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Abstract: Fitch showed that not every true proposition can be known in due time; in other words, that
not every proposition is knowable. Moore showed that certain propositions cannot be consistently
believed. A more recent dynamic phrasing of Moore-sentences is that not all propositions are known
after their announcement, i.e., not every proposition is successful. Fitch’s and Moore’s results are
related, as they equally apply to standard notions of knowledge and belief (S 5 and KD45, respec-
tively). If we interpret ‘successful’ as ‘known after its announcement’ and ‘knowable’ as ‘known after
some announcement’, successful implies knowable. Knowable does not imply successful: there is a
proposition j that is not known after its announcement but there is another announcement after
which j is known. We show that all propositions are knowable in the more general sense that for each
proposition, it can become known or its negation can become known. We can get to know whether
it is true: �(Kj ⁄ K¬j). This result comes at a price. We cannot get to know whether the proposition
was true. This restricts the philosophical relevance of interpreting ‘knowable’ as ‘known after an
announcement’.
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1. Successful – the Historical Record

TO OUR KNOWLEDGE, the first wording of the Moore-sentence is from the chapter
A reply to my critics, from Moore’s own hand, in the 1942 Library of Living
Philosophers volume The Philosophy of G.E. Moore.

‘I went to the pictures last Tuesday, but I don’t believe that I did’ is a perfectly absurd thing to say,
although what is asserted is something which is perfectly possible logically. (Moore, 1942, p. 543)

Moore’s (1912) Ethics provides a clue to the meaning of assert: asserting a propo-
sition implies that I believe (’think to be’) or know it:

there is an important distinction, which is not always observed, between what a man means by a
given assertion and what he expresses by it. Whenever we make any assertion whatever . . . we are
always expressing . . . either that we think the thing in question to be so or that we know it to be so
(Moore, 1912, p. 77).
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Although by asserting we express a belief, the meaning of an asserted proposition
cannot be equated with belief in that proposition, as that would lead to infinite
regress:

But thus to believe that somebody believes, that somebody believes, that somebody believes
. . . quite indefinitely, without ever coming to anything which is what is believed, is to believe
nothing at all. (Moore, 1912, p. 77)

All this is in the context of a discussion on whether moral judgements are judge-
ments about our feelings, or about our beliefs. We emphasize that Moore (1912)
does not formulate a Moore-sentence; for that we had to wait another thirty years.
The absurdity in the cited passage of Moore (1942) then follows from the impli-
cature ‘asserting p implies belief of p’, pointed out in Moore (1912). Similar
examples can be found in Moore (1944, p. 204).1

Let us write p for a proposition and Kp for both knowing and believing that p –
in the continuation we will show that the puzzling phenomena of knowability and
success apply to both notions equally, although they are of course different in many
other respects. The cited passage of Moore (1912) demonstrates that ‘p’ cannot be
said to mean ‘knowing p’, as this would cause, by substitution, an infinite sequence
p, Kp, KKp, KKKp, ad infinitum. And neither in Moore (1942) nor in Moore
(1944) does he claim that K(p ∧ ¬Kp) is inconsistent (in his own words: ‘self-
contradictory’). He states that asserting p ∧ ¬Kp implies Kp, which contradicts
¬Kp (Moore, 1944, pp. 204–205). His reluctance to formalize or describe in
English the expression K(p ∧ ¬Kp) may be methodological (avoiding infinite
regress?) or esthetic. Either way, by the time of Hintikka (1962), the issue associ-
ated with the Moore-sentence means the inconsistency of K(p ∧ ¬Kp).

There are two ways to derive the inconsistency of K(p ∧ ¬Kp), and this reveals
why the schema is relevant for knowledge and also for belief, i.e., for the common
S 5 notion of knowledge and the common KD45 notion of belief.2 The first proof
uses two properties of belief, D (consistency of belief, corresponding to seriality)
and 4 (positive introspection, corresponding to transitivity), and it therefore also
holds for knowledge.

1 Hintikka’s Knowledge and Belief contains an excellent list of references to the Moore-sentence (1962,
p. 64). An entire chapter is devoted to its analysis. Although Hintikka (1962) cites Moore (1912) as a
source, in fact the oldest Moore-sentence we found is in Moore (1942).
2 The modal operator K models S 5 knowledge if it satisfies the axiom schemata Kp → p (T),
Kp → KKp (4), and ¬Kp → K¬Kp (5). The modal operator K models KD45 belief if it satisfies the axiom
schemata Kp → ¬K¬p (D), Kp → KKp (4), and ¬Kp → K¬Kp (5). Both operators also satisfy the schema
K(p → q) → (Kp → Kq) (K). These schemata actually contain formula variables, not propositional vari-
ables; see section 4. In computer science the system S 5 is well-accepted, but the negative introspection
axiom (5) has been heavily debated among philosophers.
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K(p ∧ ¬Kp)

positive introspection

⇒
Kp ∧ K¬Kp
⇒
KKp ∧ K¬Kp
⇒
K(Kp ∧ ¬Kp)
⇒
K^
⇒ consistency of belief
^

Another way to derive the inconsistency is as follows:

K(p ∧ ¬Kp)

truth / property of belief

⇒
Kp ∧ K¬Kp
⇒
Kp ∧ ¬Kp
⇒
^

It seems as if the proof depends on the property that known propositions are true,
and therefore only applies to knowledge. However, for the modal operator satisfy-
ing KD45, ‘knowledge of ignorance’ is equivalent to ‘ignorance’ (Meyer and van
der Hoek, 1995): K¬Kp ↔ ¬Kp. So also the second proof only depends on the
properties of belief.

These proofs have gone around in the community. Hintikka (1962, p. 69) already
mentions both and it also reappears in the recent literature, e.g., it is mentioned
again by Linsky in Salerno’s knowability volume (2009, p. 165). Our experience is
that people seem unaware of proofs not based on the essential property Kp → p of
knowledge, so the reader will excuse us for refreshing their memory.

2. Knowable – the Historical Record

The knowability paradox was clearly and recognizably formulated in a 1945 referee
report on a submission by Fitch to the Journal of Symbolic Logic (see Figure 1):

. . . there is always a true proposition which it is empirically impossible for a to know at time t. For
let k be a true proposition which is unknown to a at time t, and let k′ be the proposition that k is true
but unknown to a at time t. Then k′ is true. But it would seem that if a knows k′ at time t, then a must
know k at time t, and must also know that he does not know k at time t. (Church, 1945)
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For ‘empirically impossible’, read ‘inconsistent’. This citation from a handwritten
note was uncovered by Salerno’s archival efforts and after some further effort and
handwriting comparison indisputably attributed to Church. Fitch’s “A Logical
Analysis of Some Value Concepts” (1963), based on the rejected 1945 version, only
appeared 18 years later, namely in 1963. Fitch (1963) writes, very similar to the
cited (Church, 1945) (and attributed to the reviewer, who was anonymous for him):

If there is some true proposition which nobody knows (or has known, or will know) to be true, then
there is some true proposition that nobody can know to be true. (Fitch, 1963, p. 139)

Fitch’s inconsistency proof uses the property that known formulas are true – it is
therefore not surprising that this paradox has become associated with knowledge
and not with belief. (For Fitch, ‘knowledge’ is a notion satisfying ‘conjunction
elimination’, meaning K(p ∧ q) → (Kp ∧ Kq), ‘conjunction introduction’, meaning
the converse implication; and the set of known propositions is a ‘truth class’,
meaning that Kp → p.) However, we have shown above that it is sufficient to
assume properties of belief in order to derive a contradiction.

By now, ‘knowability’ does the round among philosophers as �Kp (p is know-
able) or p → �Kp (every truth can be known). The additional modal diamond �

slipped in, to give meaning to the word ‘can’ in ‘can know to be true’. Fitch
suggests some implicit temporal connotation for ‘can’, as he mentions:

Figure 1: Fragment of an anonymous referee report of Fitch’s paper, now
attributed to Church
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. . . the element of time will be ignored in dealing with these various concepts. (Fitch, 1963, p. 135)

Indeed, Fitch does ignore it and makes no difference between known and
th-knowable, between ‘knows to be true’ and ‘can know to be true’. Fitch (1963)
does not distinguish two distinct modalities � and K.

A standard analysis of the Fitch paradox is as follows. We base our exposition on
the excellent review of the literature on Fitch’s paradox in the Stanford Encyclo-
pedia of Philosophy (Brogaard and Salerno, 2004), an analysis one can see repeated
many times in Salerno (2009). The existence of unknown truths is formalized as $p
(p∧¬Kp). The requirement that all truths are th-knowable is formalized as "p
(p → �Kp), where � formalizes the existence of some process after which p is
known, or an accessible world in which p is known. Fitch’s paradox is that the
existence of unknown truths is inconsistent with the requirement that all truths are
knowable.

The Moore-sentence p ∧ ¬Kp witnesses the existential statement $p(p ∧ ¬Kp).
Assume that it is true. From "p(p → �Kp) follows the truth of its instance
(p ∧ ¬Kp) → �K(p ∧ ¬Kp), and from that and p ∧ ¬Kp follows �K(p ∧ ¬Kp).
Whatever the interpretation of �, it results in having to evaluate K(p ∧ ¬Kp). But
this is inconsistent for knowledge and belief.

Moore’s paradox is traditionally more associated with the notion of belief,
whereas Fitch’s paradox is traditionally more associated with the notion of knowl-
edge. The former is not often mentioned in the same breath as the latter. That is not
surprising, as Moore talks about belief, and as Fitch talks about knowledge and
derives the inconsistency of K(p ∧ ¬Kp) with a property of knowledge. As we have
seen, p ∧ ¬Kp is not just unknowable, it is unbelievable.

Church’s 1945 report and Moore’s 1942 edited volume are very close in time. It
makes one wonder if Moore, Church and Fitch were in contact with each other, and
if Church, more a mathematician, was aware of the work of Moore, who was more
a philosopher. We do not know. We think that Moore-sentences and Fitch-type
paradoxes are closely related and deserve a combined treatment. We can achieve the
integration by taking into account the dynamic turn in logic, which became eminent
from the 1980s onward.

2.1 Why should everything be knowable?
The topic of knowability has done the rounds of philosophical communities
(Salerno, 2009; Tennant, 1997; Dummett, 2001) since Fitch’s 1963 publication.
The knowability paradox answered a question posed in analytical philosophy: it is
relevant in verificationism and in non-realism. Verificationism was for example
proposed by A.J. Ayer (1936) in Language, Truth and Logic. The verification
principle requires a non-analytic, meaningful true sentence to be empirically
verifiable. Replace ‘empirically verifiable’ with ‘knowable’ (or recall ‘empirically
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impossible for a to know’, above) and we are there. Anti-realism or non-realism
is the philosophy that denies the existence of an objective reality of entities. In
other words, there are no true unknowable propositions: a true proposition about
the objective reality that has no counterpart in a knowing subject would be such
an unknowable proposition. A contemporary influential proponent is Michael
Dummett (1982) with his influential paper ‘Realism’.

3. Successful – the Dynamic Turn

The further development of the Moore-sentence firstly gives a multi-agent perspec-
tive of announcements of the form “(I tell you that:) p is true and you don’t know
that”, and, secondly, gives a dynamic perspective namely that such announcements
cannot be believed after being announced. Both are quite different from Moore’s
original analysis that p ∧ ¬Kp cannot be sincerely announced/uttered!

Unlike the single-agent version, the multi-agent version of the Moore-sentence
is not problematic. If I tell you “You don’t know that I play the cello”, this has the
conversational implicature “You don’t know that I play the cello and it is true that
I play the cello”, and again we have the form p ∧ ¬Kp. However, this is not
believed by you, but by me. (The announcement can be assumed to be made by
an outsider not modelled in the logic with an epistemic operator. But in principle
we can model both the speaker and the listener and we would get Kme (p ∧ ¬Kyou

p) for different epistemic modalities Kme and Kyou, as in the logic APAL presented
in section 5.)

But we are now facing another problem. Suppose I were tell you again “You
don’t know that I play the cello”. Then you can respond: “You’re lying.You just told
me that you play the cello.” We can analyse what is going on here in modal logic.
We model your uncertainty, for which a single epistemic modality suffices. Initially,
there are two possible worlds, one in which p is true and another one in which p is
false, and that you cannot distinguish from one another. Although in fact p is true,
you don’t know that: p ∧ ¬Kp. In this logic, we can also model the informative
consequences of announcements. On the assumption that such announcements
are public (all agents know that they are being informed, and know this about
one another, etc.) and truthful (the announcements are assumed to be true), an
announcement can be interpreted as a model restriction: the announcement of
p ∧ ¬Kp results in a restriction of these two possibilities to those where the
announcement is true: in the p-world, p ∧ ¬Kp is true, but in the ¬p-world, p ∧ ¬Kp
is false. In the model restriction consisting of the single world where p is true, p is
known: Kp. Given that Kp is true, so is ¬p ⁄ Kp, and ¬p ⁄ Kp is equivalent to
¬(p ∧ ¬Kp), the negation of the announced formula. So, announcement of p ∧ ¬Kp
makes it false! Gerbrandy (1999, 2007) calls this phenomenon an unsuccessful
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update; the matter is also taken up in van Ditmarsch and Kooi (2006) and Qian
(2002) and more recently in Holliday and Icard (2010). We will formally define
public announcements in section 5.

The word ‘unsuccessful update’ is not coincidental. Another philosophical root
of the dynamic turn in logics of belief and knowledge is the notion of success.
In the area of belief revision (Alchourrón, Gärdenfors and Makinson, 1985) a
well-known postulate describes that if you revise a theory (set of formulas) with
novel information described in a proposition p, then p should after that revision
process form part of the theory, it should be believed! This postulate is called the
success postulate. Initially, belief revision had nothing to do with modal logic and
with explicit knowledge K. We review how this came about. A theory consists
of a set of believed propositions, in propositional or first-order logic – let us
assume this is in propositional logic, and let p be such a proposition. There are
different theory change operators, modelling expansion, contraction and revision.
For the purpose of explaining unsuccessful updates, it is sufficient to look at
expansion. For the typical expansion we have that p ∉ , for the theory expanded
with p we write � p, and the success postulate is the requirement that
p ∈ � p.

Here, p ∉ means that p is initially not believed and p ∈ � p means that p is
believed after expansion with p.

The AGM framework has been redescribed and expanded in modal logic. In
retrospect, one could say that this required three steps.

The first step made it possible to have belief revision operators in the logical
language, by formalizing these (meta-logical) operations as dynamic modal opera-
tors. In the case of belief expansions, we can let [�p]q express that after revision
with p, q holds – where [�p] means ‘perform belief expansion with p’, a dynamic
modal operator. This approach was suggested by van Benthem (1989) and further
developed by de Rijke (1994).

The next step allowed for explicit modelling of belief and knowledge with K
(or B) operators, where these operators bind propositional logical formulas. For
example, ¬Kp ∧ [�p]Kp means that p is not believed (‘known’) and after revision
with p, p is believed. This approach was followed in work by Segerberg and
collaborators (1999), and a partial generalization was proposed to lift this to belief
of modal propositions, such as K(p ∧ ¬Kp) (Lindström and Rabinowicz, 1999),
so-called higher-order belief.

The final step (although chronologically this took place independently of the
second step) is to allow unrestricted belief revision with higher-order beliefs (truly
‘unlimited DDL’). One might say that this was achieved for belief expansion in
Plaza’s public announcement logic (Plaza, 1989; van Ditmarsch, van der Hoek and
Kooi, 2007), wherein we can say in the logical language that it may be true in some
given Kripke model that ¬Kp ∧ [p]Kp (the agent does not know p but after
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announcement of p he knows that p), and also that [p ∧ ¬Kp]¬(p ∧ ¬Kp) is a
validity: after announcing that p is true and that you don’t know that, it is always
false that (p is true and that you don’t know that). Like before, [p] stands for ‘public
announcement of p’. As public announcements are interpreted as Kripke model
restrictions, this can be seen as a form of belief expansion. Here the parallel stops.
Which AGM postulates for belief expansion are satisfied in public announcement
logic, depends on your point of view (see, e.g., Bonanno, 2005). At least, the
‘unsuccessful update’ demonstrates that the success postulate is clearly not
satisfied.

4. Knowable – the Dynamic Turn

The suggestion to interpret ‘knowable’ as ‘known after an announcement’ was
made by van Benthem (2004), and Balbiani et al. (2008) propose a logic where ‘j
is knowable’ is interpreted in that way. In this setting, �p stands for ‘there is an
announcement after which p (is true)’, so that �Kp stands for ‘there is an
announcement after which p is known’, which is a form of ‘proposition p is
knowable’. To distinguish this specific interpretation of knowability from the more
general Fitch setting we have written �Kp instead of �Kp.

Before we present the logic in detail, let us first explore an example. Consider
the proposition p for ‘it rains in Liverpool’. Suppose you are ignorant about
p: ¬(Kp ⁄ K¬p). First, suppose that p is true. I can announce to you here and
now that it is raining in Liverpool (according to your expectations, maybe . . .),
after which you know that: 〈p〉Kp stands for ‘p is true and after announcing p,
p is known’.3 Now, suppose that p is false. In a similar way, after I announce
of that, you know that; so that we have 〈¬p〉K¬p. If you already knew whether
p, having its value announced does not have any informative consequence for
you. Therefore, 〈p〉Kp ⁄ 〈¬p〉K¬p is a validity: either the atom p holds and you
can get to know that it is true, or it is false and you can get to know that it is
false.

Let us now generalize the statement ‘there is a proposition p such that after its
announcement, p is known’, to ‘there exists a proposition q, such that after its
announcement, p is known’, where q is not necessarily the same as p. Then we have
informally captured the meaning of �Kp. In other words, this operator is a

3 In public announcement logic, the ‘box’-form [p]q stands for ‘if p is true, then after (every) announce-
ment p, q is true’; whereas the ‘diamond’-form 〈p〉q stands for ‘p is true, and (there is an announcement
of p such that) after announcement of p, q is true’. Of course, there is only one way to make an
announcement of p: it is a functional operation. This is formalized by the principle 〈p〉q → [p]q.
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quantification over announcements. We have just proved that �(Kp ⁄ K¬p) is a
validity: given a model, if p is true, announce that it is true, and if p is false,
announce that it is false. This schema captures the meaning of getting to know
whether p, i.e., getting to know whether p is true or false.

Announcing the value of p is not the only possible announcement that I can
make. Consider again your state of initial ignorance about p. Were I to make the
trivial announcement �, you would remain ignorant, 〈�〉¬Kp, so that, with nega-
tive introspection, we also have 〈�〉K¬Kp. Ignorance of p is knowable. But if you
already knew p, not only does announcing p then make no difference, but announc-
ing � would also not make a difference: 〈�〉Kp, so, with positive introspection,
〈�〉KKp: knowledge of p is knowable. On the other hand, after announcing
p ∧ ¬Kp, this is not known, as 〈p ∧ ¬Kp〉¬K(p ∧ ¬Kp). And no other announce-
ment can achieve that either: �K(p ∧ ¬Kp) is not valid.

In the presentation so far, mainly of historical interest, we have been treading
cautiously in order to avoid the crucial distinction in modal logics between propo-
sitional variables and formula variables. A propositional variable, or propositional
letter, p cannot at will be replaced by what in modal logic tends to be called a
proposition. In the tautology p ⁄ ¬p we can replace p by ¬p and ¬p ⁄ ¬¬p is still
a tautology, and we can replace p by p ∧ ¬Kp and (p ∧ ¬Kp) ⁄ ¬(p ∧ ¬Kp) is a
validity in the modal logic of knowledge. (To distinguish p from p ∧ ¬Kp we call
the former an atomic proposition.) Modal logics that satisfy this substitution
property (and some other properties) are called normal modal logics. Multi-agent
epistemic modal logic is a normal modal logic. However, public announcement
logic and arbitrary public announcement logic are not normal modal logics: [p]Kp
is valid (after announcing atomic proposition p, p is known). But substitute
p ∧ ¬Kp for p and disaster strikes, as [p ∧ ¬Kp]K(p ∧ ¬Kp) is invalid. Similarly,
p → �Kp is valid but (p ∧ ¬Kp) → �K(p ∧ ¬Kp) is invalid. We write j, y, . . . ,
for (modal) formula variables, instead of p, q, . . . , for propositional variables.
Public announcement logic is not a normal modal logic, but there are many
validities that can be formulated in terms of formula variables, such as j ⁄ ¬j, and
Kj → KKj.

We now continue with the overview of arbitrary public announcement logic,
followed by the investigation of knowable and successful in that logic.

5. Arbitrary Public Announcement Logic

Arbitrary public announcement logic is an extension of public announcement logic
(Plaza, 1989). Let a finite set of agents Ag and a countable set of propositional
variables At be given. These parameters can remain implicit.
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Definition 1 (Language) The language L(K, [·], �) is defined as

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ::= ¬ ∧( ) [ ]p Ka

where p ∈ At and a ∈ Ag.

Disjunction and implication are defined as usual. A formula that only contains
atoms from At and Boolean connectives is called objective. The language of public
announcement logic L(K, [·]) is the fragment of L(K, [·], �) without �. Likewise,
we define the language of (multi-agent) epistemic logic L(K), the language of
knowability logic L(K, �), and the language L of propositional logic. For the dual
of [y]j we write 〈y〉j, the dual of Kaj is written K̂aϕ and the dual of �j is �j.
Formula Kaj stands for ‘agent a knows j’, [j]y stands for ‘after announcement
of j, y’, and �j stands for ‘after every announcement, j’. We have chosen the
symbols � and � to contrast them with the operators used for knowability in
section 2, but beware that our � and � are the same as � and � in APAL as defined
in Balbiani et al. (2008).

Definition 2 (Epistemic model) An epistemic model M is a tuple M = (S, ~, V)
such that

• S is a non-empty set of possible worlds,
• ~ : Ag → ℘(S ¥ S) assigns an equivalence relation to each agent,
• V : At → ℘(W) assigns a set of possible worlds to each propositional

variable.

If M = (S, ~, V), rather than s ∈ S, we will also write s ∈ M. For ~(a) we write ~a.
A pointed model is a pair (M, s) where s ∈ M.

Definition 3 (Submodel) Let two epistemic models M = (S, ~, V) and M′ = (S′, ~′,
V′) be given. The pointed model (M, s) is a submodel of the pointed model (M′, s′)
if

1. S′ ⊆ S,
2. s = s′,
3. ′∼a = ~a � (S′ ¥ S′),
4. V(p′) = V(p) � S′.

Note that for each non-empty subset X of S there is a unique submodel: the model
M restricted to X, notation M|X. If X is the denotation of a formula j, we write M|j.
In other words, M|j is the model M restricted to those worlds where j is true (j may
not be valid on M|j, as in the case for p ∧ ¬Ka p).
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Definition 4 (Semantics)

M, s � p iff s ∈ V(p)
M, s � ¬j iff M, s � j
M, s � j ∧ y iff M, s � j and M, s � y
M, s � Kaj iff M, t � j for every t such that s ~a t
M, s � [j]y iff if M, s � j, then M|j, s � y
M, s � �y iff for all j ∈ L(K), M, s � [j]y

If M, s � j for all M and s, we write � j, for ‘j is valid’. The restriction to
multi-agent epistemic formulas j ∈ L(K) in the semantics of �j is for technical
reasons; if j ∈ L(K, [·], �) were allowed, the semantics would be a circular
definition, as this would quantify over the precise �y we are trying to determine.
The restriction to epistemic formulas amounts to a restriction to ‘Box-free’ formu-
las, as public announcement logic is equally expressive as multi-agent epistemic
logic.

Arbitrary public announcement logic has a complete axiomatization, for at least
two agents it is strictly more expressive than multi-agent epistemic logic, it is
non-compact and it is undecidable. For details, see Balbiani et al. (2008). Valid
principles of the logic include:

• �j → j
If j holds after every announcement, then it holds also after the trivial
announcement of �, so it was already true.

• �j → ��j
The composition of two announcements is again an announcement. The dual
version ��j → �j more clearly corresponds to that intuition: if there are
y and c such that 〈y〉〈c〉j, then we also have, using a property of public
announcement logic, 〈y ∧ [y]c〉j (which is also equivalent to 〈〈y〉c〉j), and
therefore �j.

• Church-Rosser: ��j → ��j
• McKinsey: ��j → ��j

5.1 Example
Consider model M = (S, ~, V) of Figure 2, modelling the uncertainty of two agents
1 and 2, where S = {s1, s2, s3, s4}, where ~1 is the reflexive closure of {(s3, s4),
(s4, s3), (s1, s2), (s2, s1)}, and where, similarly, agent 2 cannot distinguish s2 from s3

nor s1 from s4. Also stipulate V(p) = {s1, s2} and V(q) = {s1, s4}. Then

M s p q K q K p K K p q, 1 1 2 1 2� ∧ ∧ ¬ ∧ ¬ ∧ ¬ ∧( )ˆ ˆ
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Now consider the announcement p ⁄ q: this transforms M into M1 = M|(p ⁄ q). The
following is true in (M, s1) since (1) p ⁄ q is true in s1, and (2) the formula bound
by 〈p ⁄ q〉 is true in (M1, s1):

M s p q K q K p K K p q, 1 1 2 1 2� ∨ ¬ ∧ ∧ ¬ ¬ ∧ ¬( )( )ˆ ˆ

Suppose that in (M1, s1) agent 1 now publicly announces the true statement that he
does not know q. Since in (M1, s4) agent 1 does know q, this state gets eliminated
from the model, resulting in (M2, s1). We have:

M s p q K q K q K p, 1 1 1 2� ∨ ¬ ¬ ∧( )

In other words, one effect of agent 1 announcing he does not know that q is that
agent 2 comes to know that p! Finally, if in (M2, s1), agent 2 announces the true
proposition K2q, we end up in model M3 = M2|K2q. So we have

M s p q K q K q K p q K p q, 1 1 2 1 2� ∨ ¬ ∧( ) ∧ ∧( )( )

Now for some examples involving ‘arbitrary announcement’ operators. The previ-
ous establishes that M, s1 � �(K1(p ∧ q) ∧ K2(p ∧ q)); the three announcements
can be made into one, using the property of the logic that 〈j〉〈y〉c is equivalent to
〈j ∧ 〈j〉y〉c. We also have M, s1 � �(K1K2(p ⁄ ¬q) ∧ K2K1(p ⁄ ¬q)): there is an
announcement such that the agents have mutual knowledge that (p ⁄ ¬q); the
announcement could in fact be p ⁄ ¬q. Now take j = p ∧ ¬K1p. Although M,
s1 � j, there is no announcement that can reveal j to agent 1: M, s1 � ¬�K1j.

Figure 2: A model M and three consecutive announcements
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However, it is possible to do an announcement with K1¬j as effect: M; s1 = �K1¬j.
This is true because, e.g., M, s1 � 〈p〉K1¬j. So for that j we have �(K1j ⁄ K1¬j).

6. Successful and Knowable

Given some formula j, an intuitive way in which it can be said to be ‘successful’
or ‘knowable’ is relative to a pointed model (M, s) in which j is true. An update
with a formula j is successful in a pointed model (M, s) (for an agent a) if it is true
and if after announcing it (i.e., after the update), it is known:

M s Ka, .�ϕ ϕ ϕ∧

Similarly, a true formula can be called knowable in a pointed model (M, s) (to agent
a) if it is indeed true and if there is a way to make it known, i.e., if there is an
announcement after which it is known:

M s Ka, .�ϕ ϕ∧

Note that j ∧ 〈j〉Kaj is equivalent to 〈j〉Kaj, but the former makes the relation to
knowability clearer. Clearly, the notions are related. It seems possible that announc-
ing a knowable formula may not result in knowing that formula – we will indeed
give a counterexample.

It is not obvious what the most natural definition is of a successful and knowable
formula, independent from a specific model. First we deal with successful, and then
with knowable.

6.1 Successful
Definition 5 (Successful) A formula j ∈ L(K, [·], �) is successful (for agent a)
iff � [j]j. A formula is unsuccessful if it is not successful.

The definition is global: it refers to a validity of the logic. A formula j is successful
if in any model and any state, announcing j in that state, would result in a state
where j is true. Objective formulas do not change the state, so they are successful.
A formula like Kp is also successful. Note also that any contradiction is successful:
there is no model that is the result of an announcement with ^, so in any such
model, anything holds. Examples of formulas that are not successful are p ∧ ¬Kp,
or, in a multi-agent setting, Ka p ∧ Kb¬Kcp.

Definition 5 of successful entails that successful for any agent means successful
for all agents. Proposition 1 below makes clear why this is reasonable.
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Proposition 1 (Different views on successful (van Ditmarsch and Kooi, 2006))
All the following descriptions of successful are equivalent:

• � [j]j
• � j → 〈j〉Kaj
• � j → 〈j〉j

The equivalence between [j]j and j → 〈j〉Kaj validates the former as a definition
of successful, because the latter is the exact paraphrase of ‘if j is true, then after
announcement of j it is known’, modulo the conditional this is the notion of
successful update given above. This is similar to typical belief expansion in an
AGM belief revision setting: if a theory is expanded with consistent information j
(read: if the believing agent has decided to accept j as true information, and does
not believe the opposite), then j is believed in the expansion.

We list some results for successful formulas from van Ditmarsch and Kooi
(2006) and Holliday and Icard (2010), to which we add some novel ones of our own.

Proposition 2 (Successful)

1. Not all formulas are successful.
2. There are j such that both j and ¬j are successful.
3. There are j such that both j and ¬j are unsuccessful.

Proof

1. p ∧ ¬Kap is not learnable and not successful.
2. p and ¬p are both successful.
3. Consider (p ∧ ¬Kap) ∧ ¬(q ∧ ¬Kaq). Clearly, this formula is not successful,

as after announcing it, p is known by a, so (p ∧ ¬Kap) is false. But its
negation is also not successful. Consider the pointed four-state model with
maximal uncertainty about (universal access between) the value of two
atoms p and q, and where these are both true. After announcing the negation
¬p ⁄ Kap ⁄ (q ∧ ¬Kaq) of the formula above, three states remain (the
formula is only false when p is true and q is false). In the state where p and
q are both true, this formula is now false.

�

There are more results of this kind, for example, formulas j and y may be
successful, but not j ∧ y, or not j → y, or not ¬j (van Ditmarsch and Kooi,
2006), or not j ⁄ y (Holliday and Icard, 2010). The recent investigation by Holli-
day and Icard (2010) characterizes the successful formulas for single-agent L(K,
[·]), a remarkable result. They also distinguish further notions, such as the super-
successful formulas j that are always known after being announced but additionally
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remain true in every model in between the initial model M and the model restriction
M|j. The characterization of the successful formulas for multi-agent L(K, [·]) is
unknown.

We can contrast this ‘global’ notion of successful, a formula property, with the
more intuitive ‘local’ notion at the beginning of this section: a relation between a
pointed state and a formula. An update with a formula j is successful in a pointed
model (M, s) (for an agent a) if it is true and if after announcing it, it is known, M,
s � j ∧ 〈j〉Kaj; and an update is unsuccessful in a pointed model (M, s) (for an
agent a) if it is true and if after announcing it, it is known to be false. Clearly, a
formula is successful if it is a successful update in all models, whereas an unsuc-
cessful formula may well be successful in some models. The typical example is ‘not
stepping forward’ (‘nobody knows whether he is muddy’) in the Muddy Children
problem (Fagin and Vardi, 1986): this formula is only unsuccessful when the
muddy children finally step forward; otherwise, it is successful: they still don’t
know it!

We continue with the investigation of ‘knowable’.

6.2 Knowable
We recall the relative notion of knowability. A true formula is knowable in a pointed
model (M, s) to agent a if it is indeed true and if there is a way to make it known:
M, s � j ∧ �Kaj. Given that, it might be tempting to call a formula knowable if
�Kaj is satisfiable, but that amounts to the same as requiring that Kaj is satisfiable:
let (M, s) be a pointed model such that M, s � �Kaj, then there is a y ∈ L(K) such
that M, s � 〈y〉Kaj, and therefore M|y, s � Kaj. So, Kaj is satisfiable. To require
the even stronger validity of �Kaj is also doomed, as now even propositional
variables would not be knowable: for a simple formula as �Ka p to be valid, p has
to be true in all models; but of course, it is sometimes true and sometimes false.
Given the popular requirement "p(p → �Kp) in the literature on the Fitch paradox,
as discussed in section 2, our next best option is to require validity of j → �Kaj,
for ‘all true formulas are knowable’ (for agent a). This has also been called
‘learnability’ in the dynamic epistemic logic literature (Balbiani et al., 2008; Hol-
liday and Icard, 2010). Now, indeed, we can rightfully call a propositional variable
p knowable, as p → �Ka p is valid (see section 4). We call this th-knowability, for
knowing that a formula is true. One further option down the road, slightly weaker,
is to require validity of �(Kaj ⁄ Ka¬j); we call that wh-knowability, for knowing
whether a formula is true.

Definition 6 (Knowable) Let j ∈ L(K, [·], �) be a formula.

• j is th-knowable (for agent a) iff � j → �Kaj;
• j is wh-knowable (for agent a) iff � �(Kaj ⁄ Ka¬j).
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Th-knowable formulas are those that, if true, are known after some announce-
ment, whereas wh-knowable formulas are those that are known to be true after
some announcement or are known to be false after some announcement. The
conditional flavour of the definition makes any contradiction th-knowable. Theorem
1 will show that all formulas are wh-knowable, so that wh-knowable for any agent
means wh-knowable for all agents. This then trivially entails that th-knowable
implies wh-knowable. We anticipate that result in Proposition 3, in an interesting
variation. Proposition 4 will show that a formula may be th-knowable for one agent
but not th-knowable for another agent.

Examples of formulas that are th-knowable for agent a are: p, ¬p, Kaj and ¬Kaj
for all j (use introspection, and the trivial announcement). Whereas Ka(p ∧ ¬Kbp)
is th-knowable for a, but not for b (see Proposition 4).

The schema �(Kaj ⁄ Ka¬j) we have not encountered before in the literature. A
wh-knowable formula may be true now, but known to be false after an announce-
ment. For a pregnant example, p ∧ ¬Kap is wh-knowable, because after its own
announcement it is known to be false.

Proposition 3 Th-knowable implies wh-knowable.

Proof Consider the following equivalences:

�(Kaj ⁄ Ka¬j)
¤ (by Theorem 1, later)
true
¤
j ⁄ ¬j ⁄ �Kaj ⁄ �Ka¬j
¤
(¬j ⁄ �Kaj) ⁄ (¬¬j ⁄ �Ka¬j)
¤
(j → �Kaj) ⁄ (¬j → �Ka¬j)

Clearly, th-knowable implies the weaker wh-knowable. �

Proposition 4 (Th-knowable and successful)

1. Let j ∈ L(K, [·]). If j is successful, then j is th-knowable (van Ditmarsch
and Kooi, 2006).

2. There are th-knowable formulas that are not successful.
3. Th-knowable for a given agent does not imply th-knowable for all agents.

Proof

1. This follows from the observation that the validity of [j]j is equivalent to
the validity of j → 〈j〉Kaj, and that j → 〈j〉Kaj implies j → �Kaj; if j is
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known after announcement of j, then there is an announcement after which
it is known. Given the semantics of �, the announcement witnessing it
should be �-free.

2. Take j = Ka(p ∧ ¬Kbp). Take an M, s where j is true. Then we have M,
s � �Kaj: after the trivial announcement, the formula is still true. But M,
s � 〈j〉Kaj: after agent a announces her knowledge, b knows p as well so j
is now false.

3. The formula Ka(p ∧ ¬Kb p) used in the previous item is clearly not
th-knowable for agent b.

�

Our proposals to define th-knowable and wh-knowable as the validity of
j → �Kj and �(Kj ⁄ K¬j), respectively, are tentative in the sense that there are
yet other ways to pin down syntactic fragments of the logical language L(K, [·], �).

We already saw that �(Kj ⁄ K¬j) is equivalent to (j → �Kj) ⁄ (¬j →
�K¬j), and that this is obviously weaker than j → �Kj. What formulas satisfy
the stronger

ϕ ϕ ϕ ϕ→( ) ∧ ¬ → ¬( )K K ?

We note that the negation ¬(p ∧ ¬Kp) of the Moore-sentence satisfies
th-knowability but, obviously, not (j → �Kj) ∧ (¬j → �K¬j); as its negation is
the Moore-sentence again, so the second conjunct is not satisfied.

If, in order to avoid that inconsistencies are th-knowable, we were to require that
j → Kj is valid and j satisfiable, how close does that come to requiring that
j ∧ �Kj is satisfiable? Closer than mere th-knowability indeed, but not close
enough. For example, given two agents i and j, let j be p ∧ ¬Kjp. We then have that
j ∧ �Kij is satisfiable, namely in a model consisting of a p-state and a ¬p-state and
wherein j is uncertain about p but i is not. On the other hand, this formula is not
th-knowable for agent i, because not every model satisfying j also satisfies �Kij.
For a counterexample, take again a model consisting of a p-state and a ¬p-state, but
now such that neither i nor j can distinguish between those states.

6.3 Everything is knowable
In order to derive our main result that all formulas are wh-knowable, we first repeat
the following lemma.

Lemma 1 ([3, Lemma 3.2]) Let j ∈ L(K, [·], �). Consider the set Pj of atoms
occurring in j. Let M be a model where all states correspond on the valuation of
Pj (i.e., "p ∈ Pj (V(p) = S or V(p) = ∅)). Then M � j or M � ¬j, i.e., either j or
its negation is a model validity.
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Theorem 1 Every formula j is wh-knowable:

� K Ka aϕ ϕ∨ ¬( )

Proof Given a formula j and a pointed model M, s, define δϕ
s as the characteristic

formula of the atoms Pj in s:

δϕ
ϕ ϕs p p P M s p p p P M s p= ∈{ } ∧ ¬ ∈ ¬{ }� �and and, ,� �

From Lemma 1 we immediately obtain

M Ms sδ ϕ δ ϕϕ ϕ� �or ¬

Take M sδϕ , s: this is nothing else than the model obtained when δϕ
s is announced

in M, s, so for any y with M sδ ψϕ � we have M, s � �y. It follows immediately
from (1) that M Ks aδ ϕϕ � or M Ks aδ ϕϕ � ¬ (for an arbitrary agent a). Hence
M K Ks a aδ ϕ ϕϕ � ∨ ¬ , and hence M, s � �(Kaj ⁄ Ka¬j). �

Our result says that for every formula, either that formula or its negation can be
known, where ‘can be known’ means ‘known after some announcement’. The result
is not that for every formula, if currently true it can be known to be true, and if
currently false it can be known to be false. In other words, we cannot get to know
for every formula that it was true or that it was false; only that it is true or that it is
false. The value of the formula may change as a result of the announcement, as in
the case of p ∧ ¬Kap. This formula, when true, can be known to be false after its
announcement.

The proof of Theorem 1 is constructive, in the sense that we know which
announcement leads to the knowledge of either j or its negation: announce the
current truth value of all atoms involved. This is in some sense disappointing: the
agents do not learn what multi-agent uncertainty about factual information actually
was the case, but the world is manipulated for them. For example, suppose a
pointed model wherein ϕ = ∧ ¬ˆ ˆK q K qb b is true, and wherein (obviously) a con-
siders that possible, but wherein also K̂ K qa b and K̂ K qa b¬ are true, and suppose
that currently q holds. Is j knowable? Yes, a can get to know that it is false:
announce q, and a knows that b knows q. But if a did not already know that
ˆ ˆK q K qb b∧ ¬ was true, a does not learn from the announcement of q that b was

ignorant about q before that announcement. The formula ˆ ˆK q K qb b∧ ¬ is knowable,
because it can be made false by the announcement of q. So a cannot be said to find
out the truth about j.

In that sense, it is not very meaningful to say that everything is knowable. It does
not mean that everything true now can be known to be true in future, and everything
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false now can be known to be false in future. (And of course since (Fitch, 1963) we
know that we don’t want that, as in the case of p ∧ ¬Kp.) It means that we can find
out the value of every proposition in the future, not necessarily the value it currently
has, but the truth-value it will have at the point we have found it out, possibly
different from its current truth-value.

In another sense, it is meaningful: it is still not the case that an agent always
knows in advance what will be known or not. Sometimes he does: if the proposi-
tion is p ∧ ¬Ka p, i.e., if it is self-refuting, clearly the only value that can be known
later is that it is false. Also for the formula ˆ ˆK q K qb b∧ ¬ in the above example, a
knows that there is an announcement after which he knows it to be false. He just
does not know what the announcement is! If q is true, announcing that makes it
false, otherwise, announcing ¬q makes it false. But sometimes the agent does not
know in advance what will be known, as in the above case for the formula Kbq: a
knows that the truth about q can be announced, if q is true then after announcing
that Ka Kbq is true and if q is false then after announcing that Ka¬Kbq is true
(because Ka¬q entails Ka¬Kbq). In that case, agent a truly only can get to know
whether Kbq is true.

6.4 Back to Fitch
Let us summarize the results for the � operator, where �Kj, for ‘j is knowable’,
means ‘j is known after an announcement’.

• For every true proposition we can get to know that it is true. False
• For every true proposition we can get to know that it was true. False
• For every proposition we can get to know whether it is true. True
• For every proposition we can get to know whether it was true. False

How does this bear on Fitch knowability, with �Kj instead of �Kj? We have
enforced a concrete interpretation of ‘getting to know’ and we should ask ourselves
how far we have strayed from the trodden knowability-path while doing that.

The verificationists and non-realists will not be satisfied by our result. For every
proposition they want to get to know whether it was true, not whether it is true. As
known since Fitch, this is not possible for higher-order knowledge. In epistemic
systems, as in experimental physics, observing the system may change the prop-
erties of the system. An agent who is being informed about the truth of a given
proposition is like an experimenter observing the value of a system parameter. Just
as information may no longer be true because you are being informed, performing
a measurement may change the value(s) of the measured parameter.

We hope that our contribution may further the philosophical investigation of the
schemata we proposed for other logics of knowability: given some other interpre-
tation of � (than �), for what j is �(Kj ⁄ K¬j) valid? Or, to mention another
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schema we discussed: for what j is j → �Kj valid and j satisfiable? For which j
is both j and ¬j th-knowable, i.e., (j → �Kj) ∧ (¬j → �K¬j) valid? Or, after
all, given a dynamic epistemic logic with history operators, for which j can we get
to know whether they were true? And the schema j → �Kj also appears in other
modal logical settings, such as topologic (Parikh, Moss and Steinsvold, 2007). Are
there parallels with yet other modal logics for spatial reasoning?

7. Further Research

There are a number of topics for further research in the technical setting of the logic
where � means ‘there is an announcement after which’.

• A syntactic characterization of the th-knowable formulas in arbitrary public
announcement logic is unknown, and also how this would relate to the
successful formulas.

• To investigate the wh-knowability construct �Kj in a dynamic epistemic
logic, it is convenient to have the announcement operator, but the announce-
ment does not occur in the construct, so a fair question seems the investi-
gation of knowability in the logical language L(K, �) defined as j ::= p |
¬j | (j ∧ j) | Kaj | �j. In that language, the semantics of � is: M, s � �y
iff for all j ∈ L(K), M|j, s � y. The axiomatization of that logic is
unknown, and it seems non-trivial.

• The multi-agent setting of knowability allows for different generalizations.
Consider that �j does not stand for ‘there is an announcement after which
j’ but for ‘there is an informative action after which j’. An informative
action may be a private announcement, or any other complex but not public
action. Are there propositions that are only knowable in that setting?

• Onto a different track comes knowability with group epistemic operators,
e.g., which propositions are commonly knowable, or distributedly knowable,
or transferable between agents? These questions come with the schemata
�CAgj, �DAgj, and Kaj → �Kbj, respectively.
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