012.345.6. A pair of two integers is
in the accessibility relation for an agent \(n \), if that agent holds the same cards in
both deals. Two such pairs for Anne are \((a,0,0),(a,0,1)\). DEMO assumes arbitrary accessibility relations. So, unfortunately, we have to explicitly list all pairs in the equivalence relation for each agent, as above.

Anne’s public announcement \texttt{a_announce} corresponds to the following singleton action model named \texttt{a_announce}, which is produced by the function \texttt{public}.

\[
\text{public(K a (Disj[Conj[p,p1,p2],Conj[p,p3,p4],Conj[p,p5,p6],
 Conj[p1,p3,p5],Conj[p2,p4,p6]]))}
\]

Similarly, we have an action model \texttt{b_announce} for Bill’s announcement \texttt{b_announce}. The postcondition that Anne knows Bill’s hand of cards, \(a\texttt{_knows_bs}\), is represented as

\[
\text{a_knows_bs = Conj[Disj[K a q, K a (Neg q)],
 Disj[K a q1, K a (Neg q1)],
 Disj[K a q2, K a (Neg q2)],
 Disj[K a q3, K a (Neg q3)],
 Disj[K a q4, K a (Neg q4)],
 Disj[K a q5, K a (Neg q5)],
 Disj[K a q6, K a (Neg q6)]]}
\]

Similarly for \texttt{b_knows_as} and \texttt{c_ignorant}. The model checker now verifies the postconditions of the constructed models. After Bill’s announcement it is common knowledge to Anne and Bill that Anne knows Bill’s hand of cards, and it is also common knowledge to Anne and Bill that Bill knows Anne’s hand of cards. It is publicly known that Cath remains ignorant:

\[
\text{*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b] a_knows_bs) True}
\]

\[
\text{*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b] b_knows_as) True}
\]

\[
\text{*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b,c] c_ignorant) True}
\]

Epistemic state (\texttt{upd rus a_announce}) is the result of updating the initial epistemic state \texttt{rus} with singleton pointed action model with precondition \texttt{a_announce} – to improve readability we have chosen to name the action model \texttt{a_announce} and not the precondition. The epistemic state (\texttt{upd (upd rus a_announce) b_announce}) is the result of updating epistemic state (\texttt{upd rus a_announce}) with the singleton pointed action model named \texttt{b_announce} (with that precondition).
MCMAS presumably stands for Model Checking Multi-Agent Systems. This model checker has been developed by Franco Raimondi and Alessio Lomuscio [11]. The current version is mcmas 0.6. System descriptions and protocol properties are verified using ordered binary decision diagrams, comparable to the approach used in MCK. It extends existing obdd-based techniques for reactive systems by adding both an epistemic (ATL) and a deontic dimension to the logical language, and allowing input in terms of interpreted systems. MCMAS is implemented in C++. For more information, see http://www.cs.ucl.ac.uk/staff/F.Raimondi/MCMAS/.

In MCMAS, the global state is represented as a tuple of the local states of the agents. For Russian Cards, agents Anne, Bill, and Cath represent players, and an agent Env (the environment) represents the card deal. The local state of agent Anne requires five components, that can be seen as variables; three represent her hand of cards, and two the status quo and outcome of the two announcements. Version 0.6 of MCMAS does not support variables in the description of agents’ local states. Therefore we encode the variable parts in a single string. For example, one local state for Anne is a012tf. This means that Anne holds cards 0, 1, and 2, that Anne’s announcement a_announce has been (truthfully) made in the global state of which this local state is a component, and that Bill’s announcement b_announce could not be made (was false) in that global state. Similarly, we have five variables for Bill, and three variables for Cath. The local state of the agent Env has seven variables, because it represent a card deal. An example is e0123456. This stands for the actual deal 012.345.6.

The information changes take the usual steps: (1) the cards are revealed to the agents, (2) Anne announces a_announce, and (3) Bill announces b_announce. All reachable global states will be included in the next stage. An example initial global state is (annnnn, bannnn, cnnn, e0123456); an ‘n’ essentially means that the agent has no information on the value of corresponding variable, modelled by giving the variable that value n. So, bannnn means that Bill’s local state is that he does not know his cards yet (the first three n’s), that Anne has not made her announcement yet (the fourth n) and that Bill has not made his announcement yet. The above global state (annnnn, bannnn, cnnn, e0123456) then transits to (a012nn, b345nn, c6nn, e0123456), where each agent knows what cards it holds. Anne’s a_announce is then made, causing the transition to (a012tn, b345tn, c6tn, e0123456) and b_announce finally results in (a012tt, b345tt, c6tt, e0123456) – this time, Bill’s announcement is successful. These state transitions are specified in the program. For example, for agent Anne, the transition for step one is as follows: Lstate is
the local state of (current) agent Anne, and Env.Lstate is the local state of Env.

a012nn if (Lstate=annnnn and
(Env.Lstate=e0123456 or Env.Lstate=e0123465 or
 Env.Lstate=e0123564 or Env.Lstate=e0124563));

The environment Env does not change during transitions, but this has to be made explicit as

e0123456 if Lstate=e0123456;

In the ‘valuation’ part of an MCMAS program we define what can be seen as (the denotation of) atomic propositions. For example

ab_d0123456 if (Anne.Lstate=a012tt and Bill.Lstate=b345tt and
 Cath.Lstate=c6tt and Env.Lstate=e0123456);

is the atom that is (uniquely) true in the global state (a012tt, b345tt, c6tt, e0123456). Similarly, atoms expressing card ownership such as 0a for ‘Anne holds card 0’ are defined by enormous expressions starting as (and consisting of 60 alternative card deals)

a0 if (Env.Lstate=e0123456 or Env.Lstate=e0123465 or ...

Groups of agents can be named too. This is useful when checking common knowledge. For example, expression ABC={Anne, Bill, Cath}; gives the group consisting of Anne, Bill, and Cath the label ABC. The common knowledge formula C_{abc}(0_a \rightarrow K_a0_a) is then represented as CK(ABC,a0->K(Anne,a0)). We conclude this short exposition with the postcondition C_{abc, ignorant} that verifies that Cath remains ignorant after both announcements have been made – ‘!’ stands for negation.

ab_d0123456 -> GCK(ABC,((!K(Cath,a0) and !K(Cath,b0)) and
(!K(Cath,a1) and !K(Cath,b1)) and
(!K(Cath,a2) and !K(Cath,b2)) and
(!K(Cath,a3) and !K(Cath,b3)) and
(!K(Cath,a4) and !K(Cath,b4)) and
(!K(Cath,a5) and !K(Cath,b5)) and
(!K(Cath,a6) and !K(Cath,b6))));

6 Comparison

Rough performance results for the input scripts described above are based on a PC configuration Linux 2.4.30 i686 Pentium 4, 800Mhz and 2018M RAM.
The times required, respectively, for the Russian Cards five hands protocol, as an average over five runs, are:

- MCK – 160 seconds (Long BDD package) or 109 seconds (CUDD BDD package)
- MCMAS – 117 seconds (CUDD BDD package)
- DEMO – 9 seconds

The time measure for MCK and MCMAS is for the whole model checking process, i.e., both model construction and formula checking. For MCMAS it includes the time to autogenerate the MCMAS input script from a C program. DEMO operates on slightly different principles: First, the Haskell interpreter compiles RUS.hs and related modules DPLL and DEMO. Only then, we check individual formulas. We measured the combined autogeneration, compilation and checking steps.

These results cannot be straightforwardly interpreted as indicative of the relative performance of the model checkers, however, as they are based on rather different modellings and model checking questions. One difference is that the MCK input script explicitly represents the dealing of cards using a transition program, whereas the input to MCMAS and DEMO already have the results of a deal explicitly represented in the initial states. Another is that MCK and MCMAS check a temporal property for \textit{all} initial states, whereas DEMO checks a dynamic property at a \textit{single} initial state. The runtimes can also be quite sensitive to specific choices made in the modelling. Apart from the scripts discussed in this contribution, we later developed a much more concise DEMO program, as well as an alternate MCK modelling in which the dealing of cards is represented by a constraint on initial states rather than by a program. We refrain from details and refer instead to the companion website. The complexity results for these versions are

- DEMO-new – 4 seconds
- MCK-new – 1.1 seconds (Long BDD), 0.27 seconds (CUDD)

The modellings discussed above focus on announcements for the specific situation of the deal 012.345.6. We have also developed an MCK script modelling a protocol that provides an five hands announcement for Anne for an \textit{arbitrary} initial state. This script currently requires about 3 hours to run, and is still a subject of our experiments.

Mostly, however, we were interested in how versatile the tools appeared to be, to implement a problem that was originally formulated in local, and dynamic epistemic, terms, into temporal epistemic terms and/or as an inter-
interpreted system. In other words, we were more than anything else interested in development time and supported functionality. Conclusions based on our experiences are extremely tentative. Implementing the Russian Cards problem in DEMO took about half a day, for Ji Ruan, who is an expert in DEMO. MCK scripts developed by Ron van der Meyden, expert in MCK, also took about half a day. Currently, MCK does not support common knowledge (in the used module), nor epistemic preconditions, nor preconditions to temporal formulas. The last makes it impossible to have knowledge preconditions to players’ announcements. Such preconditions are always epistemic, as agents only announce what they know to be true. Also, unsuccessful updates – formulas that become false because they are announced – cannot be made visible in the way they have to be checked in MCK: the analogue is a conditional formula where the antecedent is also a subformula of the temporal consequent. On the other hand, MCK allows a very natural formalization of protocols – this is not, or less, possible in DEMO or MCMAS. The ‘fully interpreted system’ approach of MCMAS is very transparent, but the models that need to be built are ‘very’ large: (automated input of) thousands of lines of code, as opposed to (manual input of) about a hundred lines of code in MCK. More than anything, this case-study increased our insight into the state of the art in epistemic model checking, and our understanding of the theoretical issues involved in card cryptography, emerging from the need to reformulate these issues in different logics.

7 Conclusions

We have implemented the five hands protocol to solve the Russian Cards problem in the model checkers MCK, DEMO, and MCMAS. Dynamic epistemic requirements can be easily reformalized in temporal epistemic terms, a necessary requirement for formalization in MCK and MCMAS. The model checkers vary in how easy, or difficult, it is to build the initial epistemic state, in how difficult it is to formalize announcements and execute them in that initial state, and in how to verify protocol properties. We intend to pursue this investigation by implementing more complex protocols and verifying more complex properties for such ‘card cryptography’, and generalize it to the level of interpreted systems with agent dependencies, where groups of agents aim to share their local state value while keeping it a secret from the remaining agents.
References

