
Model checking π-Calculus against
temporal connectedness properties

Sven Linker

December 6, 2008

Prof. Dr. E.-R. Olderog
Dipl.-Inform. R. Meyer

Contents

1 Introduction 5

2 Preliminaries 9
2.1 Notations . 9
2.2 Petri nets . 10
2.3 The π-Calculus . 13
2.4 Structural Semantics . 19
2.5 Linear Temporal Logic . 23

3 A connection based logic for the π-Calculus 27
3.1 Reasoning about structural properties 27
3.2 Reasoning about temporal progress 36
3.3 Properties of PSTL . 37

4 Complex atoms for simple reasoning 49
4.1 Tagging Process Calls . 49
4.2 Semantics . 58

5 Translation to LTL 61
5.1 Translating structural modalities to LTL 62
5.2 Translating formulas with temporal modalities 74
5.3 Example: Client/Server . 78
5.4 Example: Bag . 82

6 Conclusion and related work 89

Bibliography 93

Index 96
Symbol Index . 96
Subject Index . 98

3

Contents

4

1 Introduction

In the last decades, computers have changed from big, single systems computing
one job at a time to complex networks of small, independent components, each
designed only to solve specific problems. Such a network accomplishes its tasks
by decomposing a given problem into smaller ones, which are then resolved by
its components. Consider for example a modern operating system like Windows
Vista, Linux or a variant of BSD. Instead of one monolithic program dealing with
every possible task the user wants to perform, these systems start a variety of
so-called processes (or daemons) to fulfill these tasks. One process answers all
requests to modify the file system, e.g. create or delete files, while another process
sends data to the graphics adapter to draw the graphical user interface.

Probably the most popular example for such a network is the Internet. A huge
amount of servers waits for requests by clients or other servers, e.g. to deliver
HTML-pages or to give access to data stored in a database. In between, routers
have to forward the messages sent for example from a client to a server, since the
number of connected systems is far too big to allow fully physical linking.

This network-based view can also be applied in a more abstract way to other
fields. Mobile phones establish connections with radio stations, which transmit
the spoken words and other messages from one participant to the other. Therefore
the phones and radio stations can be seen as processes communicating with each
other by radio signals.

But this increase of communication and concurrent operations arises the ques-
tion how the functionality of these networks can be assured. A traditional and
well-understood approach to mathematically describe such concurrent systems are
Petri nets [Pet62], which explicitly define every possible communication between
processes. Even though Petri nets are a very intuitive formalism to model con-
current systems, their size grows dramatically with the number of considered pro-
cesses. Hence the manual construction of Petri nets is very error-prone. But then
a lot of research concerning the mathematical analysis of Petri nets has been done
and effective algorithms to check properties of Petri nets have been developed.

Other ways to specify concurrent systems are process algebras like CSP (Com-
municating Sequential Processes) [Hoa78] and CCS (Calculus of Communicating
Systems) [Mil80]. These formalisms describe processes as algebraic structures.

5

Chapter 1 Introduction

They normally contain operators resembling the parallel execution of programs
and possible choice of alternative control flows. A system modeled by a process
algebra is in general more readable than the same system specified as a Petri net,
since a great part of the complexity is hidden by the operators of the algebras. A
major drawback of process algebras is their general Turing-completeness [Vaa93]
in contrast to standard Petri nets.

Another problem with the process algebras mentioned above is that possible
pairs of communicating components have to be explicitly defined and can not
change during the computation. This problem is taken account of by the π-Calculus
[MPW92, Mil99, SW01]. It is designed to model mobile communicating and con-
current systems. Mobility in the sense of the π-Calculus has to be understood
as mobility in the linking structure of processes. Consider the example of mobile
phones given above. If a person carrying a mobile phone leaves the cell of the
nearest radio station S1, it establishes a new connection to another station S2.
The link to S1 is not usable anymore, in a way it is “forgotten”, but the link to S2

has been created, hence the linking structure of the whole network has changed.
In the π-Calculus, this is achieved by the passing of names, which also represent
the possible links. Hence processes can exchange links between each other. Since
the π-Calculus is an extension to CCS, it is Turing-complete.

The identification of subsets of the π-Calculus, for which properties as safeness,
liveness or the non-existence of deadlocks can be algorithmically decided, is a field
of active research. Various decidable subsets have been found (e.g. the class of
Finite Control Processes [Dam96]). A common approach to decide properties of
processes is the technique of model checking [EC80]. To model check a process
against a property, both have to be translated into an automata-theoretic equiva-
lent. The concrete algorithm to check if the process satisfies the property depends
heavily on the automata-theory. Since decidability of Petri nets is well-researched,
many translations of process algebras to Petri nets have been developed to make
use of the effective algorithms on Petri nets.

For specifying properties of concurrent systems, temporal logics have a long
tradition in the model-checking community. These logics are special modal logics
[CZ97], where the modalities are interpreted with respect to a notion of time. In
computer science, normally only temporal logics dealing with the future evolution
of systems are considered, even though temporal logics would allow also reasoning
about the past. Prominent examples for temporal logics used for model checking
are Linear Temporal Logic (LTL) [Pnu77] and the Temporal Logic of Actions
(TLA) [Lam94].

Recently, Meyer has developed a translation of a large subset of π-Calculus-
processes to standard Petri nets, called the structural semantics of processes [Mey07,

6

π-Calculus

Structural Semantics

Linear Temporal Logic

MCKIT/SPIN

√

Petruchio

Figure 1.1: Model checking π-Calculus-processes with Petruchio.

Mey08]. This approach has been implemented in the tool Petruchio
1 by Strazny

[Str07]. The tool uses the Model Checking Kit (MCKIT) [SSE03] and the model
checker SPIN [Hol97] as a back end. Properties the process shall be checked against
can be defined in LTL. Figure 1.1 shows the current control flow of the verification.
The user specifies a process and a temporal formula on Petri nets. This process
is then translated into its structural semantics and checked against the formula.
A major drawback is that the user has to know the structure of the Petri net to
describe the property the process shall be checked against. Hence the process has
to be translated and the user can not specify the formula until then. That is,
the work flow is split into the specification of the process, the inspection of the
resulting Petri net and the formulation of the property.

The contribution of this thesis is the definition of a logic on π-Calculus-processes,
which can be translated into LTL on Petri nets. With the help of this logic,
the work flow of model checking with Petruchio can be improved as shown in
Figure 1.2.

Even though many logics for describing properties of π-Calculus-processes al-
ready exist, most of them are defined with respect to the observational behaviour
of the processes [HM85, Dam89, MPW91] and do not take the structural config-

1Available at http://petruchio.informatik.uni-oldenburg.de

7

http://petruchio.informatik.uni-oldenburg.de

Chapter 1 Introduction

π-Calculus Logic on π-Calculus

Structural Semantics Linear Temporal Logic

MCKIT/SPIN

√

Petruchio

Figure 1.2: Model checking π-Calculus-processes with Petruchio with a logic on
π-Calculus-processes.

uration of processes into account. Logics respecting the structure of processes,
often called spatial logics, have been recently developed for the π-Calculus [CC01,
CC02, MP08] and the Ambient Calculus [CG00, CG01, CG06], an extension of the
π-Calculus. However, these logics are way to expressive for the desired translation
into LTL. For example, one problem is that these logics allow the mixed use of
spatial and temporal modalities in the formula.

The document is structured as follows. In Chapter 2 we will give the definitions
of the Petri nets used in this thesis, the π-Calculus, the structural semantics and
linear temporal logic. We proceed in Chapter 3 by the presentation of our logic
together with some nice and useful properties. Chapter 4 introduces new atoms for
simplifying the formulas defined in the previous chapter. Subsequently, we present
our translation in Chapter 5. Finally, we summarise our results together with a
discussion of the related work in Chapter 6.

8

2 Preliminaries

First we define some notations and recall the basics of the π-Calculus and Petri
nets. We then briefly present the translation of π-Calculus processes to Petri nets
developed by Meyer [Mey08].

2.1 Notations

Definition 2.1.1 (Equivalence Relation). Let A be an arbitrary set and∼ ⊆ A×A
be a relation on A. We will write that ∼ relates two elements a and b, i.e. (a, b) ∈∼
as a ∼ b. This relation is an equivalence relation, if and only if it satisfies reflexivity,
symmetry and transitivity. Formally

Reflexivity: ∀a ∈ A : a ∼ a

Symmetry: ∀a, b ∈ A : a ∼ b implies b ∼ a

Transitivity: ∀a, b, c ∈ A : a ∼ b and b ∼ c implies a ∼ c

We use the standard notation for functions and lift the notation to work on sets.

Definition 2.1.2. Let A,B be two sets and f ⊆ A × B. We say that f is a
(total) function from A to B, denoted by f : A → B, if and only if f is left-total
and functional, i.e.

Left-Totality: ∀a ∈ A : ∃b ∈ B : (a, b) ∈ f
Functionality: ∀a ∈ A : ∀b, c ∈ B : (a, b) ∈ f and (a, c) ∈ f implies b = c

If f is not left-total, we call f a partial function. We use the notation f(a) = b
for (a, b) ∈ f as usual. Furthermore, if C is a subset of A, we will write f(C) for
the set {b p ∃c ∈ C : f(c) = b}. We call the set

dom(f) = {a p a ∈ A ∧ ∃b ∈ B : f(a) = b}

the domain of f . If f is a total function, dom(f) = A. Likewise, the set im(f) =
{b p ∃a ∈ A : f(a) = b} is the image of f .

Furthermore, we will need the following standard definitions for properties of
functions. In particular, bijectivity and structure-preservence are of importance.

9

Chapter 2 Preliminaries

Definition 2.1.3 (Properties of Functions). Let A and B two sets and f be a total
function from a A to B, i.e.,f : A→ B. This function can have certain properties.

Injectivity: ∀a, c ∈ A : ∀b ∈ B : f(a) = b and f(c) = b implies a = c

Surjectivity: ∀b ∈ B : ∃a ∈ A : f(a) = b

We call f bijective, if f satisfies both injectivity and surjectivity. For a bijective
function, the inverse function of f , denoted by f−1 is a function from B to A. It
is defined by f−1(y) = x, if f(x) = y.

Furthermore, let A and B be sets, and ∼,≃ be relations on A, resp. B. We
say that f is a homomorphism, if for any two elements a, a′ ∈ A, a ∼ a′ implies
f(a) ≃ f(a′). Finally, if f is bijective and a homomorphism, and the inverse
function f−1 is a homomorphism, f is an isomorphism between A and B.

2.2 Petri nets

Petri nets are an automata-theoretic approach to model concurrent behaviour of
possibly distributed systems developed by Petri [Pet62]. A Petri net describes the
possible communications of components modeled by tokens on places explicitly
by transitions that consume and produce these tokens. We present the standard
notation of place/transition Petri nets with weighted arcs [Rei85].

Definition 2.2.1 (Place/Transition Petri Net). An unmarked place/transition
Petri net is a triple (S, T, λ) where S is a set of places, T a set of transitions,
such that S and T are disjoint, and λ : S × T ∪ T × S → N is a weight function,
associating to every pair (s, t) and (t, s) with s ∈ S, t ∈ T a number of arcs. For
each transition t ∈ T , we refer to the set of all places with λ(s, t) > 0 by •t, the
preset of t. Similarly, we define the postset of t by t• = {s ∈ S p λ(t, s) > 0}.

The sets S and T can both be infinite. The graphical representation of a Petri
net is a directed graph G = (S ∪ T,E) with E = {(s, t) p λ(s, t) > 0} ∪ {(t, s) p

λ(t, s) > 0}. A node v of G is represented by a circle if v ∈ S resp. a square if
v ∈ T . The edges are defined by the weight function, i.e., there are only edges
from places to transitions and vice versa, but never from a place to another place
and never from a transition to another transition.

An unmarked Petri net has no defined behaviour. Therefore the places get
marked with tokens, which are denoted by small black circles.

Definition 2.2.2 (Marking and Support). The state of a Petri net is defined by a
marking M : S → N. If M(s) = k for s ∈ S, we say that S is marked by k tokens

10

2.2 Petri nets

(or S carries k tokens). The support of a marking M is the set of places which
carry at least one token, i.e., supp(M) := {s ∈ S p M(s) > 0}.

An unmarked place/transition Petri net together with an initial marking M0 is
called a marked place/transition Petri net or simply a Petri net. The set of all
Petri nets is PN .

Example 2.2.1. Figure 2.1 shows the marked Petri net with

S = {s1, s2, s3, s4, s5},
T = {t1, t2, t3},
λ = {(s1, t1, 1), (s2, t2, 1), (t1, s3, 1), (t2, s4, 1), (s3, t3, 1), (s4, t3, 1),

(t3, s1, 1), (t3, s2, 1), (t3, s5, 1)}
M0 = (1, 1, 0, 0, 0)

s1 s2

s3 s4

s5

t3

t1 t2

Figure 2.1: Example of a Petri Net. The transitions t1 and t2 can fire.

With these markings it is possible to define the behaviour of the Petri net via a
transition relation. We therefore need the definition of an enabled transition.

Definition 2.2.3 (Enabled Transition). A transition is enabled under the marking
M , if M(s) > λ(s, t) for all s ∈ •t. We also say that the transition can fire.

Now we can define the transition relation and the transition system of a Petri
net. Informally, an enabled transition t fires by removing a number of tokens from
the places in its preset according to the weight function. The number of tokens
a firing transition puts on the places in its postset is again defined by the weight
function λ.

11

Chapter 2 Preliminaries

Definition 2.2.4 (Transition Relation and Transition System). The behaviour of
a Petri net is defined by the transition relation [〉 : T × N

S → N
S, with M [t〉M ′,

if and only if t is enabled under M and M ′(s) = M(s) − λ(s, t) + λ(t, s) for all
s ∈ S. In this thesis, we omit the firing transition t when referring to the transition
relation. The transition system Reach(N) of a marked Petri net N = (S, T, λ,M0)
consists of all markings reachable by the transition relation, i.e., Mi ∈ Reach(N) if
and only if there is a sequence M0M1 . . .Mi such that M0 [〉M1 [〉 . . . [〉Mi (i ∈ N).

Example 2.2.2. Consider the Petri net N of Example 2.2.1 (Figure 2.1). In the
depicted state M0, the transitions t1 and t2 are enabled. If t1 fires, we get the state
(0, 1, 1, 0, 0). For t2 we get (1, 0, 0, 1, 0). The state after both transitions have fired
is shown in Figure 2.2 (a). In this state, the transition t3 is enabled and the state
after the firing of t3 is depicted in Figure 2.2 (b). Observe that we have reached the
initial state with the exception that s3 now carries one token. Hence, the transition
system of N is Reach(N) = {(1, 1, 0, 0, c), (0, 1, 1, 0, c), (1, 0, 0, 1, c), (0, 0, 1, 1, c) p

c ∈ N}.

s1 s2

s3 s4

s5

t3

t1 t2

(a)

s1 s2

s3 s4

s5

t3

t1 t2

(b)

Figure 2.2: Example of a Petri Net. (a) The transitions t1 and t2 both have fired.
(b) The transition t3 has fired once.

12

2.3 The π-Calculus

2.3 The π-Calculus

The π-Calculus [MPW92, Mil99, SW01] is a process algebra designed to model pro-
cesses communicating on channels. Messages sent on a channel consist of names ,
which represent channels. With this mechanism, processes can exchange channels
with other processes, thereby creating new possibilities to communicate. In the
notation of the π-Calculus, this exchange is called mobility , because a process can
alter its“location”, i.e., its links to other processes. In this thesis, we use a monadic
π-Calculus with recursion [SW01].

The possibilities of a process to communicate are formalized via so-called prefixes
π. Given a countably infinite set of names A, the prefixes are defined by

π ::= x〈y〉 p x(y) p τ,

where x, y ∈ A. The output action prefix x〈y〉 sends the name y along the
channel x, while the input action prefix x(y) receives a name on x that replaces y.
An internal, unobservable communication is represented by τ .

We will abbreviate a sequence of names y1, . . . , yn with ỹ. The definition
of parametrised recursion is based on process identifiers denoted by upper-case
letters like K or L. Every process identifier has a defining equation K(x̃) := PK

identifying the process PK with K. A process call, denoted by K⌊ã⌋, results in a
replacement of this term with PK , where the names x̃ are substituted by ã. The
remaining operators are denoted and defined as usual. The parallel composition
of two processes, meaning that the processes can communicate via an input and
an associated output action, is written P1 |P2. Channels can be hidden by the
restriction (or hidden name) quantifier νa.P , i.e. a is different from any other
name outside the scope of νa. For expressing that a process can react on more
than one channel, the choice operator π.P + M is used. Formally, the syntax of
processes is inductively defined.

M ::= 0 p π.P p M1 +M2

P ::= K⌊ã⌋ p M p P1 |P2 p νa.P

We denote the set of all processes according to the definition above by P.

Example 2.3.1 (Client/Server). We model a simple client and server. The client
can send its unique IP (νip) to a certain URL, specified by the channel url and
then waits for a new session object (s) on this IP. Afterwards it receives data linked
to this session. The server on the other hand waits for an incoming message on its
URL (url(y)), which it will interpret as an IP of a client. It creates a new session
object and sends it to received the IP (νses.y〈ses〉). Finally it uses the established

13

Chapter 2 Preliminaries

session to send data to the client. The data sent in this example is just the session
itself.

C(url) := νip.url〈ip〉.ip(s).s(x).C⌊url⌋
S(url) := url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋

Convention 2.3.1. We adopt the following conventions for syntactic abbrevia-
tions and operator priorities.

(i) We call a choice composition of the form M = 0 + · · · + 0 empty. If M
contains at least one prefixed process π.P , we call M non-empty.

(ii) We omit the process 0 at the end of processes. That is, we write π for π.0.

(iii) The natural numbers contain 0, i.e., N := {0, 1, 2, . . .}.

(iv) To abbreviate the parallel composition of multiple processes, we write

ΠkP := P | . . . |P︸ ︷︷ ︸
k times

Πn
i=mPi := Pm | . . . |Pn

Πi∈IPi := Pi0 | . . . |Pil,

where k, l,m, n ∈ N, n ≥ m and I = {i0, . . . , il} ⊂ N is finite with i0 < . . . <
il.For k = 0 and for I = ∅, we define Π0P := 0 and Πi∈∅Pi := 0.

To avoid parentheses in processes, we define the following operator priorities. Pre-
fixing a process with π binds stronger than choice composition +. Choice and
restriction νa bind stronger than parallel composition | .

Processes of the form M and K⌊ã⌋, where M is a non-empty summation, are
called sequential processes. The set of all sequential processes is denoted by Pseq.

We further need the notation of free and bound names. The restriction νy.P
and the input action x(y) both bind the name y. The intuition of bound and free
names is formalised in the following definition.

Definition 2.3.1 (Free and Bound Names). The inductive definitions of the free
names of a process P ∈ P, denoted by fn(P) is given in Figure 2.3. The set of
bound names of a process is defined likewise.

14

2.3 The π-Calculus

fn(0) = ∅
fn(τ.P) = fn(P)

fn(x〈y〉.P) = fn(P) ∪ {x, y}
fn(x(y).P) = (fn(P) \ {y}) ∪ {x}

fn(M1 +M2) = fn(M1) ∪ fn(M2)

fn(K⌊ã⌋) = {ã}
fn(P1 |P2) = fn(P1) ∪ fn(P2)

fn(νa.P) = fn(P) \ {a}

bn(0) = ∅
bn(τ.P) = bn(P)

bn(x〈y〉.P) = bn(P)

bn(x(y).P) = bn(P) ∪ {y}
bn(M1 +M2) = bn(M1) ∪ bn(M2)

bn(K⌊ã⌋) = ∅
bn(P1 |P2) = bn(P1) ∪ bn(P2)

bn(νa.P) = bn(P) ∪ {a}
Figure 2.3: Definitions of free and bound names of π-Calculus-processes

Example 2.3.2. Let P ≡ νip.url〈ip〉.ip(s).s(x).C⌊url⌋. Then fn(P) = {url} and
bn(P) = {ip, s, x}.

Convention 2.3.2. Let P ∈ P with the defining equations Ki(x̃i) := Pi for
1 ≤ i ≤ n.

(i) The free names of a process are included in the parameter list of its defining
equation, fn(Pi) ⊆ x̃i for all 1 ≤ i ≤ n.

(ii) The bound and free names of two processes are disjoint, fn(Q) ∩ bn(R) = ∅
for Q,R ∈ {P, P1, . . . , Pn}.

(iii) For all processes in Q,R ∈ {P, P1, . . . , Pn}, the bound names of Q differ from
the bound names of R, i.e. bn(Q) ∩ bn(R) = ∅.

(iv) No name is bound twice in a process. That is, for νa.P and b(a).P , we get
a 6∈ bn(P). Furthermore, bn(P) ∩ bn(Q) = ∅ for P |Q.

Substitutions are functions renaming free names of a process. Since substitutions
are crucial for the definition of the operational semantics of process equations, we
recall their definition. A substitution maps names onto names, i.e., σ : A → A.
The image of a name x under the substitution σ is denoted by σ(x). If we restrict
the domain and image of σ to two sets of names A,B ⊆ A, then σ(x) ∈ B if
x ∈ A and σ(x) = x otherwise. As an abbreviation, we use {a1, . . . , an/x1, . . . , xn}
for the substitution σ(xi) = ai, where 1 ≤ i ≤ n and σ(x) = x otherwise. To
achieve a well-formed application of a substitution σ to a process P , we demand
that bn(P) ∩ (im(σ) ∪ dom(σ)) = ∅.

15

Chapter 2 Preliminaries

Definition 2.3.2 (Application of Substitutions). Let σ : A → A be a substitution
and P be a process. The application of σ to P , denoted by Pσ is defined inductively
by:

(τ.P)σ = τ.(Pσ)

(x(y).P)σ = σ(x)(y).(Pσ)

(x〈y〉.P)σ = σ(x)〈σ(x)〉.(Pσ)

(M +N)σ = Mσ +Nσ

(P |Q)σ = Pσ |Qσ
(νa.P)σ = νa.(Pσ)

K⌊ã⌋σ = K⌊σ(ã)⌋
0σ = 0

A relation compatible with the operators of the π-Calculus is called a congruence
relation. That is, the relation is preserved under all possible compositions.

Definition 2.3.3 (Congruence Relation). Let ∼ be an equivalence relation on P,
i.e., ∼ is reflexive, symmetric and transitive. If ∼ satisfies the following properties,
we call ∼ a congruence relation.

∀P,Q,M ∈ P : ∀π : P ∼ Q implies π.P +M ∼ π.Q+M
∀P,Q,R ∈ P : P ∼ Q implies P |R ∼ Q |R

∀P,Q ∈ P : ∀a ∈ A P ∼ Q implies νa.P ∼ νa.Q

We use the structural congruence to identify processes with similar structural
properties. This congruence will play an important role for defining the behaviour
of processes. Furthermore, it is crucial for the structural semantics of processes
and for the semantics of the logic we define in Chapter 3.

Definition 2.3.4 (Structural Congruence). The structural congruence ≡ is the
smallest congruence relation on processes allowing the alpha-conversion of bound
names, where + and | are commutative and associative operators with 0 as the
neutral element. The quantifier ν is commutative and is absorbed by 0. The scope
of νn can be extended and shrunk over all processes which do not contain n free.
These properties are formalised as follows, where M,N,O are summations and
P,Q,R processes.

16

2.3 The π-Calculus

M ≡ M + 0 (Neutr-Sum)
M +N ≡ N +M (Com-Sum)
M + (N +O) ≡ (M +N) +O (Ass-Sum)
P ≡ P | 0 (Neutr-Par)
P |Q ≡ Q |P (Com-Par)
(P |Q) |R ≡ P | (Q |R) (Ass-Par)
νa.0 ≡ 0 (Neutr-Res)
νa.νb.P ≡ νb.νa.P (Com-Res)
νa.(P |Q) ≡ P |νa.Q a 6∈ fn(P) (Scope-Extr)

We will denote the equivalence class of a process P with respect to structural
congruence by [P].

A well-known representation of a process P is the standard form of P [Mil99,
SW01]. Informally, the standard form of P can be obtained by increasing the scope
of every restricted name not inside a summation as much as possible and by the
application of alpha-conversion where necessary.

Definition 2.3.5 (Standard Form). A process P sf is in standard form if and only
if it can be constructed with the following syntax.

P 6=ν ::= M p K⌊ã⌋ p P 6=ν
1 |P 6=ν

2

P sf ::= 0 p P 6=ν
p νa.P sf

where a ∈ fn(P sf) and M a non-empty summation. We will denote the set of all
processes in standard form by Psf .

The well-known fact that every process is structurally congruent with a process
in standard form is often used in proofs.

Lemma 2.3.1. Every process P ∈ P is congruent to a process in standard form
P sf ∈ Psf .

While the structural congruence will play an important role for the definition
of our logic (see forth Chapter 3) we want to reason about how the structure of
processes changes over time. Therefore, we need the reaction relation as defined by
Milner [Mil99, SW01]. This relation models the internal communication behaviour
of a process P , i.e., how the components of P interact with each other.

17

Chapter 2 Preliminaries

Definition 2.3.6 (Reaction Relation). The reaction relation →⊆ P×P is defined
by the following rules.

(Tau) τ.P +M → P

(React) (x(y).P +M) | (x〈z〉.Q+N)→ P{z/y} |Q
(Const) K⌊ã⌋ → P{ã/x̃}, if K(x̃) := P

P → P ′
(Par)

P |Q→ P ′ |Q
P → P ′

(Res)
νa.P → νa.P ′

Q ≡ P P → P ′ P ′ ≡ Q′

(Struct)
Q→ Q′

For every P ∈ P there are only finitely many structural incongruent processes Q
with P → Q, i.e the reaction relation is image-finite up to structural congruence.
The set of all processes reachable from P is denoted by Reach(P) = {P ′

p P →∗

P ′}.

Example 2.3.3. Consider the client and server processes from Example 2.3.1 and
the process P ≡ C⌊url⌋ |S⌊url⌋. Then P can react by (Const) and (Par) to

νip.url〈ip〉.ip(s).s(x).C⌊url⌋ |S⌊url⌋
→ νip.url〈ip〉.ip(s).s(x).C⌊url⌋ | url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋
→ νip.(ip(s).s(x).C⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S⌊url⌋)
→ νses.(ses(x).C⌊url⌋ | ses〈ses〉.S⌊url⌋)
→ C⌊url⌋ |S⌊url⌋

The first reaction above is again an application of (Const) and (Par), while the last
three reactions can be derived by the application of (React), (Struct), and (Res).
Observe that first two reactions could also be swapped. Since the last process
shown above is structurally congruent to P , we conclude that the transition system
Reach(P) is finite up to structural congruence.

We proceed with the definition of bisimilarity.

Definition 2.3.7 (Bisimulation). Let P and Q be processes. We call the relation
R ⊆ P × P a simulation if and only if whenever (P,Q) ∈ R and P → P ′, then

18

2.4 Structural Semantics

there exists aQ′ such thatQ→ Q′ and (P ′, Q′) ∈ R. If additionally for (P,Q) ∈ R
and for all Q′ with Q→ Q′ there exists a P ′ such that P → P ′ and (P ′, Q′) ∈ R,
we call R a bisimulation. If R is a bisimulation and (P,Q) ∈ R, we call P and Q
bisimilar.

2.4 Structural Semantics

Since the development of process algebras, there have been many approaches to
model the operational semantics by automata-theoretic models. These models are
normally intended to represent the concurrent behaviour of the processes. In this
section, we present the structural semantics by Meyer [Mey08] which is a transla-
tion of π-Calculus processes into Petri nets, but with a different intention. Instead
of modelling the smallest components of processes, i.e. the sequential processes,
as places of the Petri nets, the structural semantics identify substructures of the
processes connected by restricted names with the places. Therefore the restricted
form, a normal form like the standard form of Definition 2.3.5 is employed. It is a
parallel composition of fragments which are the mentioned substructures connected
by restricted names.

Definition 2.4.1 (Fragments and the Restricted Form). A process is a fragment
if it can be constructed by the following definition

F ::= M p K⌊ã⌋ p νa.(F1 | . . . |Fn),

where M is a non-empty choice and a ∈ fn(Fi) for all 1 ≤ i ≤ n . We denote
the set of all fragments by PF . A process is in restricted form if it is a parallel
composition of fragments, i.e., Prf = Πi∈IFi. The set of all processes in restricted
form is Pν .

As for the standard form, every process is structurally congruent to a process
in restricted form. Intuitively, the scope of restricted names has to be shrunk as
much as possible to get the restricted form of a process. The formal definition of
this intuition is given by Definition 2.4.2 while Lemma 2.4.1 is the equivalent to
Lemma 2.3.1.

Lemma 2.4.1. Every process P is structurally congruent with a process rf (P) in
restricted form. For a process in restricted form Prf we have rf (Prf) = Prf .

This lemma has been proved by Meyer [Mey08] by explicitly defining the function
rf : P → Pν . Since this function is essentially for the translation we will define,
we briefly recall its definition.

19

Chapter 2 Preliminaries

Definition 2.4.2 (rf : P → Pν).

rf (M +N) = M +N

rf (K⌊ã⌋) = K⌊ã⌋
rf (P1 |P2) = rf (P1) | rf (P2)

rf (νa.P) = νa.(Πi∈IFi)|Πi∈I\IaFi,

where rf (P) = Πi∈IFi with a ∈ fn(Fi) if and only if i ∈ Ia ⊆ I.

Furthermore, the restricted form is invariant up to the equivalence relation ≡rf .
This relation is the smallest equivalence relation satisfying commutativity and as-
sociativity of parallel composition ((Com-Par) and (Ass-Par)) and the replacement
of fragments by structural congruent fragments, i.e., if F and G are fragments and
F ≡ G, then F |P ≡rf G |P .

Lemma 2.4.2. For two processes P,Q ∈ P, P ≡ Q if and only if rf (P) ≡rf

rf (Q).

Another crucial element for the structural semantics is the decomposition func-
tion dec which yields for a process in restricted form Prf and a fragment F of Prf

the number of occurrences of F inside of Prf . This function will also be important
for the translation of our logic to LTL in Chapter 5.

Definition 2.4.3 (Decomposition Function dec : Pν → N
PF/≡). For every process

in restricted form Prf = Πi∈IFi, we define the function dec(Prf) : PF/≡ → N by
dec(Prf)([F]) := |IF |, where IF ⊆ I such that F ≡ Fi if and only if i ∈ IF .

The decomposition function is invariant under ≡rf and is compatible with
parallel composition.

Lemma 2.4.3. Let Prf , Qrf ∈ Pν. Then Prf ≡rf Qrf if and only if dec(Prf) =
dec(Qrf). Furthermore dec(Prf |Qrf) = dec(Prf) + dec(Qrf).

Lemma 2.4.2 and Lemma 2.4.3 again have been proved by Meyer [Mey08].
We are now ready to define the structural semantics N JP K of a π-Calculus

process P . The places of N JP K are all reachable fragments of P , the transitions
represent the possible reactions of P . The weight of every arc from (resp. to)
a transition represents the number of fragments needed (resp. created) by this
transition. The initial marking of N JP K is simply the decomposition of P into
fragments.

20

2.4 Structural Semantics

Definition 2.4.4 (Structural Semantics N J·K : P → PN). The structural se-
mantics is a mapping of a π-Calculus process P ∈ P to a Petri net N JP K :=
(S, T, λ,M0) defined as follows:

S := fg(rf (Reach(P)))/≡

T := {([F], [Q]) ∈ S × P/≡ p F → Q}
∪ {([F1 |F2], [Q]) ∈ P/≡ ×P/≡ p [F1], [F2] ∈ S and F1 |F2 → Q}

M0 := dec(rf (P))

For the definition of the weight function λ, consider the place [F] ∈ S and two
transitions ([F ′], [Q]), ([F1 |F2], [Q]) ∈ T :

λ([F], ([F ′], [Q])) := dec(F ′)([F])

λ([F], ([F1 |F2], [Q])) := dec(F1 |F2)([F])

λ(([F ′], [Q]), [F]) := λ(([F1 |F2], [Q]), [F]) := dec(rf (Q))([F])

Example 2.4.1. Consider the client/server definitions of Example 2.3.1 and the
process

P ≡ C⌊url⌋ |C⌊url⌋ |S⌊url⌋
The set of reachable fragments factorized by ≡ is P are

fg(rf (Reach(P)))/≡ = {[C⌊url⌋], [S⌊url⌋],

[νip.url〈ip〉.ip(s).s(x).C⌊url⌋],
[url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋],
[νip.(ip(s).s(x).C⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S⌊url⌋)],
[νses.(ses(x).C⌊url⌋ | ses〈ses〉.S⌊url⌋)]}

For the sake of clarity, we will abbreviate the fragments by

F1 ≡ C⌊url⌋
F2 ≡ S⌊url⌋
F3 ≡ νip.url〈ip〉.ip(s).s(x).C⌊url⌋
F4 ≡ url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋
F5 ≡ νip.(ip(s).s(x).C⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S⌊url⌋)
F6 ≡ νses.(ses(x).C⌊url⌋ | ses〈ses〉.S⌊url⌋)

21

Chapter 2 Preliminaries

The initial marking of N JP K is M0 = (2, 1, 0, 0, 0, 0) since P consists of two occur-
rences of F1 and one occurrence of F2. The structural semantics of P , i.e., N JP K
is shown in Figure 2.4.

[F1] [F3] [F4] [F2]

[F5]

[F6]

t1 t2t3

t4

t5

Figure 2.4: The structural semantics of P ≡ C⌊url⌋ |C⌊url⌋ |S⌊url⌋.

A important result found by Meyer is that the transition systems of a process
and its structural semantics are isomorphic. The dec function yields a Petri net
marking for a process P ∈ P and the inverse of dec is given by the following
definition.

Definition 2.4.5 (Retrieve Function retrieve : N
S → P/≡). LetN JP K = (S, T, λ,M0)

be the structural semantics of P ∈ P. For every marking M ∈ Reach(N JP K) the
function retrieve : N

S → P/≡ yields the process class [Q] ∈ P/≡ defined by

retrieve(M) :=
[
Π[F]∈supp(M)Π

M([F])F
]

With this function, we can define an isomorphism relating Reach(P)/≡ with
Reach(N JP K).

Proposition 2.4.1. Given a process P ∈ P and its structural semantics N JP K,
there is an isomorphism f : Reach(P)/≡ mapping [Q] to dec(rf (Q)). The process
associated to a marking can be reconstructed by retrieve(f([Q])) = [Q].

22

2.5 Linear Temporal Logic

Furthermore, Meyer has identified a very large decidable subset of the π-Calculus,
the structurally stationary processes. This class of processes includes all other cur-
rently known decidable sets of π-Calculus processes [Mey08]. A process is struc-
turally stationary, if the set of reachable fragments up to structural congruence is
finite. Meyer used an equivalent definition which we recall in Definition 2.4.6.

Definition 2.4.6 (Structural Stationarity). We call a process P ∈ P structurally
stationary, if there is a finite set S of fragments such that every fragment of a
reachable process of P is structurally congruent to a fragment in S.

∃{F1, . . . , Fn} : ∀Q ∈ Reach(P) : ∀F ∈ fg(rf (Q)) : ∃i : F ≡ Fi.

For every process P ∈ P and a reachable process P ′, i.e., P →∗ P ′, we have
that the structural semantics of P ′ is either equal or smaller than the structural
semantics of P , i.e., the places of N JP ′K are a subset of the places of N JP K
and the same relation holds for the transitions and the weight function. This
is reasonable, since all processes P ′ can react to are also reachable from P . Even
though Lemma 2.4.4 is almost immediate by Definition 2.4.4, we prove it explicitly.

Lemma 2.4.4. For two processes P, P ′ ∈ P and their Petri net semanticsN JP K =
(S, T, λ,M0) and N JP ′K = (S ′, T ′, λ′,M ′

0), P → P ′ implies that S ′ ⊆ S, T ′ ⊆ T
and λ′ ⊆ λ.

Proof of Lemma 2.4.4
Places: Let P → P ′. Then by definition P ′ ∈ Reach(P). FurthermoreReach(P ′) ⊆
Reach(P) and hence fg(Reach(P ′))/≡ ⊆ fg(Reach(P))/≡. Since S ′ = fg(Reach(P ′))/≡
and S = fg(Reach(P))/≡ we conclude S ′ ⊆ S.
Transitions: Let t be a transition of N JP ′K, i.e., t ∈ T ′. Then there are two
possibilities for the structure of t. If t = ([F], [Q]) with [F] ∈ S ′ and [Q] ∈ P/≡,
then [F] ∈ S since S ′ ⊆ S and hence t ∈ T . If t = ([F1|F2], [Q]) with [F1] ∈ S ′,
[F2] ∈ S ′ and [Q] ∈ P/≡, then similarly [F1], [F2] ∈ S and again t ∈ T .
Weight function: The definition of the weight function λ only depends on the dec
function, i.e., λ′ is the restriction of λ to S ′ × T ′ ∪ T ′ × S ′ and hence λ′ ⊆ λ.

2.5 Linear Temporal Logic

Temporal logics are a subset of modal logics. The interpretation of time differ-
entiates the possible temporal logics. First, time could be dense (continuous) or

23

Chapter 2 Preliminaries

discrete. The former is often used in philosophical temporal logics but also in the
analysis of real-time systems. Since neither standard Petri nets nor the π-Calculus
are designed to deal with this type of systems, we concentrate our view on discrete
time, i.e., the time has “gaps” between single moments x1 and x2.

There are essentially two different types of discrete-time logics, defined by the
different views on the flow of time. On the one hand, linear temporal logics assume
that every point in time x has a unique successor. On the other hand, the time
in branching time logics can split such that every x may have more than one
successor. Both approaches of temporal logics can be used to express properties of
computational systems like safeness or liveness. In this thesis, we will restrict our
view on propositional linear temporal logic (LTL or PTL) [Pnu77] on Petri nets.
For the definition of the syntax of LTL, we need a fixed set of atomic propositions
Prop. In the case of LTL on Petri nets, the atomic propositions have the form
p ≥ c, where p is a place of the Petri net and c ∈ N.

Definition 2.5.1 (Syntax). The syntax of LTL formulas is given by the following
BNF.

ϕ ::= p ≥ c p (¬ϕ) p (ϕ ∧ ψ) p (ϕ) p (ϕ)

We denote the set of all LTL formulas by LTL.

The remaining Boolean operators are defined as abbreviations the usual way.
The atomic formulas will be satisfied by the state of a Petri net, if and only if
the state p carries at least c tokens. The Boolean operators are interpreted as
usual. The formula ϕ (read as “next ϕ”) represents that in every state reachable
by exactly one firing transition, ϕ holds. Similarly, ϕ (read as “finally ϕ” or
“eventually ϕ”) is true, if every computation of the Petri net reaches a state, where
ϕ holds.

As convention, we use that ¬, and bind stronger than ∧. Then we can
eliminate unnecessary parentheses to increase the readability of formulas.

Example 2.5.1. The formula

(¬(p1 ≥ c)) ∧ (p2 ≥ c)

can be written as

¬p1 ≥ c ∧p2 ≥ c.

However, we will sometimes use parentheses which are unnecessary due to this
convention, to highlight the structure of formulas.

For defining the semantics, we need the notation of sequences of states.

24

2.5 Linear Temporal Logic

Definition 2.5.2 (Occurence Sequence). An occurrence sequence is an infinite
sequence σ = M0M1M2 . . . of markings of a Petri net, where Mi [〉Mi+1. If there
is a k such that Mk has no successors, we define Mn = Mk for all n ≥ k. We will
denote the set of all occurrence sequences by OC.

We define the semantics of a formula by the consequence relation |=LTL.

Definition 2.5.3 (Semantics). The truth of a formula ϕ is defined inductively
with respect to an occurrence sequence and a point in time x, according to the
structure of ϕ.

σ, x |=LTL p ≥ c iff Mx(p) ≥ c

σ, x |=LTL ¬ϕ iff σ, x 6|=LTL ϕ

σ, x |=LTL ϕ ∧ ψ iff σ, x |=LTL ϕ and σ, x |=LTL ψ

σ, x |=LTL ϕ iff σ, x+ 1 |=LTL ϕ

σ, x |=LTL ϕ iff ∃y : y ≥ x and σ, y |=LTL ϕ

A formula ϕ is satisfied by an occurrence sequence σ, if and only if σ, 0 |=LTL ϕ. A
Petri net P satisfies a formula ϕ, denoted by P |=LTL ϕ, if and only if all occurrence
sequences of the Petri net satisfy ϕ.

A typical abbreviation of LTL is the formula ϕ (read as “always” ϕ) defined
by

ϕ
def

= ¬¬ϕ
Hence an occurrence sequence and a point in time x satisfy ϕ if and only if no
y ≥ x exists such that σ, y |=LTL ¬ϕ, i.e., ∀y : y ≥ x implies σ, y |=LTL ϕ.

Example 2.5.2. Consider the Petri net N of Example 2.4 and

ϕ = [F1] ≥ 1 ∧ [F2] ≥ 1⇒[F6] ≥ 1

ThenN |=LTL ϕ since for all occurrence sequences σ ofN we get σ(0)([F1]) = 2 ≥ 1
and σ(0)([F2]) = 1 ≥ 1 and all computations reach a marking M with M([F6]) = 1
with at most 4 transitions.

Furthermore N |=LTL ϕ because after t5 fires, we reach again a state where ϕ
holds like described above and the markings in between trivially satisfy ϕ.

However, for

ϕ′ = [F1] ≥ 1 ∧ [F2] ≥ 1⇒[F6] ≥ 2,

we get that N 6|=LTL ϕ′, since M([F6]) = 1 or M([F6]) = 0 for every marking
M ∈ Reach(N).

25

Chapter 2 Preliminaries

26

3 A connection based logic for the
π-Calculus

This chapter deals with the definition of a structural and temporal logic for the
π-Calculus called PSTL (P i-Calculus S tructural T emporal Logic, pronounced“pis-
tol”). We define purely structural formulas describing the configuration of a process
at a single moment. These formulas will be used as atoms for the temporal formu-
las, defined by a syntax similar to LTL. Besides the standard Boolean connectors,
we will define an operator resembling the parallel composition of processes and a
quantifier on restricted names. Furthermore, the temporal modalities “next” ()
and “eventually” () of LTL are elements of the syntax of PSTL. This logic has a
strong connection to standard LTL, because we do not allow for every combination
of the structural and temporal operators.

The chapter is organised as follows: In Section 3.1 we will define the structural
formulas of PSTL together with some abbreviations. As mentioned above, these
formulas serve as atoms of the temporal logic we present in Section 3.2. Finally
we present some properties of PSTL, i.e., in particular equivalences of structural
formulas in Section 3.3.

3.1 Reasoning about structural properties

Syntax

Our logic PSTL contains a complete set of operators to describe a momentary
configuration of a process P .

Definition 3.1.1 (Syntax). The syntax of the structural fragment of PSTL is
given by the following BNF.

ϕ ::= ⊤ p P p free(a) p (¬ϕ) p (ϕ ∧ ψ) p (res a ϕ) p (ϕ ≬ ψ),

where P ∈ P and a ∈ A. We will denote the set of all structural formulas by PSL

27

Chapter 3 A connection based logic for the π-Calculus

The parallel composition operator ϕ ≬ ψ mimics the parallel composition of
two processes Q and R such that Q satisfies ϕ and R satisfies ψ. That a name
m in a process P is bound by a restriction, i.e., P ≡ νm.P ′ can be specified by
the restriction quantifier res. To guarantee that a ∈ fn(P), we use free(a). The
notation free(ã) will be used as an abbreviation for free(a1)∧free(a2)∧· · ·∧free(an),
where ã = a1, a2, . . . , an. We chose different symbols than | and ν to clearly
distinguish the formulas from processes. We will denote the set of all formulas of
the structural fragment by PSL. The remaining standard Boolean operators ∨,⇒
and ⇔ are defined as usual.

We adopt a priority of the operators to enhance the readability of formulas
by omitting parentheses. The negation ¬ and the restriction quantifier res a
bind stronger than conjunction ∧, which again binds stronger than the parallel
composition operator ≬.

Example 3.1.1. The following formulas ϕ, ψ and χ are structural formulas of
PSTL.

ϕ = res a res b (a〈x〉 ≬ ¬b〈x〉.c(y))
ψ = res b res a (¬b〈x〉.c(y) ≬ a〈x〉)
χ = free(a) ∧ (res b b〈x〉 ≬ res c (c〈x〉+ d〈x〉))

We call the elements a formula ϕ consists of the subformulas of ϕ. This notation
will be used for a case distinction in the translation of structural formulas in
Chapter 5.

Definition 3.1.2 (Subformula). For every structural formula ϕ, the set of subfor-
mulas of ϕ is denoted by sub(ϕ) and defined by

sub(⊤) = {⊤} sub(P) = {P}
sub(free(a)) = {free(a)} sub(¬ϕ) = {¬ϕ} ∪ sub(ϕ)
sub(ϕ ∧ ψ) = {ϕ ∧ ψ} ∪ sub(ϕ) ∪ sub(ψ)

sub(res a ϕ) = {res a ϕ} ∪ sub(ϕ)
sub(ϕ ≬ ψ) = {ϕ ≬ ψ} ∪ sub(ϕ) ∪ sub(ψ)

We call a formula ψ with ψ ∈ sub(ϕ) a subformula of ϕ.

Example 3.1.2. The subformulas of ϕ in Example 3.1.1 are

sub(ϕ) = {res a res b (a〈x〉 ≬ ¬b〈x〉.c(y)), res b (a〈x〉 ≬ ¬b〈x〉.c(y)),
a〈x〉 ≬ ¬b〈x〉.c(y), a〈x〉,¬b〈x〉.c(y), b〈x〉.c(y)}

28

3.1 Reasoning about structural properties

Since the formulas of PSTL are strongly related to π-Calculus processes, it is
possible to define the sets of free and bound names of a formula. The free names
of a formula are important for defining the semantics of the restriction operator
res. The definition is based on the free names of π-Calculus processes, the atoms
of PSTL.

Definition 3.1.3 (Free Names of a Formula). The set of free names of a formula ϕ
is fn(ϕ), given by the recursive definition shown in Figure 3.1. Similarly, Figure 3.1
shows the definitions of the bound names of a formula ϕ, denoted by bn(ϕ).

fn(P) = fn(P)

fn(free(a)) = {a}
fn(¬ϕ) = fn(ϕ)

fn(ϕ ∧ ψ) = fn(ϕ) ∪ fn(ψ)

fn(res a ϕ) = fn(ϕ) \ {a}
fn(ϕ ≬ ψ) = fn(ϕ) ∪ fn(ψ)

bn(P) = bn(P)

bn(free(a)) = ∅
bn(¬ϕ) = bn(ϕ)

bn(ϕ ∧ ψ) = bn(ϕ) ∪ bn(ψ)

bn(res a ϕ) = bn(ϕ) ∪ {a}
bn(ϕ ≬ ψ) = bn(ϕ) ∪ bn(ψ)

Figure 3.1: Definitions of free and bound names of a formula.

Example 3.1.3. Consider ϕ in Example 3.1.1. Then fn(ϕ) = {c, x} and bn(ϕ) =
{a, b, y}.

To replace a free name in a formula by a new one, we lift the substitution of names
to formulas. A substitution σ is a function of type A → A. For 0 ≤ i ≤ n, we
denote by {a0, . . . , an ← m0, . . . , mn} or {ã← m̃} the substitution with σ(ai) = mi

and σ(x) = x for all x 6= ai, where ã = a0, . . . , an and m̃ = m0, . . . , mn. For the
safe application of substitution, i.e., renaming only free and not bound names,
we assume that the bound names of a formula and the image and domain of the
substitution are disjoint, i.e., bn(ϕ) ∩ (im(σ) ∪ dom(σ)) = ∅.
Definition 3.1.4 (Application of Substitution).

P{ã← m̃} = P{m̃/ã}
free(a)σ = free(σ(a))

(¬ϕ)σ = ¬(ϕσ)

(ϕ ∧ ψ)σ = ϕσ ∧ ψσ
(res b ϕ)σ = res b (ϕσ)

(ϕ ≬ ψ)σ = ϕσ ≬ ϕσ

29

Chapter 3 A connection based logic for the π-Calculus

The following Lemma 3.1.1 is heavily used to prove equivalence of formulas. It
shows commutativity of substitutions σ and σ′, where the domains and images of
the substitutions are disjoint.

Lemma 3.1.1 (Commutativity of Substitution). Let ϕ be a structural formula
and a, b,m, n ∈ A different names. Then

ϕ{a← m}{b← n} = ϕ{b← n}{a← m}

Proof of Lemma 3.1.1
By induction on the structure of formulas.

Semantics

We present the semantics based on the structural consequence relation |=S. This
relation is defined according to the structure of formulas.

Definition 3.1.5. Let P ∈ P and a be a name, i.e., a ∈ A. Furthermore let ϕ, ψ ∈
PSL be structural formulas according to Definition 3.1.1. Then the consequence
relation |=S is defined by

P |=S ⊤ for all P ∈ P
P |=S P

′ iff P ≡ P ′

P |=S free(a) iff a ∈ fn(P)

P |=S ¬ϕ iff P 6|=S ϕ

P |=S ϕ ∧ ψ iff P |=S ϕ and P |=S ψ

P |=S res a ϕ iff ∃m ∈ A : ∃P ′ ∈ P : m 6∈ fn(P) ∪ fn(ϕ)

and P ≡ νm.P ′ and P ′ |=S ϕ{a← m}
P |=S ϕ ≬ ψ iff ∃P ′, P ′′ : P ≡ P ′ |P ′′ and P ′ |=S ϕ and P ′′ |=S ψ

We define satisfaction and validity of formulas.

Definition 3.1.6 (Satisfaction and Validity). A process P satisfying a formula
ϕ is denoted by P |=S ϕ. We write |=S ϕ if and only if all processes satisfy ϕ, i.e.,

|=S ϕ iff ∀P ∈ P : P |=S ϕ.

We then say that ϕ is valid.

30

3.1 Reasoning about structural properties

Example 3.1.4. Some examples for processes satisfying formulas would be

νb.b〈x〉 |=S res a (a〈x〉)
νa.(a〈x〉 | a(x).(x〈c〉+ x〈b〉)) |=S res y (y〈x〉 ≬ ⊤)

An example for a valid formula is

ϕ = res a (¬free(a) ∧ (b〈x〉 ≬ ⊤))⇒ (b〈x〉 ≬ ⊤)

Let P be a process satisfying res a (¬free(a) ∧ (b〈x〉 ≬ ⊤)) (otherwise P would
trivially satisfy ϕ). Then

P ≡ νm.P ′ and m 6∈ fn(P) ∪ {a, b, x}
and P ′ |=S (¬free(a) ∧ (b〈x〉 ≬ ⊤)){a← m}

Hence, m 6∈ fn(P ′) and P ′ |=S b〈x〉 ≬ ⊤. The semantics of the parallel
composition and the process atoms yields P ′ ≡ b〈x〉 |P ′′. Furthermore, we get
P ≡ νm.P ′ ≡ P ′, since m is not free in P ′. By transitivity of structural congru-
ence, we have P ≡ b〈x〉 |P ′′, i.e. P |=S b〈x〉 ≬ ⊤. Because P was arbitrary, we
conclude that ϕ is valid.

While the definition of the consequence relation for the atomic formulas and the
Boolean connectives is not surprising, the semantics of the restriction quantifier
res a are more involved. But this definition is needed to establish a connection
between the names in the process and the names in the formula under considera-
tion. If we use a simpler definition by omitting the need for substituting a fresh
name m, i.e., the definition is

P |=S res a ϕ iff ∃m ∈ A, P ′ ∈ P : P ≡ νm.P ′ and P ′ |=S ϕ, (3.1)

we end up with the result, that the set of processes satisfying a formula would
depend on the choice of the restricted name a . Consider for example

ϕ = res x (x〈b〉.b(y))

together with the processes P ≡ νa.(a〈b〉.b(y)) and Q ≡ νb.(a〈b〉.b(y)). Intuitively,
P should satisfy ϕ while Q should not. But with the simple restriction semantics
given in (3.1), we have to conclude that both P and Q satisfy ϕ. If we examine P
and ϕ, we end up with

P |=S res x (x〈b〉.b(y)) iff ∃m ∈ A, ∃P ′ : P ≡ νm.P ′ and P ′ |=S x〈b〉.b(y).

31

Chapter 3 A connection based logic for the π-Calculus

The only name bound by a restriction in P is a. If we use alpha-conversion to
get P ≡ P1 = νx.(x〈b〉.b(y)), we get P ′

1 ≡ x〈b〉.b(y), i.e., P ≡ res x (x〈b〉.b(y)).
Observe that we can not use alpha-conversion to achieve Q |=S res x (x〈b〉.b(y)).
But now consider

ϕ′ = res a (a〈b〉.b(y)).

Now both P |=S ϕ
′ and Q |=S ϕ

′. The connection between the restricted name a
and the use of a in a〈b〉.b(y) is completely lost in the semantics.

The more complex definition above establishes this connection by demanding
that m occurs free neither in P nor in ϕ and that m has to be substituted for x in
ϕ. The expanded semantics of ϕ is

P |=S res x (x〈b〉.b(y)) iff ∃m ∈ A, P ′ ∈ P : P ≡ νm.P ′

and m 6∈ fn(P) ∪ fn(x〈b〉.b(y))
and P ′ |=S x〈b〉.b(y){x← m}

The identification of m with a is possible, since a 6∈ fn(P) ∪ fn(x〈b〉.b(y)). Fur-
thermore, P ′ |=S x〈b〉.b(y){x← a}. Hence, P satisfies ϕ. The process Q however
does not satisfy ϕ. For Q |=S ϕ, there has to be an Q′ with Q ≡ νm.Q′ and
Q′ |=S x〈b〉.b(y){x ← m}. Since the only restriction in Q is on b, Q′ ≡ a〈b〉.b(y)
is the only possibility. But for every m 6= a, Q′ 6|=S x〈b〉.b(y){x ← m}. Since
a ∈ fn(Q), the choice m = a is not allowed and hence Q 6|=S ϕ. Some other
properties of the restriction quantifier will be explored in Section 3.3.

Remark: Our semantics of the restriction quantifier follows the ideas for the hid-
den name quantifier ν of Caires and Cardelli [CC01, CG01], but we refrain from
splitting our quantifier into a quantifier on fresh names and a revelation operator
as Caires and Cardelli did. We think that such splitting is not helpful in our set-
ting and only confuses the intuitive meaning of the quantifier. However, we lose
expressiveness because of this decision. E.g. it is not possible to express that a
process does not contain free names 3

We give a notion of equivalence of formulas which we will call structural equiv-
alence, since both formulas define essentially the same classes of processes.

Definition 3.1.7 (Structural Equivalence). If for two formulas ϕ1 and ϕ2 and
all processes P ∈ P, P |=S ϕ1 iff P |=S ϕ2 holds, we write ϕ1 ≡̂ ϕ2 and call ϕ1

structurally equivalent to ϕ2 and vice versa.

32

3.1 Reasoning about structural properties

There are many interesting properties, most of which are intuitively expected.
For example, the formulas ϕ and ψ of Example 3.1.1 should be structurally equiva-
lent due to the commutativity of the restriction quantifier and the parallel compo-
sition. And in fact, they are. But as shown above, the semantics of the restriction
quantifier is rather unfamiliar. Hence we explicitly show the needed equivalences
in Section 3.3, Lemma 3.3.5.

For the proofs of these and other useful equivalences, we will need the following
lemma. It shows that our semantics is well-defined with respect to the substitution
of free names.

Lemma 3.1.2 (Compatibility of Substitution with the Consequence Relation). Let
ϕ be a structural formula, P be a process and a,m ∈ A such that m 6∈ fn(P)∪fn(ϕ).
Then

P |=S ϕ iff P{m/a} |=S ϕ{a← m}.

Proof of Lemma 3.1.2
By induction on the structure of formulas.
Base Case P |=S Q:
Then m 6∈ fn(P) ∪ fn(Q) and P ≡ Q. Without loss of generalisation, we assume
that m 6∈ bn(P) ∪ bn(Q), since otherwise we could employ alpha-conversion to
achieve this. Hence P{m/a} ≡ Q{m/a}, i.e., P{m/a} |=S Q{a← m}. The other
direction is similar.
Base Case P |=S free(a):
Then a ∈ fn(P) and hence m ∈ fn(P{m/a}). Since free(m) = free(a){a ← m},
P{m/a} |=S free(a){a← m}.

Conversely, let P{m/a} |=S free(a){a ← m}, i.e., m ∈ fn(P{m/a}). Therefore
a ∈ fn(P), since m 6∈ fn(P). Hence P |=S free(a).
Case P |=S ¬ϕ:
This is equivalent to

P 6|=S ϕ

{Induction Hypothesis} iff P{m/a} 6|=S ϕ{a← m}
{Semantics} iff P{m/a} |=S ¬(ϕ{a← m})

{Application of Substitution} iff P{m/a} |=S (¬ϕ){a← m}

33

Chapter 3 A connection based logic for the π-Calculus

Case P |=S ϕ ∧ ψ:
The semantics of the conjunction yields

P |=S ϕ and P |=S ψ

{Induction Hypothesis} iff P{m/a} |=S ϕ{a← m} and P{m/a} |=S ψ{a← m}
{Semantics} iff P{m/a} |=S ϕ{a← m} ∧ ψ{a← m}

{Application of Substitution} iff P{m/a} |=S (ϕ ∧ ψ){a← m}

Case P |=S res b ϕ:
This is equivalent to

P ≡ νn.P ′ ∧ n 6∈ fn(P) ∪ fn(ϕ) ∧ P ′ |=S ϕ{b← n}

By the induction hypothesis, this is true if and only if

P ′{m/a} |=S ϕ{b← n}{a← m}.

We assume that n 6= a and n 6= m, because otherwise we could use alpha-conversion
to satisfy this condition. Since b ∈ bn(res b ϕ), we conclude the same for b. Then
we exploit the commutativity of substitutions (Lemma 3.1.1) to get the equivalence
to

P ′{m/a} |=S ϕ{a← m}{b← n}.

Because P{m/a} ≡ νn.(P ′{m/a}, the first statement holds if and only if

P ({m/a}) ≡ νn.(P ′{m/a})
and n 6∈ fn(P) ∪ fn(ϕ{a← m})

and P ′{m/a} |=S ϕ{a← m}{b← n}

is true. Finally, the semantics yields P{m/a} |=S (res b ϕ){a← m}.

34

3.1 Reasoning about structural properties

Case P |=S ϕ ≬ ψ:
The semantics yields the equivalence to

P ≡ P ′ |P ′′

and P ′ |=S ϕ

and P ′′ |=S ψ

{Induction Hypothesis} iff P ≡ P ′ |P ′′

and P ′{m/a} |=S ϕ{a← m}
and P ′′{m/a} |=S ψ{a← m}

{Definition 2.3.2} iff P{m/a} ≡ P ′{m/a} |P ′′{m/a}
and P ′{m/a} |=S ϕ{a← m}
and P ′′{m/a} |=S ψ{a← m}

{Semantics} iff P{m/a} |=S (ϕ ≬ ψ){a← m}

Often while specifying a property, one does not want to explicitly describe all
restrictions on a process for the sake of readability. Therefore we introduce the
operator res∗ as an abbreviation. First, we impose an arbitrary order on the free
names of a formula. We then compute all subsequences ñ of the free names and
construct a disjunction of all possible restrictions, including no restriction. This
definition considers all restrictions, since the restriction quantifier is commutative
(refer to Lemma 3.3.5).

Definition 3.1.8 (Arbitrary Restriction Quantification). For a formula ϕ, we use
the following abbreviation.

res∗ ϕ
def

=
∨

ñ⊆fn(ϕ)

res ñ ϕ

Example 3.1.5. Consider the formula res∗ ¬c〈x〉. Expanding res∗ yields

res c, x ¬c〈x〉 ∨ res c ¬c〈x〉 ∨ res x ¬c〈x〉 ∨ ¬c〈x〉.
With the help of this abbreviation we can define the formulaϕ to express that

somewhere in the process under consideration there is a process (possibly under
some restrictions) which satisfies ϕ. The logically dual operator is .

ϕ
def

= res∗(ϕ ≬ ⊤)

ϕ
def

= ¬¬ϕ

35

Chapter 3 A connection based logic for the π-Calculus

3.2 Reasoning about temporal progress

Syntax

As mentioned in the introduction, the formulas with temporal modalities are sim-
ilar to standard LTL formulas, but the atomic formulas of PSTL are more compli-
cated because they are structural formulas. This is formalised in Definition 3.2.1.

Definition 3.2.1 (Syntax). The syntax of PSTL is defined inductively as follows

ϕ ::= (ϕS) p (¬ϕ) p (ϕ ∧ ψ) p (ϕ) p (ϕ),

where ϕS is a structural formula as defined in Section 3.1. We will denote the set
of all PSTL formulas by PSTL.

The formulaϕ is true for a process P , if the process evolves within one reaction
to a process P ′ satisfying ϕ. Similarly, P satisfies ϕ, if there is a P ′ in all
computations of P such that P →∗ P ′ and P ′ |= ϕ. Like in Section 3.1, the
remaining Boolean operators are defined as the usual abbreviations. We adopt
the binding conventions of LTL to eliminate parenthesis, i.e., negation ¬, next
 and finally bind stronger than conjunction ∧. To clearly distinguish the
structural from the temporal operators, we will parenthesize structural formulas
ϕS if convenient.

Example 3.2.1. The formulas ϕ, ψ and χ are temporal formulas of PSTL.

ϕ = (a(x).x〈y〉 ≬ a〈b〉)⇒ b〈y〉
ψ = (res a (a(x) ≬ free(b))⇒ res a (b〈a〉 ≬ ⊤))

χ = ((res c (c(y) ≬ (νd.(d〈x〉+ a〈b〉.b〈x〉) ∨ b〈x〉)) ∨ (0 | a〈x〉))⇒0)

The formula χ shows, that the formulas of PSTL, although well-defined, can
be confusing sometimes due to the huge set of operators. For a more concise
specification, we introduce simpler atoms representing many sequential processes
at once in Chapter 4. Furthermore, Lemma 3.3.4 in Section 3.3 will show that we
can restrict the use of process to sequential ones. This means we can remove the
parallel composition | and the hidden name quantifier ν of the π-Calculus from
our formulas without loss of expressiveness.

Semantics

To define the semantics of PSTL we need the notion of process sequences similar
to the occurrence sequences of LTL. A process sequence models one sequence of
reactions of a π-Calculus process.

36

3.3 Properties of PSTL

Definition 3.2.2 (Process Sequence). A process sequence π is an infinite sequence
π = P0P1P2 . . ., where Pi ∈ P and Pi → Pi+1 for every i ≥ 0. We will denote Pi by
π(i). If there is a k so that Pk has no reactions, we define Pn = Pk for all n ≥ k.
We denote the set of all process sequences by PC.

We proceed with the definition of the semantics of temporal formulas. It is
similar to the semantics of LTL (refer to Definition 2.5.1 in Chapter 2).

Definition 3.2.3 (Semantics). The semantics of temporal formulas is based on a
process sequence π and an integer number x, with x ≥ 0.

π, x |= ϕS iff π(x) |=S ϕS

π, x |= ¬ϕ iff π, x 6|= ϕ

π, x |= ϕ ∧ ψ iff π, x |= ϕ and π, x |= ψ

π, x |= ϕ iff π, x+ 1 |= ϕ

π, x |=ϕ iff ∃y ≥ x : π, y |= ϕ

Definition 3.2.4 (Satisfaction and Validity). A process sequence π satisfies a
PSTL formula ϕ, written π |= ϕ if and only if π, 0 |= ϕ. A process P satisfies a
formula ϕ, denoted by P |= ϕ, if and only if

∀π ∈ PC : π(0) = P implies π |= ϕ.

We call a formula ϕ valid, if all processes P ∈ P satisfy ϕ, i.e.,

|= ϕ iff ∀P ∈ P : P |= ϕ.

3.3 Properties of PSTL

In this section we examine some interesting properties of the structural fragment
we will need for the translation of PSTL to LTL. We start with the observation
that the set of processes satisfying a formula is closed under structural congruence.

Lemma 3.3.1. Let P |=S ϕ and P ≡ Q. Then also Q |=S ϕ.

Proof of Lemma 3.3.1
By induction on the structure of ϕ.

37

Chapter 3 A connection based logic for the π-Calculus

Now we will show that the purely structural formulas satisfy the Gabbay-Pitts-
Property [GP99]. That is, if for a process P we can substitute a free name a of a
formula ϕ with a fresh name m such that P |=S ϕ{a ← m}, then we can choose
any fresh name p instead of m and P |=S ϕ{a← p} still holds. We will show that
this property holds for all names m which are fresh with respect to a finite set N
with fn(P) ∪ fn(ϕ) ⊆ N ⊂ A.

Lemma 3.3.2 (Gabbay-Pitts-Property). For all P ∈ P, ϕ ∈ PSL and finite set
N ⊂ A such that fn(P) ∪ fn(ϕ) ⊆ N and a ∈ fn(ϕ), the following equality holds:

∃m ∈ A : m 6∈ N and P |=S ϕ{a← m}

if and only if

∀m ∈ A : m 6∈ N implies P |=S ϕ{a← m}

Proof of Lemma 3.3.2
Let P ∈ P, ϕ ∈ PSL, a ∈ A and N ⊂ A such that N is finite, fn(P)∪ fn(ϕ) ⊆ N
and a ∈ fn(ϕ).

First we assume that ∀m ∈ A : m 6∈ N implies P |=S ϕ{a ← m}. Since N
is finite and A is infinite, there is a name p 6∈ N . By the assumption, we get
P |=S ϕ{a← m}. Hence ∃p ∈ A : p 6∈ N and P |=S ϕ{a← p}.

For the reverse direction we assume that there exists m ∈ A such that m 6∈ N
and P |=S ϕ{a← m}. Now we choose an arbitrary p ∈ A such that p 6∈ N .

1. If p = m we get by the assumption that P |=S ϕ{a← p}.

2. If p 6= m obviously p 6∈ N ∪ {m} is true. Since fn(P) ∪ fn(ϕ{a← m}) ⊆ N
also p 6∈ fn(P) ∪ fn(ϕ{a ← m}), i.e., p is fresh with respect to P and
ϕ{a ← m}. Hence by Lemma 3.1.2 P{p/m} |=S ϕ{a ← m}{m ← p}.
Because m 6∈ N , also m 6∈ fn(P). We conclude P |=S ϕ{a← p}.

Since p was an arbitrary name, we get that for all p ∈ A, p 6∈ N implies
P |=S ϕ{a← p}.

The Gabbay-Pitts-Property formalises the intuition, that if a process P satisfies
a formula ϕ, we can substitute free names of a formula, which do not occur free in
P by fresh ones.

38

3.3 Properties of PSTL

Example 3.3.1. Let P ≡ a〈x〉 and ϕ = ¬b〈x〉. Then we get, that P |=S ¬b〈x〉
since P 6≡ b〈x〉. Furthermore fn(P)∪fn(ϕ) = {a, b, x}. Because also P |=S ¬m〈x〉,
i.e., P |=S ¬b〈x〉{b ← m} we get that P |=S ¬b〈x〉{b ← m} for all m 6∈ {a, b, x}.
The constraint on m is a safe upper bound, since in this example we could choose
m = b or m = x and still get the desired result that P |=S ¬b〈x〉{b ← m}.
However, if we would take m = a, P would not satisfy ¬b〈x〉{b← a}.

On the other hand, consider ϕ′ = a〈x〉. Then there is no m 6∈ fn(P) ∪ fn(ϕ′)
such that P |=S a〈x〉{a← m}.

Lemma 3.3.3 shows that the structural fragment of PSTL is νx-proper. This
is a characterisation of well-definition of the restriction quantifier with respect to
structural congruence as shown by Cardelli and Gordon [CG01]. The property can
be described as follows. For a name n, a structural formula ϕ and a process P ,
there exists a process P ′ such that P ≡ νn.P ′ and P ′ satisfies the formula ϕ if and
only if n is not free in P and P satisfies the formula res a (ϕ{n ← a}), i.e., the
formula ϕ, where every occurrence of n is substituted by a now restricted name a.

Lemma 3.3.3 (νx-proper). For a process P ∈ P, the names a, n ∈ A and a
formula ϕ ∈ PSL, the following property holds.

n 6∈ fn(P) and P |=S res a (ϕ{n← a}) iff ∃P ′ : P ≡ νn.P ′ and P ′ |=S ϕ.

Proof of Lemma 3.3.3
Let n 6∈ fn(P) and P |=S res a (ϕ{n ← a}). Then P ≡ νm.Q where m 6∈
fn(P) ∪ fn(ϕ{n← a}) and Q |=S ϕ{n← a}{a← m}, i.e., Q |=S ϕ{n← m}.

1. If m = n then Q |=S ϕ.

2. If m 6= n then we get by Lemma 3.1.2 that Q{n/m} |=S ϕ. Furthermore
P ≡ νm.Q ≡ νn.(Q{n/m}).

Conversely assume P ≡ νn.P ′ and P ′ |=S ϕ. Now we choose two different
arbitrary fresh names m and a, i.e., m, a 6∈ fn(P) ∪ fn(ϕ) and m 6= a. Then
P ≡ νn.P ′ ≡ νm.(P ′{m/n}). By Lemma 3.1.2 P ′{m/n} |=S ϕ{n ← m}. Hence
P ′{m/n} |=S ϕ{n ← a}{a ← m}. Therefore P |=S res a (ϕ{n ← a}) and
n 6∈ fn(P).

39

Chapter 3 A connection based logic for the π-Calculus

That this property is a good distinction between proper and flawed restriction
quantifiers is not obvious. An example for a more natural characterisation would
be

νn.P |=S res a (ϕ{n← a}) iff P |=S ϕ. (3.2)

Unfortunately, the direction from left to right would violate structural congruence.
We give the example taken from Cardelli and Gordon, which clarifies this violation.
Consider b〈x〉 |=S b〈x〉. By (3.2), we get that

νb.b〈x〉 |=S res a (b〈x〉{b← a}).

Because νb.b〈x〉 ≡ νb.νb.b〈x〉 and Lemma 3.3.1, we get

νb.νb.b〈x〉 |=S res a (b〈x〉{b← a}).

Another application of (3.2) yields

νb.b〈x〉 |=S b〈x〉,

that is νb.b〈x〉 ≡ b〈x〉, which is obviously wrong. The problem is the second
application of 3.2, since the chosen process to satisfy b〈x〉 is not appropriate.
Hence we use existential quantification in Lemma 3.3.3.

Now we concentrate our view on equivalences of formulas. Most of these equiv-
alences work as expected, for example the commutativity of the parallel compo-
sition. Furthermore, we have found an equivalence resembling scope extrusion of
restricted names (Lemma 3.3.6), which is unfortunately not as easy as we hoped,
since we have to explicitly state that a name is not free with the help of the formula
free(a). All equivalences are shown in Table 3.1.

The following equivalence shows that we can model all restrictions and parallel
compositions of sequential processes with the operators of PSTL. By this result, we
can restrict the atoms of the structural fragment to sequential processes without
loss of expressiveness. These results will be used in Chapter 5.

Lemma 3.3.4. Let Q,R ∈ P. Then the following equivalences hold.

(i) Q |R ≡̂ Q ≬ R

(ii) νa.Q ≡̂ res a Q

Proof of Lemma 3.3.4
(i) Let P |=S Q |R. By the semantics this is equivalent to P ≡ Q |R, i.e. P ≡

40

3.3 Properties of PSTL

P |Q ≡̂ P ≬ Q (seq-Par)
νa.P ≡̂ res a P (seq-Res)
ϕ ≬ ψ ≡̂ ψ ≬ ϕ (Com-Parϕ)
(ϕ ≬ ψ) ≬ χ ≡̂ ϕ ≬ (ψ ≬ χ) (Ass-Parϕ)
res a res b ϕ ≡̂ res b res a ϕ (Com-Resϕ)
res a (ϕ ≬ ¬free(a) ∧ ψ) ≡̂ res a (ϕ) ≬ ψ, where a 6∈ fn(ψ) (Res-Scope)
¬ res a ϕ ≡̂ res a (¬ϕ) (Neg-Res)
res a (ϕ ≬ ⊤) ≡̂ res a (ϕ ≬ ⊤) ≬ ⊤ (Par-True-Res)
res a (ϕ ∨ ψ) ≡̂ res a ϕ ∨ res a ψ (Or-Res)
(ϕ1 ∨ ϕ2) ≬ ψ ≡̂ (ϕ1 ≬ ψ) ∨ (ϕ2 ≬ ψ) (Or-Par)
¬free(a) ∧ (ϕ ≬ ψ) ≡̂ ¬free(a) ∧ ϕ ≬ ¬free(a) ∧ ψ (Neg-Free-Par)

Table 3.1: Structural Equivalences

Q |R. For every process P ′ ∈ P, P ′ |=S P
′ and in particular Q |=S Q and R |=S R.

So, we can conclude that

P |=S Q |R iff P ≡ Q |R and Q |=S Q and R |=S R,

which is the definition of P |=S Q ≬ R.
(ii) Let P |=S νa.Q, which is equivalent to P ≡ νa.Q. By alpha-conversion we
get νa.Q ≡ νn.(Q{n/a}), with n 6∈ fn(Q). Since fn(P) ⊆ fn(Q), we also have
n 6∈ fn(P) ∪ fn(Q). Additionally, we know that Q{n/a} |=S Q{a ← n}. In
summary we have

P |=S νa.Q iff P ≡ νn.(Q{n/a}) and n 6∈ fn(P) ∪ fn(Q)

and Q{n/a} |=S Q{a← n}

This result concludes the proof, because with Q{n/a} ≡ P ′, it is the definition of
P |=S res a Q.

Our parallel composition operator of structural formulas is commutative and
associative. The restriction quantifier is commutative. These properties are shown
in Lemma 3.3.5.

Lemma 3.3.5 (Commutativity of ≬ and res, Associativity of ≬). Let ϕ, ψ and χ
be structural formulas and a, b ∈ A. Then

(i) ϕ ≬ ψ ≡̂ ψ ≬ ϕ

(ii) (ϕ ≬ ψ) ≬ χ ≡̂ ϕ ≬ (ψ ≬ χ)

41

Chapter 3 A connection based logic for the π-Calculus

(iii) res a res b ϕ ≡̂ res b res a ϕ

Proof of Lemma 3.3.5
(i) and (ii): Immediate by the semantics (Definition 3.1.5).
(iii) Let P |=S res a res b ϕ, i.e., P ≡ νm.νn.Q, with m 6∈ fn(P)∪ fn(res b ϕ), n 6∈
fn(νn.Q)∪fn(ϕ) and Q |=S ϕ{a← m}{b← n}. Without loss of generalisation, we
can choose m and n such that a 6= m and b 6= n. Since fn(νm.νn.Q) ⊆ fn(νn.Q)
(Definition 2.3.1) and fn(res a ϕ) ⊆ fn(ϕ) (Definition 3.1.3), we also have n 6∈
fn(P) ∪ fn(res a ϕ). Furthermore, we know that P ≡ νm.νn.Q ≡ νn.νm.Q.

Now we choose a fresh m′ ∈ A to rename m by alpha-conversion, i.e. m′ 6∈
fn(Q) ∪ fn(ϕ) and P ≡ νn.νm′.Q{m′/m}. Obviously m′ 6∈ fn(νm′.Q{m′/m}) ∪
fn(ϕ) is true. Then

{Lemma 3.1.2} Q{m′/m} |=S ϕ{a← m}{b← n}{m← m′}
⇒ Q{m′/m} |=S ϕ{a← m′}{b← n}

{Lemma 3.1.1} ⇒ Q{m′/m} |=S ϕ{b← n}{a← m′}

By Q{m′/m} ≡ Q′, we get that P ≡ νn.νm′.Q′ with n 6∈ fn(P) ∪ fn(res a ϕ),
m′ 6∈ fn(νm′.Q′) ∪ fn(ϕ) and Q′ |=S ϕ{b← n}{a← m′}, i.e., P |=S res b res a ϕ.

The other direction is similar.

Lemma 3.3.6 states an equivalent to scope extrusion of the structural congruence
relation, even though it looks more complicated. The conjunction of the formula
ψ which does not contain the name a with the assertion ¬free(a) looks redundant,
but is necessary for the equivalence. This is due to the observation that we need
to ensure that neither the elements of ϕ contain the name a nor the process P
contains the semantic counterpart to a, which we normally call m. Consider for
example the formulas

ϕ = res a (a〈x〉 ≬ ¬b〈x〉)
ψ = res a a〈x〉 ≬ ¬b〈x〉

and the process

P ≡ νm.(m〈x〉 |m〈x〉).

Clearly a 6∈ fn(¬b〈x〉). Furthermore P |=S ϕ but P 6|=S ψ. Now consider

ϕ′ = res a (a〈x〉 ≬ ¬free(a) ∧ ¬b〈x〉).

Then we get that P 6|=S ϕ
′.

42

3.3 Properties of PSTL

Lemma 3.3.6. Let ϕ and ψ be structural formulas of PSTL. Furthermore let
a ∈ A such that a 6∈ fn(ψ). Then

res a (ϕ ≬ ¬free(a) ∧ ψ) ≡̂ res a ϕ ≬ ψ

Proof of Lemma 3.3.6
Let P |=S res a (ϕ ∧ ¬free(a) ∧ ψ. Then

P ≡ νm.P ′ and m 6∈ fn(P) ∪ fn(ϕ) and P ′ |=S (ϕ ≬ ¬free(a) ∧ ψ){a← m}.
Definition 3.1.4 and the semantics of the parallel composition yield

P ′ ≡ Q |R and Q |=S ϕ{a← m} and R |=S (¬free(a) ∧ ψ){a← m}.
That R |=S ¬free(a){a← m} is equivalent to R |=S ¬free(m), i.e. m 6∈ fn(R) and
since a 6∈ fn(ψ), R |=S ψ{a← m} can be simplified to R |=S ψ. Now we can apply
(Scope-Extr) to get

P ≡ νm.(Q |R) ≡ νm.Q |R.
By the semantics of the restriction quantifier and the parallel composition, we
conclude

P |=S res a ϕ ≬ ψ.

Conversely, let P |=S res a ϕ ≬ ψ, i.e., P ≡ Q |R where Q |=S res a ϕ and
R |=S ψ. Then Q ≡ νm.Q′ with m 6∈ fn(Q) ∪ fn(ϕ) and Q |=S ϕ{a ← m}. We
choose m such that m 6∈ fn(Q) ∪ fn(ϕ) ∪ fn(ψ) ∪ fn(R), which is possible due to
alpha-conversion and the finiteness of fn(ψ) ∪ fn(R). Then by (Scope-Extr)

P ≡ νm.Q′ |R ≡ νm.(Q′ |R).

Because a 6∈ fn(ψ), R |=S ψ{a← m} andR |=S ¬free(m) , i.e., R |=S (¬free(a)){a←
m}. Hence R |=S (¬free(a) ∧ ψ){a← m} and

Q′ |R |=S ϕ{a← m} ≬ (¬free(a) ∧ ψ){a← m}.
Definition 3.1.4 and the semantics of the restriction operator yield

P |=S res a (ϕ ≬ ¬free(a) ∧ ψ).

Furthermore, we have identified three distributive laws. The first is distribution
of the restriction quantifier over disjunction. The other laws concern the par-
allel composition operator. That is, disjunction and the assertion that a name
occurs not free are distributive over parallel composition. The laws are shown in
Lemma 3.3.7.

43

Chapter 3 A connection based logic for the π-Calculus

Lemma 3.3.7 (Distributive Laws). For the formulas ϕ, ψ, χ and a name a ∈ A,
the following structural equivalences hold.

(i) res a (ϕ ∨ ψ) ≡̂ res a ϕ ∨ res a ψ

(ii) ϕ ∨ ψ ≬ χ ≡̂ (ϕ ≬ χ) ∨ (ψ ≬ χ)

(iii) ¬free(a) ∧ (ϕ ≬ ψ) ≡̂ ¬free(a) ∧ ϕ ≬ ¬free(a) ∧ ψ

Proof of Lemma 3.3.7
(i) Let P |=S res a (ϕ ∨ ψ). Then

P ≡ νm.P ′ and m 6∈ fn(P) ∪ fn(ϕ ∨ ψ) and P ′ |=S (ϕ ∨ ψ){a← m},

i.e., P ′ |=S ϕ{a← m} or P ′ |=S ψ{a← m}. If m 6∈ fn(ϕ∨ψ) then m 6∈ fn(ϕ) and
m 6∈ fn(ψ). Hence

P ≡ νm.P ′ and m 6∈ fn(P) ∪ fn(ϕ) and P ′ |=S ϕ{a← m}

or

P ≡ νm.P ′ and m 6∈ fn(P) ∪ fn(ψ) and P ′ |=S ψ{a← m}.

Therefore P |=S res a ϕ or P |=S res a ψ, i.e., P |=S res a ϕ ∨ res a ψ.
Now let P |=S res a ϕ ∨ res a ψ. Then

P ≡ νm.Q and m 6∈ fn(P) ∪ fn(ϕ) and Q |=S ϕ{a← m}

or

P ≡ νn.R and n 6∈ fn(P) ∪ fn(ψ) and R |=S ψ{a← n}.

Now we choose a new name m′ such that m′ 6∈ fn(P) ∪ fn(ϕ) ∪ fn(ψ), i.e. m 6∈
fn(P)∪ fn(ϕ∨ψ). Then with the application of alpha-conversion and Lemma 3.1.2

P ≡ νm′.(Q{m′/m}) and m′ 6∈ fn(P) ∪ fn(ϕ ∨ ψ) and Q{m′/m} |=S ϕ{a← m}{m← m′}

or

P ≡ νm′.(R{m′/n}) and m′ 6∈ fn(P) ∪ fn(ϕ ∨ ψ) and R{m′/n} |=S ψ{a← n}{n← m′}.

Hence

P ≡ νm′.P ′ and m′ 6∈ fn(P) ∪ fn(ϕ ∨ ψ) and P ′ |=S ϕ{a← m′} or P ′ |=S ψ{a← m′}.

44

3.3 Properties of PSTL

The semantics and Definition 3.1.4 yield P ′ |=S (ϕ ∨ ψ){a ← m′}. So we finally
conclude P |=S res a (ϕ ∨ ψ).
(ii) Let P |=S ϕ ∨ ψ ≬ χ. By the semantics this is equivalent to

P ≡ Q |R and Q |=S ϕ ∨ ψ and R |=S χ (3.3)

This statement is true, if and only if

Q |=S ϕ or Q |=S ψ. (3.4)

Rearranging (3.3) and (3.4) yields

P ≡ Q |R and Q |=S ϕ and R |=S χ

or

P ≡ Q |R and Q |=S ψ and R |=S χ.

Hence the equivalence to P |=S (ϕ ≬ χ) ∨ (ψ ≬ χ).
(iii) Let P |=S ¬free(a)∧(ϕ ≬ ψ). This is equivalent to a 6∈ fn(P) and P |=S ϕ ≬ ψ,
which again is equivalent to

P ≡ Q |R and Q |=S ϕ and R |=S ψ.

Because fn(P) = fn(Q)∪ fn(R), a 6∈ fn(P) if and only if a is neither free in Q nor
in R. Hence Q |=S ¬free(a) ∧ ϕ and R |=S ¬free(a) ∧ ψ which is by Definition 3.1
equivalent to P |=S ¬free(a) ∧ ϕ ≬ ¬free(a) ∧ ψ.

A rather interesting property is the independence of negation and the restriction
quantifier. That is, if we consider a formula of the form ¬ res a ϕ, we can swap
the negation and quantification.

Lemma 3.3.8.

¬ res a ϕ ≡̂ res a ¬ϕ

Proof of Lemma 3.3.8
Let P |=S ¬ res a . By the semantics this is equivalent to P 6|=S res a ϕ, i.e.,
P 6≡ νm.P ′ or m 6∈ fn(P) ∪ fn(ϕ) or P ′¬ |=S ϕ{a ← m}. Observe that due to
the finiteness of fn(P)∪ fn(ϕ) we can always choose an appropriate m and in this

45

Chapter 3 A connection based logic for the π-Calculus

case also P ≡ νm.P ′ holds. Hence the only possibility for P |=S ¬ res a ϕ to hold
is P ′ 6|=S ϕ{a ← m} which is by the semantics equivalent to P ′ |=S ¬ϕ{a ← m}.
By the definition of substitution application, this is true if and only if P ′ |=S

(¬ϕ){a← m}. Hence the equivalence to P |=S res a (¬ϕ).

The interaction of⊤ with quantification of restricted names is shown in Lemma 3.3.9.
If we have a restriction quantification over a parallel composition with ⊤, we can
compose this formula in parallel with ⊤ and the other way round. Intuitively, this
holds, since the processes satisfying ⊤ can contain the restricted name free or not,
and we can extrude the scope of the restriction appropriately.

Lemma 3.3.9. Let ϕ be a PSTL-formula and a ∈ A. Then

res a (ϕ ≬ ⊤) ≡̂ res a (ϕ ≬ ⊤) ≬ ⊤.

Proof of Lemma 3.3.9
Let P |=S res a (ϕ ≬ ⊤), i.e.,

P ≡ νm.P ′ and m 6∈ fn(P) ∪ fn(ϕ ≬ ⊤) and P ′ |=S (ϕ ≬ ⊤){a← m}.

Hence P ′ ≡ Q |R with Q |=S ϕ{a← m} and R |=S ⊤.

1. If m 6∈ fn(R), we get by (Scope-Extr) that

P ≡ νm.Q |R ≡ νm.(Q | 0) |R.

Now let Q′ ≡ νm.(Q | 0). Then m 6∈ fn(Q′) since fn(Q′) ⊆ fn(P), conse-
quently Q′ |=S res a (ϕ ≬ ⊤). Therefore P |=S res a (ϕ ≬ ⊤) ≬ ⊤.

2. If m ∈ fn(R), we can use (Neutr-Par) to get P ≡ P | 0. Since 0 |=S ⊤, and
P |=S res a (ϕ ≬ ⊤) we conclude P |=S res a (ϕ ≬ ⊤) ≬ ⊤.

Conversely let P |=S res a (ϕ ≬ ⊤) ≬ ⊤. Then P ≡ Q |R such that Q |=S

res a (ϕ ≬ ⊤) and R |=S ⊤. Hence Q ≡ νm.(Q′ |Q′′) where m 6∈ fn(Q)∪fn(ϕ ≬ ⊤),
Q′ |=S ϕ{a← m} and Q′′ |=S ⊤.

1. Letm 6∈ fn(R). Then by (Scope-Extr) Pνm.(Q′ |Q′′ |R). Since Q′′ |R |=S ⊤,
we get P |=S res a (ϕ ≬ ⊤).

46

3.3 Properties of PSTL

2. If m ∈ fn(R), we choose an m′ 6∈ fn(R) and use alpha-conversion which
yields

P ≡ νm′.(Q′{m′/m} |Q′′{m′/m}) |R.

Now we can apply (Scope-Extr) to get

P ≡ νm′.(Q′{m′/m} |Q′′{m′/m} |R).

By Lemma 3.1.2, we get that Q′{m′/m} |=S ϕ{a ← m}{m ← m′} which is
equivalent to Q′{m′/m} |=S ϕ{a ← m′}. Because Q′′{m′/m} |R |=S ⊤, we
conclude P |=S res a (ϕ ≬ ⊤).

47

Chapter 3 A connection based logic for the π-Calculus

48

4 Complex atoms for simple
reasoning

In this chapter, we present a new type of structural atoms, identificators, which
will simplify the reasoning with PSTL. We denote the identificators like process
identifiers with capital lettersK,L, The general idea behind these identificators
is that a process P satisfies the identificator K if and only if there is a process
equation K(x̃) := PK and P is derived from PK . The intuition would be that K
is the name of a procedure in a program, PK is the program code and P is the
actual location within the procedure during its execution.

To achieve this result, we compute a new process P ′ bisimilar to P , which con-
tains information about its caller. Therefore, we have to make some assumptions
about the initially defined processes.

Assumption: Every process is either structurally congruent to 0, or does not
contain 0. This is no restriction on the possible process. E.g. consider the process
x(y).0. We introduce a new process identifier D with the defining equation D := 0
and transform the initial process to x(y).D. This transformation can be applied
to all processes.

Assumption: The evolution of the process under consideration starts with a
special process identifier, to which we refer as SYS.

Assumption: The process identifiers of all reachable processes constitute the set
I.

4.1 Tagging Process Calls

With the assumptions given in the introduction of this chapter, we construct a
new system of process equations by adding a superscript that refers to the caller of
the equation to every process identifier occurring in process equation definitions.

We therefore employ a renaming function renK : P → P, such that renK(P)
adds K as a superscript to every process identifier occurring in P .

49

Chapter 4 Complex atoms for simple reasoning

Definition 4.1.1. For every process identifier K, the function renK : P → P is
defined by

renK(L) = LK

renK(L⌊ã⌋) = renK(L)⌊ã⌋
renK(π.P) = π.renK(P)

renK(M +N) = renK(M) + renK(N)

renK(P |Q) = renK(P) | renK(Q)

renK(νa.P) = νa.renK(P)

Lemma 4.1.1 shows the independence of renaming and application of substitu-
tion on processes, i.e., the order of renaming and substitution is unimportant. We
will need this result for proving the bisimilarity of the original and the renamed
processes stated in Proposition 4.1.1.

Lemma 4.1.1. The renaming function is compatible with the application of sub-
stitutions, i.e., for all substitutions σ, P ∈ P and process identifiers K,

renK(P)σ = renK(Pσ).

Proof of Lemma 4.1.1
We use induction according to the structure of processes.
Base Case L⌊ã⌋:

renK(L⌊ã⌋)σ
{Definition of renK} = renK(L)⌊ã⌋σ
{Definition of renK} = LK⌊ã⌋σ

{Application of substitution} = LK⌊σ(ã)⌋
{Definition of renK} = renK(L)⌊σ(ã)⌋
{Definition of renK} = renK(L⌊σ(ã)⌋)

For the induction step, we assume the lemma holds for the processes P and Q
and the sums M and N .
Case π.P :
We examine this case for π = x〈z〉, since the cases π = x(y) and π = τ can be

50

4.1 Tagging Process Calls

handled similarly.

renK(x〈z〉.P)σ

{Definition of renK} = (x〈z〉.renK(P))σ

{Application of substitution} = σ(x)〈σ(z〉.(renK(P)σ)

{Induction Hypothesis} = σ(x)〈σ(z)〉.renK(Pσ)

{Definition of renK} = renK(σ(x)〈σ(z)〉.(Pσ))

{Application of substitution} = renK((x〈z〉.P)σ)

Case M +N and P |Q:
Since renK and the application of substitution are defined similar for M +N and
P |Q, it is sufficient to examine one of these cases. We show the lemma for M+N .

renK(M +N)σ

{Definition of renK} = (renK(M) + renK(N))σ

{Application of substitution} = renK(M)σ + renK(N)σ

{Induction hypothesis} = renK(Mσ) + renK(Nσ)

{Definition of renK} = renK(Mσ +Nσ)

{Application of substitution} = renK((M +N)σ)

Case νa.P :

renK(νa.P)σ

{Definition of renK} = (νa.renK(P))σ

{Application of substitution} = νa.(renK(P))σ

{Induction Hypothesis} = νa.renK(Pσ)

{Definition of renK} = renK(νa.(Pσ))

{Application of substitution} = renK((νa.P)σ)

That renaming preserves the internal structure of a process is formulated in
Lemma 4.1.2. It shows that two structural congruent processes remain congruent
after the application of renK to both processes. This result is not surprising, since
renaming is homomorphic on the operators of the π-Calculus. Nevertheless we
explicitly prove the statement because we need it for the proof of Proposition 4.1.1.

51

Chapter 4 Complex atoms for simple reasoning

Lemma 4.1.2. The renaming function is compatible with structural congruence.
For all processes P,Q ∈ P and all process identifiers K, the following equivalence
holds:

P ≡ Q iff renK(P) ≡ renK(Q).

Proof of Lemma 4.1.2
The right to left direction is immediate by dropping all superscripts of the process
identifiers of renK(P) and renK(Q).

For the other direction, we proceed by induction on the derivatives of structural
congruence. Most of the base cases are simple applications of the definition of
renK .
Base Case P ≡ P | 0 and νa.0 ≡ 0:
The proofs for the laws concerning the process 0 are straightforward applications
of Definition 4.1.1.

renK(P | 0) = renK(P) | renK(0) = renK(P) | 0 ≡ renK(P)

renK(νa.0) = νa.renK(0) = νa.0 ≡ 0 = renK(0)

Base Case P |Q ≡ Q |P and M +N ≡ N +M :
We only consider the law P |Q ≡ Q |P , since the proof for the commutative law
of the choice operator is similar.

renK(P |Q) = renK(P) | renK(Q) ≡ renK(Q) | renK(P) = renK(Q |P)

Base Case (P |Q) |R ≡ P | (Q |R) and (M +N) +O ≡M + (N +O):
Again we refrain from proving the law for the choice operator due to its similarity
to the proof given below.

renK((P |Q) |R)

= renK((P |Q)) | renK(R)

= (renK(P) | renK(Q)) | renK(R)

≡ renK(P) | (renK(Q) | renK(R))

= renK(P) | renK(Q |R)

= renK(P | (Q |R))

Base Case νa.(P |Q) ≡ P | νa.Q, if a 6∈ fn(P):
For this law, we have to note, that fn(P) = fn(renK(P)). This is true, since renK

52

4.1 Tagging Process Calls

does not change any names of the renamed process.

renK(νa.(P |Q))

= νa.renK(P |Q)

= νa.(renK(P) | renK(Q))

{fn(P) = fn(renK(P))} ≡ renK(P) | νa.renK(Q)

= renK(P) | renK(νa.Q)

= renK(P | νa.Q)

Base Case νa.νb.P ≡ νb.νa.P :
This proof is again a straightforward application of Definition 4.1.1 and the stan-
dard laws of structural congruence.

renK(νa.νb.P)

= νa.renK(νb.P)

= νa.νb.renK(P)

≡ νb.νa.renK(P)

= νb.renK(νa.P)

= renK(νb.νa.P)

For the induction step, assume the Lemma holds for the processes P,Q ∈ P.
We will not show the proofs for reflexivity, symmetry and transitivity.
Case P ≡ Q implies π.P +M ≡ π.Q+M :

renK(π.P +M)

= renK(π.P) + renK(M)

= π.renK(P) + renK(M)

{Induction Hypothesis} ≡ π.renK(Q) + renK(M)

= renK(π.Q) + renK(M)

= renK(π.P +M)

53

Chapter 4 Complex atoms for simple reasoning

Case P ≡ Q implies P |R ≡ Q |R:

renK(P |R)

= renK(P) | renK(R)

{Induction Hypothesis} ≡ renK(Q) | renK(R)

= renK(P |Q)

Case P ≡ Q implies νa.P ≡ νa.Q:

renK(νa.P)

= νa.renK(P)

{Induction Hypothesis} ≡ νa.renK(Q)

= renK(νa.Q)

In summary, we have shown that P ≡ Q iff renK(P) ≡ renK(Q).

Now we define, how a given set of process equations shall be renamed in order
to use identificators as formulas. For a process P with the defining equations
Ki(x̃) := Pi where 1 ≤ i ≤ n and Ki ∈ I, we create new process equations for
every process identifier Ki and L ∈ I by simultaneously adding L as a superscript
to Ki(x̃) and renaming Pi by Ki. This models that the process Pi has been called
by Ki.

Definition 4.1.2 (Tagged Process System). Let E ::= {Ki(x̃) := Pi p Ki ∈ I}.
The tagged process system is defined by

E ′ ::={Ki
L(x̃) := renKi

(Pi) p Ki(x̃) := Pi ∈ E and Ki, L ∈ I}

The initial process of the tagged process system is SYSSYS.

Tagging a process system increases the number of process equation significantly.
If the number of process equations in E is n, then the size of E ′ is nn. But normally
many of the created equations will not be reachable from the initial process.

To show that tagging a system of processes does not change the behaviour of
the processes, we define a suitable bisimulation R.

54

4.1 Tagging Process Calls

Proposition 4.1.1. For m,n ∈ N and Kj ∈ I for 1 ≤ j ≤ m, the relation R
defined by

(P,Q) ∈ R iff

{
P ≡ νã.(P 6=ν

1 | . . . |P 6=ν
n)

Q ≡ νã.(renK1
(P 6=ν

1) | . . . | renKm(P 6=ν
n))

is a bisimulation.

Proof of Proposition 4.1.1
We use that P is structurally congruent to its standard form P sf . Because of
Lemma 4.1.2, we only consider the possible reactions of P sf . Furthermore, with
reaction rule (Struct), the reactions of P are the same as the reactions of P sf

and by Meyer [Mey08, Proposition 2.1.2] we can cut the possibilities for reactions
P sf → P ′ down to three.

1. A process in P sf consumes a τ prefix.

2. Two process in P sf communicate with each other.

3. A process call in P sf is expanded.

We only show the first case, since the other two are similar.

P ≡ νã.(P 6=ν
1 | . . . |M + τ.P ′

i +N | . . . |P 6=ν
n)

→ νã.(P 6=ν
1 | . . . |P ′

i | . . . |P 6=ν
n)

≡ P ′

The process P ′
i is congruent to a process in standard form.

P ′
i ≡ νb̃.(R 6=ν

1 | . . . |R 6=ν
k)

Since all bound names of P are different and bn(P) ∩ fn(P) = ∅, we can apply
scope extrusion.

P ′ ≡ νã.(P 6=ν
1 | . . . |P ′

i | . . . |P 6=ν
n)

≡ νã.(P 6=ν
1 | . . . | νb̃.(R 6=ν

1 | . . . |R 6=ν
k) | . . . |P 6=ν

n)

≡ νãb̃.(P 6=ν
1 | . . . |R 6=ν

1 | . . . |R 6=ν
k | . . . |P 6=ν

n)

≡ νãb̃.(P 6=ν
1 | . . . |Πk

j=1R
6=ν
j | . . . |P 6=ν

n)

55

Chapter 4 Complex atoms for simple reasoning

Now we consider Q with (P,Q) ∈ R, i.e.

Q ≡ νã.(renK1
(P 6=ν

1) | . . . | renKi
(M + τ.P ′

i +N) | . . . | renKm(P 6=ν
n))

= νã.(renK1
(P 6=ν

1) | . . . | renKi
(M) + τ.renKi

(P ′
i) + renKi

(N) | . . . | renKm(P 6=ν
n))

→ νã.(renK1
(P 6=ν

1) | . . . | renKi
(P ′

i) | . . . | renKm(P 6=ν
n))

≡ Q′

We examine renKi
(P ′

i).

renKi
(P ′

i) ≡ renKi
(νb̃.(R 6=ν

1 | . . . |R 6=ν
k))

= νb̃.(renKi
(R 6=ν

1 | . . . |R 6=ν
k))

= νb̃.(renKi
(R 6=ν

1) | . . . | renKi
(R 6=ν

k))

= νb̃.(Πk
j=1renKi

(R 6=ν
j))

Hence, we get that

Q′ ≡ νã.(renK1
(P 6=ν

1) | . . . | renKi
(P ′

i) | . . . | renKm(P 6=ν
n))

≡ νã.(renK1
(P 6=ν

1) | . . . | νb̃.(Πk
j=1renKi

(R 6=ν
j)) | . . . | renKm(P 6=ν

n))

By application of scope extrusion we get

Q′ ≡ νã.(renK1
(P 6=ν

1) | . . . | νb̃.(Πk
j=1renKi

(R 6=ν
j)) | . . . | renKm(P 6=ν

n))

≡ νãb̃.(renK1
(P 6=ν

1) | . . . |Πk
j=1renKi

(R 6=ν
j)) | . . . | renKm(P 6=ν

n)).

Hence (P ′, Q′) ∈ R.

Now we show that Q → Q′ and (P,Q) ∈ R implies the existence of a process
P ′ with P → P ′ and (P ′, Q′) ∈ R. Again we show the case for a reaction due to
a τ prefix.

Q ≡ νã.(renK1
(P 6=ν

1) | . . . | renKi
(M) + τ.ren+(P ′

i)KirenKi
(N) | . . . | renKm(P 6=ν

n))

→ νã.(renK1
(P 6=ν

1) | . . . | renKi
(P ′

i) | . . . | renKm(P 6=ν
n))

≡ Q′

Because

Q≡ νã.(renK1
(P 6=ν

1) | . . . | renKi
(M) + τ.renKi

(P ′
i) + renKi

(N) | . . . | renKm(P 6=ν
n))

= νã.(renK1
(P 6=ν

1) | . . . | renKi
(M + τ.P ′

i +N) | . . . | renKm(P 6=ν
n)),

56

4.1 Tagging Process Calls

we get that

P ≡ νã.(P 6=ν
1 | . . . |M + τ.P ′

i +N | . . . |P 6=ν
n)

→ νã.(P 6=ν
1 | . . . |P ′

i | . . . |P 6=ν
n)

≡ P ′

To show that (P ′, Q′) ∈ R, we apply similar arguments as above. The process Q′

is structurally congruent to its standard form, i.e.

Q′ ≡ νã.(renK1
(P 6=ν

1) | . . . | renKi
(P ′

i) | . . . | renKm(P 6=ν
n))

≡ νã.(renK1
(P 6=ν

1) | . . . | renKi
(νb̃.(Πk

j=1R
6=ν
j)) | . . . | renKm(P 6=ν

n))

= νã.(renK1
(P 6=ν

1) | . . . | νb̃.renKi
(Πk

j=1R
6=ν
j) | . . . | renKm(P 6=ν

n))

= νã.(renK1
(P 6=ν

1) | . . . | νb̃.Πk
j=1renKi

(R 6=ν
j) | . . . | renKm(P 6=ν

n))

≡ νãb̃.(renK1
(P 6=ν

1) | . . . |Πk
j=1renKi

(R 6=ν
j) | . . . | renKm(P 6=ν

n)),

where the standard form of P ′
i is

P ′
i
sf

= νb̃.(Πk
j=1R

6=ν
j).

Since all bound names of P ′ are different and bn(P ′) ∩ fn(P ′) = ∅ we can again
apply scope extrusion.

P ′ ≡ νã.(P 6=ν
1 | . . . |P ′

i | . . . |P 6=ν
n)

≡ νã.(P 6=ν
1 | . . . | νb̃.(Πk

j=1R
6=ν
j) | . . . |P 6=ν

n)

≡ νãb̃.(P 6=ν
1 | . . . |Πk

j=1R
6=ν
j | . . . |P 6=ν

n)

We conclude with (P ′, Q′) ∈ R.

The other cases are similar except for an additional application of Lemma 4.1.1.

Hence R is a bisimulation. In particular (SYS, renSYS(SYS)) ∈ R, i.e., the orig-
inal process SYS and the new initial process renSYS(SYS) are bisimilar.

Example 4.1.1. Consider the Client/Server-example of Section 2.3 (Example 2.3.1)
together with the initial process SYS := C⌊url⌋ |C⌊url⌋ |S⌊url⌋. The set of iden-

57

Chapter 4 Complex atoms for simple reasoning

tifiers is I = {SYS, C, S}, so the tagged process system is

SYSSYS := CSYS⌊url⌋ |CSYS⌊url⌋ |SSYS⌊url⌋
SYSC := CSYS⌊url⌋ |CSYS⌊url⌋ |SSYS⌊url⌋
SYSS := CSYS⌊url⌋ |CSYS⌊url⌋ |SSYS⌊url⌋

CSYS(url) := νip.url〈ip〉.ip(s).s(x).CC⌊url⌋
CC(url) := νip.url〈ip〉.ip(s).s(x).CC⌊url⌋
CS(url) := νip.url〈ip〉.ip(s).s(x).CC⌊url⌋

SSYS(url) := url(y).νses.y〈ses〉.ses〈ses〉.SS⌊url⌋
SC(url) := url(y).νses.y〈ses〉.ses〈ses〉.SS⌊url⌋
SS(url) := url(y).νses.y〈ses〉.ses〈ses〉.SS⌊url⌋

On closer examination, we see that no call to SYSC , SYSS, CS and SC ever occurs,
so these equations can be safely omitted.

4.2 Semantics

To define the semantics of identificators, we employ the function caller : P → P(I).
It collects all process identifiers that called a process, i.e., that are superscripts.

Definition 4.2.1 (Calling Processes). The function caller : P → P(I) returning
for a process P the identifier K with K⌊ã⌋ → PK{ã/x̃} →∗ P , such that no other
process call occurs in the reactions of P ′ to P , is defined as follows.

caller(LK) = {K} caller(LK⌊ã⌋) = caller(LK)
caller(π.P) = caller(P) caller(νa.P) = caller(P)

caller(M +N) = caller(M) ∪ caller(N)
caller(P |Q) = caller(P) ∪ caller(Q)

With the help of this function, the semantics of a process identificator K can
be defined. Observe that we restrict the process satisfying an identificator to
sequential processes. We exploit this while proving the soundness of the translation
of structural formulas, in particular in the proof of Lemma 5.1.2.

Definition 4.2.2 (Semantics). For a process P and an identificator K, the con-
sequence relation is given by

P |=S K iff caller(P) = {K} and P ∈ Pseq

58

4.2 Semantics

Example 4.2.1. Consider the tagged process system of the client/server example
(see Example 4.1.1). Then

νip.url〈ip〉.ip(s).s(x).CC⌊url⌋ |=S C and s(x).CC⌊url⌋ |=S C

since caller(νip.url〈ip〉.ip(s).s(x).CC⌊url⌋) = {C}.

59

Chapter 4 Complex atoms for simple reasoning

60

5 Translation to LTL

The aim of this chapter is to define a translation from a subset of PSTL to LTL
on Petri nets. We present a type of formulas resembling fragments and processes
in restricted form (see Definition 2.4.1). The translation is defined relative to the
process P of interest and is done on two levels:

For structural formulas ϕS, we collect the congruence classes of all minimal
processes satisfying ϕS in a set JϕSKP . Then we consider all congruence classes
[Q] ∈ JϕSKP and count the occurrences c of each fragment F of a representative
process Qrf ∈ [Q] via the decomposition function. Out of these occurrences, we
build a conjunction of atomic formulas of LTL, i.e., a formula ψQ =

∧
[Fi] = ci or

ψQ =
∧

[Fi] ≥ ci. The complete translated formula is the disjunction of all the ψQ.
That we only collect the minimal processes satisfying ϕS is due to the possibility

that ⊤ may be contained in ϕS. In this case, there is no limit for the size of the
processes satisfying ϕS, and JϕSKP would be infinite, hence the translated formula
would also be infinite.

The translation of temporal formulas is considerably simpler, since the temporal
part of PSTL imitates LTL. The atoms, i.e., the structural formulas are translated
as described above, the Boolean connectors and the temporal modalities are trans-
lated into their counterpart of LTL.

The relations between the structural and temporal translation function θS resp.
θ are shown in Figure 5.1.

PSL ∋ ΦS

PSTL ∋ ΦT

DNF on pi ∼ ci

Temporal Formula
θ

θS

based onuses

Figure 5.1: Connections between the translation functions θS and θ. The relation
∼ is either equality = or the inequality ≥.

61

Chapter 5 Translation to LTL

5.1 Translating structural modalities to LTL

We start with the translation of formulas without temporal modalities. The trans-
lated formulas will only specify a single marking M , i.e. a certain state of the Petri
nets.

The formulas which are translatable are rather strongly restricted. For example,
we do not allow for any occurrence of negation in the formulas. Since we do allow
for disjunction, we are not able to treat this Boolean operator as an abbreviation
any more. Hence for giving a complete semantics to the translatable formulas, we
define the consequence relation for the disjunction.

Definition 5.1.1 (Semantics of Disjunction). For two structural formulas ϕ1, ϕ2

and a process P , the consequence relation for the disjunction of ϕ1 and ϕ2 is given
by

P |=S ϕ1 ∨ ϕ2 iff P |=S ϕ1 or P |=S ϕ2

To ensure that we essentially specify fragments with the formulas of Defini-
tion 5.1.3, we define a subset of the free names of a formula, the ensured free
names. This set only contains free names that occur in all parts of a conjunction
(and disjunction) of such formulas, i.e., different from the union of free names of
conjuncts (resp. disjuncts) it returns the intersection of the sets of free names.

Definition 5.1.2 (Ensured Free Names). The ensured free names of a fragmentary
formula (see Definition 5.1.3) is defined recursively by

efn(P) = fn(P)

efn(K ∧ free(ã)) = {ã}
efn(τ1 ∨ τ2) = efn(τ1) ∩ efn(τ2)

efn(res a (φ1 ≬ · · · ≬ φn)) = (efn(φ1) ∪ · · · ∪ efn(φn)) \ {a}
efn(res a (φ1 ≬ · · · ≬ φn ≬ ⊤)) = efn(res a (φ1 ≬ · · · ≬ φn))

efn(φ1) ∨ efn(φ2) = efn(φ1) ∩ efn(φ2)

Remark: Obviously, efn(φ) ⊆ fn(φ). 3

Now we give the definition of fragmentary formulas. A fragmentary formula
φ specifies a single fragment if it does not contain ⊤, because we only allow for
restrictions on names that occur in all subformulas of φ. However, if a fragmentary

62

5.1 Translating structural modalities to LTL

formula φ contains ⊤ we can at least ensure that every process that satisfies φ also
contains a single fragment satisfying φ.

Definition 5.1.3 (Sequential and Fragmentary Formulas).

τ ::= Q p K ∧ free(ã) p τ1 ∨ τ2
φ ::= τ p res a (φ1 ≬ · · · ≬ φn) p res a (φ1 ≬ · · · ≬ φn ≬ ⊤) p φ1 ∨ φ2

where a ∈ efn(φi) and Q ∈ Pseq. We call the formulas τ sequential formulas and
the formulas φ fragmentary formulas.

Remark: The abbreviation res∗ given in Definition 3.1.8 is based on the free names
of a formula. Since we only allow for restrictions on ensured names, using the ab-
breviation would create formulas not well-formed with respect to Definition 5.1.3.
Therefore, we further restrict the abbreviation to work only on the ensured free
names and mark this restriction by the index rf , i.e.

res∗rf φ
def

=
∨

ñ⊆efn(φ)

res ñ φ

Furthermore, we define the restricted somewhere operator, which relies on res∗rf
as

rf φ
def

= res∗rf (φ ≬ ⊤).

We can not define a restricted operator corresponding to , since we do not allow
for negation in the formulas. 3

The following Lemma shows, that ensured free names is indeed a reasonable
name for this set, since every name contained in efn(φ) is also a free name of the
processes satisfying φ.

Lemma 5.1.1. Let P be a process, φ a fragmentary formula and x a name so that
P |=S φ and x ∈ efn(φ). Then x ∈ fn(P).

Proof of Lemma 5.1.1
We prove the implication by induction on the structure of fragmentary formulas.
Base Case P |=S Q with Q ∈ Pseq and x ∈ efn(Q):
Then P ≡ Q and by Definition 5.1.2 x ∈ fn(Q). Since structural congruence
preserves free names, also x ∈ fn(P).

63

Chapter 5 Translation to LTL

Base Case P |=S K ∧ free(ã) with x ∈ efn(K ∧ free(ã)):
Then P |=S K and P |=S free(ã), i.e., ã ⊆ fn(P). By Definition 5.1.2 x ∈ {ã} and
hence x ∈ fn(P).
Case P |=S τ1 ∨ τ2 and x ∈ efn(τ1 ∨ τ2):
Then P |=S τ1 or P |=S τ2 and x ∈ efn(τ1) ∩ efn(τ2), i.e., x ∈ efn(τ1) and
x ∈ efn(τ2). Now for i ∈ {1, 2}, if P |=S τi, we additionally have x ∈ efn(τi) and
hence by induction hypothesis x ∈ fn(P).
Case P |=S res a (φ1 ≬ · · · ≬ φn), where a ∈ efn(φi) (1 ≤ i ≤ n) and
x ∈ efn(res a (φ1 ≬ · · · ≬ φn)):
By Definition 5.1.2 we get x ∈ (efn(φ1) ∪ · · · ∪ efn(φn)) \ {a}, i.e. x 6= a. The
semantics of the restriction operator and the parallel composition yields

P ≡ νm.(P1 | . . . |Pn),

where m 6∈ fn(P) ∪ fn(φ1) ∪ · · · ∪ fn(φn) and

P1 | . . . |Pn |=S (φ1 ≬ · · · ≬ φn){a← m}.

Since efn(φi) ⊆ fn(φi), we get x 6= m. Furthermore, by the semantics of the
parallel composition and the definition of substitution,

P1 |=S φ1{a← m} . . . Pn |=S φn{a← m}.

Because x ∈ efn(φ1) ∪ · · · ∪ efn(φn), there is an j ∈ {1, . . . , n}, such that x ∈
efn(φj). By the induction hypothesis, we get x ∈ fn(Pj). And since x 6= m, we
conclude x ∈ fn(P).
Case P |=S res a (φ1 ≬ · · · ≬ φn ≬ ⊤):
Similar to the previous case.
Case P |=S φ1 ∨ φ2:
Similar to the case P |=S τ1 ∨ τ2.

As mentioned above, fragmentary formulas specify single fragments. Further-
more, sequential formulas τ specify sequential processes. This is formalised in
Lemma 5.1.2. We only consider processes in restricted form to remove parallel
compositions with 0. This is no restriction on the processes since for every P ,
rf (P) = Prf ≡ P and the consequence relation is compatible with structural con-
gruence (refer to Lemma 2.4.1 and Lemma 3.3.1).

Lemma 5.1.2. Let τ be a sequential formula and φ be a fragmentary formula,
where ⊤ 6∈ sub(φ).

64

5.1 Translating structural modalities to LTL

(i) Every Prf ∈ P with Prf |=S τ is a sequential process.

(ii) Every Prf ∈ P with Prf |=S φ is a fragment.

Proof of Lemma 5.1.2
We prove both statements by induction on the structure of resp. formulas.
(i)
Base Case Prf |=S Q where Q ∈ Pseq:
Then Prf ≡ Q and hence Prf ∈ Pseq.
Base Case Prf |=S K ∧ free(ã):
Then Prf |=S free(ã) and Prf |=S K, hence caller(Prf) = {K} and Prf ∈ Pseq.
Case Prf |=S τ1 ∨ τ2:
Then Prf |=S τ1 or Prf |=S τ2. If Prf |=S τ1, we get by induction hypothesis that
Prf ∈ Pseq. The case for Prf |=S τ2 is similar.
(ii)
Base Case Prf |=S τ :
Then by (i) Prf ∈ Pseq and since Pseq ⊆ PF also Prf ∈ PF .
Case Prf |=S res a (φ1 ≬ · · · ≬ φn), where a ∈ efn(φi) for 1 ≤ i ≤ n:
Then Prf ≡ νm.(P1 | . . . |Pn), where m 6∈ fn(Prf) ∪ fn(φ1) ∪ · · · ∪ fn(φn) and
P1 | . . . |Pn |=S (φ1 ≬ · · · ≬ φn){a ← m}. Hence Pi |=S φi{a ← m} for 1 ≤ i ≤ n.
Since a ∈ efn(φi), m ∈ efn(φi{a← m}). By Lemma 5.1.1, this implies m ∈ fn(Pi).
Because Prf is in restricted form, Pi = Pirf and by the induction hypothesis,
Pirf ∈ PF . Hence we get Prf ∈ PF .
Case Prf |=S φ1 ∨ φ2:
Then Prf |=S φ1 or Prf |=S φ2. If Prf |=S φi for i ∈ {1, 2}, we get by induction
hypothesis that Prf ∈ PF .

The following Lemma is weaker than Lemma 5.1.2 (ii), since it just asserts that
a process with Prf |=S φ contains a fragment that satisfies φ. We will need both
statements for the proof of Theorem 5.1.1, i.e. the soundness of the structural
translation.

Lemma 5.1.3. Let φ be a fragmentary formula possibly containing ⊤. Then

Prf |=S φ implies Prf ≡ F |P ′ and F |=S φ

where F is a fragment and P ′ ∈ P.

Proof of Lemma 5.1.3
By induction on the structure of φ.

65

Chapter 5 Translation to LTL

Base Case Prf |=S τ :
Then we get by Lemma 5.1.2 (i) that Prf ∈ Pseq. Since Pseq ⊆ PF and Prf ≡ Prf | 0,
we get the desired result.
Case Prf |=S res a (φ1 ≬ · · · ≬ φn ≬ ⊤), where a ∈ efn(φi) for 1 ≤ i ≤ n:
Then Prf ≡ νm.(P1 | . . . |Pn), with m 6∈ fn(P) ∪ fn(φ1) ∪ · · · ∪ fn(φn) and Pi |=S

φi{a ← m} for 1 ≤ i ≤ n. Recall that Pi ≡ Pirf . Then the induction hypothesis
yields Pirf ≡ Fi |P ′

i , i.e.

Prf ≡ νm.(F1 |P ′
1 | . . . Fn |P ′

n)

≡ νm.(F1 | . . . |Fn |P ′
1 | . . . |P ′

n),

and Fi |=S φi{a← m}. By Lemma 5.1.1 m ∈ fn(Fi) for 1 ≤ i ≤ n.
Now consider the set Im ⊆ {1, . . . , n}, defined by

i ∈ Im iff m ∈ fn(P ′
i).

Then by (Scope-Extr)

P ≡ νm.(Πn
i=1Fi |Πi∈ImP

′
i) |Πi∈{1,...,n}\ImP

′
i

≡ νm.(Πn
i=1Fi | rf (Πi∈ImP

′
i)) |Πi∈{1,...,n}\ImP

′
i .

The process F ≡ νm.(Πn
i=1Fi | rf (Πi∈ImP

′
i)) is a fragment and trivially rf (Πi∈ImP

′
i) |=S

⊤, i.e., F |=S res a (φ1 ≬ · · · ≬ φn ≬ ⊤) and P ≡ F |Πi∈{1,...,n}\ImP
′
i .

Case Prf |=S res a (φ1 ≬ · · · ≬ φn):
For every fragmentary formula φi, we have ⊤ 6∈ sub(φi), because otherwise, if
φi = res b (φi1 ≬ · · · ≬ φim ≬ ⊤), we would get the previous case, since

res a (φ1 ≬ · · · ≬ res b (φi1 ≬ · · · ≬ φim ≬ ⊤) ≬ · · · ≬ φn)

≡̂ res a (φ1 ≬ · · · ≬ res b (φi1 ≬ · · · ≬ φim ≬ ⊤) ≬ ⊤ ≬ · · · ≬ φn).

Lemma 5.1.2 (ii) yields that Prf ∈ PF , and by Prf ≡ Prf | 0, we conclude this case.
Case Prf |=S φ1 ∨ φ2:
. Then Prf |=S φ1 or Prf |=S φ2. Let Prf |=S φ1. Then by induction hypothesis
Prf ≡ F |P ′, where F ∈ PF and F |=S φ1. Furthermore F |=S φ1 ∨ φ2. The other
case is similar.

The set of translatable formulas is based on the restriction formulas given in
Definition 5.1.4. They resemble processes in restricted form, since they consist of
parallel compositions of fragmentary formulas. Because every process satisfying
a fragmentary formula, i.e., P |=S φ is structurally congruent to a process in

66

5.1 Translating structural modalities to LTL

restricted form containing a single fragment F with F |=S φ (Lemma 5.1.3), we
get that every process P |=S ̺ with ̺ = φ1 ≬ · · · ≬ φn is structurally congruent to
F1 | . . . |Fn |P ′, where the Fi are fragments.

Definition 5.1.4 (Restriction Formulas). We call formulas ̺ defined by

̺ ::= φ1 ≬ · · · ≬ φn

restriction formulas.

The fragmentary semantics defined below is the set of congruence classes of the
smallest processes satisfying a restriction formula. If we choose [Q] ∈ J̺KP and a
representative in restricted form Qrf , then each fragment of Qrf satisfies exactly
one fragmentary subformula of ̺.

Definition 5.1.5 (Fragmentary Semantics). For every restriction formula ̺, the
fragmentary semantics with respect to a structural stationary process P is

J⊤KP = ∅
JφKP = {[F] p [F] ∈ fg(rf (Reach(P)))/≡ and F |=S φ}

Jφ1 ≬ · · · ≬ φnKP = {[F1 | . . . |Fn] p [Fi] ∈ JφiKP}

That indeed every process Q of a process congruence class in the fragmen-
tary semantics of a restriction formula ̺ satisfies this formula is formulated in
Lemma 5.1.4. The proof is rather obvious by Definition 5.1.5.

Lemma 5.1.4. Let ̺ be a restriction formula and P,Q ∈ P be processes such that
[Q] ∈ J̺KP . Then Q |=S ̺.

Proof of Lemma 5.1.4
We consider the three possibilities.
Case [Q] ∈ J⊤KP :
Trivial.
Case [Q] ∈ JφKP :
Then by Definition 5.1.5 Q |=S φ.
Case [Q] ∈ Jφ1 ≬ · · · ≬ φnKP :
Then [Q] = [F1 | . . . |Fn] where [Fi] ∈ JφiKP (1 ≤ i ≤ n). By induction hy-
pothesis Fi |=S φi and by the semantics of the parallel composition operator
Q |=S φ1 ≬ · · · ≬ φn.

67

Chapter 5 Translation to LTL

Furthermore, for two processes P and P ′, where P can react to P ′ the fragmen-
tary semantics with respect to P ′ is a subset of the fragmentary semantics with
respect to P . This Lemma is needed for the soundness of the translation (Theo-
rem 5.1.1), i.e., to show that if the structural semantics of a process P satisfy a
translated formula, then P satisfies the original formula.

Lemma 5.1.5. Let P, P ′ ∈ P with P →∗ P ′ and ̺ be a restriction formula. Then

J̺KP ′ ⊆ J̺KP .

Proof of Lemma 5.1.5
Obvious by the definition of the fragmentary semantics, because

fg(Reach(P ′))/≡ ⊆ fg(Reach(P))/≡.

Now we can finally define the set of translatable formulas, which we will call
structural formulas. They consist of conjunctions and disjunctions of restriction
formulas.

Definition 5.1.6 (Structural Formulas). The structural formulas are defined by
the following BNF.

ΦS ::= ̺ p ΦS1 ∨ ΦS2 p ΦS1 ∧ ΦS2

The main part of the translation of structural formulas is the translation of
restriction formulas. We have to distinguish restriction formulas containing ⊤ from
formulas without ⊤, since for the former, the translated formula has to consist of
formulas [F] = c where c ∈ N. This distinction is necessary, because the restricted
form of a process P satisfying ̺ = φ1 ≬ · · · ≬ φn without ⊤ should be of the form
rf (P) ≡rf F1 | . . . Fn where each Fi satisfies exactly one φi. If we would translate
such a formula with atoms of the form [F] ≥ c, also rf (P ′) ≡rf rf (P) |F1 would
satisfy the translated formula. Since P ′ 6|=S ̺, our translation would be unsound.

Definition 5.1.7 (Translation of Structural Formulas). Let ΦS be a structural
formula and P be a structural stationary process. The translation θS : PSL×P →
LTL of ΦS is defined by

θS(̺, P) =

{ ∨
[Q]∈J̺KP

∧
[F]∈fg(rf (Reach(P)))/≡

[F] = dec(Q)([F]) ⊤ 6∈ sub(̺)∨
[Q]∈J̺KP

∧
[F]∈fg(rf (Reach(P)))/≡

[F] ≥ dec(Q)([F]) else

68

5.1 Translating structural modalities to LTL

θS(ΦS1 ∧ ΦS2, P) = θS(ΦS1, P) ∧ θS(ΦS2, P)

θS(ΦS1 ∨ ΦS2, P) = θS(ΦS1, P) ∨ θS(ΦS2, P)

The following theorem is the most important result of this section as it ensures
the soundness of the translation. That is, for every structural stationary process P
(see Definition 2.4.6) and every structural formula ΦS (Definition 5.1.6), P satisfies
ΦS if and only if the structural semantics of P satisfy the translated formula with
respect to P .

Theorem 5.1.1. A structural stationary process P satisfies a structural formula
ΦS if and only if the structural semantics of P satisfies the translated formula with
respect to P , i.e.,

P |=S ΦS iff N JP K |=S θS(ΦS , P).

Proof of Theorem 5.1.1
By induction on the structure of ΦS . For the sake of readability, we will write k
for the size of the set of reachable fragments of P up to structural congruence, i.e.,

|fg(rf (Reach(P)))/≡| = k.

Base Case ΦS = φ1 ≬ · · · ≬ φn, where ⊤ 6∈ sub(φi) for all 1 ≤ i ≤ n:
Let P |=S φ1 ≬ · · · ≬ φn, i.e.,

P ≡ P1 | . . . |Pn and Pi |=S φi for 1 ≤ i ≤ n.

By Lemma 5.1.2 we get that Pi ∈ PF , i.e., P1 | . . . |Pn is in restricted form and
therefore rf (P) ≡rf P1 | . . . |Pn. Furthermore [Pi] ∈ JφiKP . So,

[P1 | . . . |Pn] ∈ Jφ1 ≬ · · · ≬ φnKP .

By the structure of θS(φ1 ≬ · · · ≬ φn, P), we get that there is a disjunct ψ of
θS(φ1 ≬ · · · ≬ φn, P) with

ψ =
∧

[F]∈fg(rf (Reach(P)))/≡

[F] = dec(P1 | . . . |Pn)([F]).

The initial markingM0 ofN JP K is defined byM0 = dec(rf (P)) and by Lemma 2.4.3
dec(rf (P)) = dec(P1 | . . . |Pn), hence N JP K |=LTL ψ. Because θS(φ1 ≬ · · · ≬ φn, P)
is in disjunctive normal form, and ψ is one of the disjuncts, also

N JP K |=LTL θS(φ1 ≬ · · · ≬ φn, P).

69

Chapter 5 Translation to LTL

For the other direction, assume N JP K |=LTL θS(φ1 ≬ · · · ≬ φn, P). By the
structure of θS there is a disjunct

ψ =
k∧

i=1

[Fi] = ci

of θS(φ1 ≬ · · · ≬ φn, P) such that N JP K |=LTL ψ. That is, for 1 ≤ i ≤ k, we have
M0([Fi]) = ci. By the definition of the initial marking M0 and Proposition 2.4.1,
we get that retrieve(M0) = [P]. The definition of the translation function implies
[P] ∈ Jφ1 ≬ · · · ≬ φnKP , and by Lemma 5.1.4 P |=S φ1 ≬ · · · ≬ φn.
Base Case P |=S φ1 ≬ · · · ≬ φn, where ⊤ ∈ sub(φi) for one i with 1 ≤ i ≤ n:
Then by the semantics of PSTL and Lemma 5.1.3

P ≡ P1 |P ′
1 | . . . Pn |P ′

n

≡ P1 | . . . Pn |P ′,

with P ′ ≡ P ′
1 | . . . |P ′

n. Furthermore Pi |=S φi and Pi ∈ PF for 1 ≤ i ≤ n. By
Definition 5.1.5 [Pi] ∈ JφiKP , hence

[P1 | . . . |Pn] ∈ Jφ1 ≬ · · · ≬ φnKP .

That is, there is a disjunct ψ with

ψ =
∧

[F]∈fg(rf (Reach(P)))/≡

[F] ≥ dec(P1 | . . . |Pn)([F]).

Now we consider M0 = dec(rf (P)). Since

P ≡ P1 | . . . |Pn |P ′

≡ P1 | . . . |Pn | rf (P ′)

≡ rf (P)

we get by Lemma 2.4.3

dec(rf (P)) = dec(P1 | . . . |Pn) + dec(rf (P ′)).

Hence for all fragments [F] ∈ fg(rf (Reach(P)))/≡ we get

M0([F]) ≥ dec(P1 | . . . |Pn)([F]),

which is by the semantics of LTL equivalent to N JP K |=LTL ψ, i.e.,

N JP K |=LTL θS(φ1 ≬ · · · ≬ φn, P).

70

5.1 Translating structural modalities to LTL

For the reverse direction, we assume N JP K |=LTL θS(φ1 ≬ · · · ≬ φn, P). Then
there is at least one disjunct

ψ =

k∧

i=1

pi ≥ ci

with M0(pi) ≥ ci, where each pi = [Fi]. Now we define the set I6=0 ⊆ {1, . . . , k} by

i ∈ I6=0 iff ci > 0.

By the definition of the translation function,

[P ′] = [Πi∈I 6=0
ΠciFi] ∈ Jφ1 ≬ · · · ≬ φnKP

and by Lemma 5.1.4 P ′ |=S φ1 ≬ · · · ≬ φn. Since M0([Fi]) ≥ ci for all 1 ≤ i ≤ k,
P ∈ retrieve(M0) = [P ′ |P ′′] and by

φ1 ≬ · · · ≬ φn ≡̂ φ1 ≬ · · · ≬ φn ≬ ⊤,

we conclude P |=S φ1 ≬ · · · ≬ φn.
Because the induction step is rather easy, we will only show the case for the

conjunction. The case of ∨ is similar.
Case ΦS = ΦS1 ∧ ΦS2:
Let P |=S ΦS1 ∧ ΦS2. This is by definition of the consequence relation equivalent
to

P |=S ΦS1 and P |=S ΦS2

{Induction Hypothesis} iff N JP K |=LTL θS(ΦS1, P) and N JP K |=LTL θS(ΦS2, P)

{Semantics of LTL} iff N JP K |=LTL θS(ΦS1, P) ∧ θS(ΦS2, P)

{Definition 5.1.7} iff N JP K |=LTL θS(ΦS1 ∧ ΦS2, P).

Example 5.1.1. Consider the following process definitions

BAG(in, out) := in(x).(out〈x〉 |BAG⌊in, out⌋)
FILL(in) := νval.in〈val〉.F ILL⌊in⌋

P ≡ BAG⌊in, out⌋ |FILL⌊in⌋ | νval.out〈val〉

71

Chapter 5 Translation to LTL

and the restriction formula

Φ := BAG⌊in, out⌋ ≬ FILL⌊in⌋.

Observe that P 6|=S Φ. We will now construct the structural translation of Φ to
see that N JP K 6|=S θS(Φ, P). The reachable fragments of P are

fg(Reach(P))/≡ = {[BAG⌊in, out⌋], [FILL⌊in⌋], [νval.out〈val〉]},

hence the fragmentary semantics of Φ is given by

JBAG⌊in, out⌋KP = {[BAG⌊in, out⌋]}
JFILL⌊in⌋KP = {[FILL⌊in⌋]}

JBAG⌊in, out⌋ ≬ FILL⌊in⌋KP = {[BAG⌊in, out⌋ |FILL⌊in⌋]}.

Since JΦKP only consists of one process congruence class, the translated formula is
a conjunction of atoms.

θS(Φ, P) = [BAG⌊in, out⌋] = 1 ∧ [FILL⌊in⌋] = 1 ∧ [νval.out〈val〉] = 0

Since the initial marking of N JP K yields M0([νval.out〈val〉]) = 1, we get that
N JP K 6|=LTL θS(Φ, P).

An interesting and helpful property of the translation is, that its satisfaction by
the structural semantics of a process P ′ only depends on the fragments of P ′. That
is, if we consider a process P and P ′ such that P can react to P ′ the truth value
of the translated formula with respect to P ′ under the structural semantics of P ′

is the same as the truth value of the formula translated with respect to P . This
rather surprising result is due to the relation of the reachable fragments of P and
P ′. Since all reachable fragments of P ′ are also reachable from P , the fragmentary
semantics with respect to P ′ are a subset of the fragmentary semantics with respect
to P (refer to Lemma 5.1.5). Hence the formulas created due to processes in the
fragmentary semantics w.r.t. P ′ are subformulas of the formulas created w.r.t. P .

Lemma 5.1.6. Let P, P ′ ∈ P such that P →∗ P ′ and ΦS be a structural formula.
Then

N JP ′K |=LTL θS(ΦS , P
′) iff N JP ′K |=LTL θS(ΦS , P)

Proof of Lemma 5.1.6
By induction on the structure on ΦS . The only interesting case is the base case.

72

5.1 Translating structural modalities to LTL

Base Case ΦS = ̺:
For this proof, it is irrelevant, if ̺ contains ⊤, so we will consider both cases
together. Let N JP ′K |=LTL θS(̺, P ′), i.e

N JP ′K |=LTL

∨

[Q]∈J̺KP ′

∧

[F]∈fg(rf (Reach(P ′)))/≡

[F] ∼ dec(Q)([F]),

where ∼∈ {=,≥}. This implies the existence of a process congruence class [Q] ∈
J̺KP ′ and a subformula ψ′ of θS(̺, P ′) satisfying

ψ′ =
∧

[F]∈fg(rf (Reach(P ′)))/≡

[F] ∼ dec(rf (Q))([F])

and N JP ′K |=LTL ψ
′. By Lemma 5.1.5 [Q] ∈ J̺KP , i.e. there is a subformula ψ of

θS(̺, P) such that

ψ =
∧

[F]∈fg(rf (Reach(P)))/≡

[F] ∼ dec(rf (Q))([F]).

Since by definition of the fragmentary semantics rf (Q) contains only fragments of
P ′, dec(rf (Q))([F]) = 0 for all fragments [F] ∈ fg(rf (Reach(P)))/≡\fg(rf (Reach(P ′)))/≡,
hence N JP ′K |=LTL ψ, i.e., N JP ′K |=LTL θS(̺, P).

Now consider the reverse direction, i.e., for

N JP ′K |=LTL

∨

[Q]∈J̺KP

∧

[F]∈fg(rf (Reach(P)))/≡

[F] ∼ dec(rf (Q))([F]).

There has to be a disjunct ψ and a process congruence class [Q] ∈ J̺KP with

ψ =
∧

[F]∈fg(rf (Reach(P)))/≡

[F] ∼ dec(rf (Q))([F])

such that N JP ′K |=LTL ψ. This is by the semantics of LTL equivalent to

M0([F]) ∼ dec(rf (Q))([F]) for all places [F] of N JP ′K,

i.e. all fragments [F] ∈ fg(rf (Reach(P ′)))/≡. Since M0 = dec(P ′),

M0([F]) = 0 for all [F] ∈ fg(rf (Reach(P)))/≡ \ fg(rf (Reach(P ′)))/≡.

Hence dec(rf (Q))[F] = 0 for all fragments [F] of P which are not fragments of
P ′, i.e., rf (Q) consists only of fragments of P ′ which implies that [rf (Q)] ∈ J̺KP ′ .
Therefore there exists a disjunct ψ′ of θS(̺, P ′)

ψ′ =
∧

[F]∈fg(rf (Reach(P ′)))/≡

[F] ∼ dec(rf (Q))([F])

73

Chapter 5 Translation to LTL

with N JP ′K |=LTL ψ
′. This implies N JP ′K |=LTL θS(̺, P ′).

Case ΦS = ΦS1 ∧ ΦS2:

Let N JP ′K |=LTL θS(ΦS1 ∧ ΦS2, P
′).

{Definition 5.1.7} iff N JP ′K |=LTL θS(ΦS1, P
′) ∧ θS(ΦS2, P

′)

{Semantics of LTL} iff N JP ′K |=LTL θS(ΦS1, P
′) and N JP ′K |=LTL θS(ΦS2, P

′)

{Induction Hypothesis} iff N JP ′K |=LTL θS(ΦS1, P) and N JP ′K |=LTL θS(ΦS2, P)

{Semantics of LTL} iff N JP ′K |=LTL θS(ΦS1, P) ∧ θS(ΦS2, P)

{Definition 5.1.7} iff N JP ′K |=LTL θS(ΦS1 ∧ ΦS2, P)

Case ΦS = ΦS1 ∨ ΦS2:

Similar.

5.2 Translating formulas with temporal modalities

In this section we will define a translation θ from a subset of PSTL to LTL. We will
denote formulas containing temporal connectives by ΦT . The translatable formu-
las are restricted in the possible atoms, because we can only translate structural
formulas ΦS as given by Definition 5.1.6. Hence, the temporal formulas ΦT defined
in Section 3.2 can be translated as long as the atoms are structural formulas ΦS .

Definition 5.2.1. Let ΦT be a formula of PSTL and P be a π-Calculus process.
Then the translation θ : PSTL × P → LTL is defined by

θ(ΦS , P) = θS(ΦS , P)

θ(¬ΦT , P) = ¬θ(ΦT , P)

θ(ΦT 1 ∧ ΦT 2, P) = θ(ΦT 1, P) ∧ θ(ΦT 2, P)

θ(ΦT , P) = θ(ΦT , P)

θ(ΦT , P) = θ(ΦT , P)

Another translation we need is a mapping from process sequences to occurrence
sequences, to relate the semantics of PSTL and LTL. Therefore we exploit the
isomorphic structure of the transition systems of a process P and its structural

74

5.2 Translating formulas with temporal modalities

semantics N JP K. As Meyer has shown [Mey08], the function f : Reach(P)/≡ →
Reach(N JP K), with f([Q]) = dec(rf (Q)) is an isomorphism (see also Proposition
2.4.1, Section 2.4) . We lift this isomorphism to work on sequences.

Definition 5.2.2. Let P ∈ P and π = π(0)π(1)π(2) . . . be a process sequence
with π(0) = P . Furthermore, let f be the isomorphism of Proposition 2.4.1. Then
g : PC → OC is defined by g(π) = f(π(0))f(π(1))f(π(2))

Since f is an isomorphism, we directly get that g(π) is an occurrence sequence,
i.e. g(π)(0) [〉 g(π)(1) [〉 g(π)(2) . . ., and since π(0) = P , we also get that g(π)(0) is
the initial marking M0 of N JP K.

In order to prove the soundness of translation θ, we first prove the following
lemma. It shows that if we consider two processes P and P ′ with P →∗ P ′, the
satisfaction of the translated formula θ(ΦT , P) under the structural semantics of P ′

only depends on fragments of P ′. I.e., the translation of the formula with respect
to P is equivalent to the translation of ΦT with respect to P ′.

Lemma 5.2.1. Let P and P ′ be two processes with P →∗ P ′. Furthermore, let ΦT

be a formula of PSTL, σ be an occurrence sequence of N JP ′K and x ∈ N. Then
the following equivalence holds:

σ, x |=LTL θ(ΦT , P
′) iff σ, x |=LTL θ(ΦT , P)

Proof of Lemma 5.2.1
By induction on the structure of formulas.
Base Case ΦT = ΦS:
The statement follows immediately by Lemma 5.1.6, since the statement holds for
all occurrence sequences of N JP ′K.

The induction step is a straightforward application of Definition 5.2.1 and the
semantics of LTL. We will show the cases of ∧ and .
Case ΦT = ΦT 1 ∧ ΦT 2:

σ, x |=LTL θ(ΦT 1 ∧ ΦT 2, P
′)

{Definition 5.2.1} iff σ, x |=LTL θ(ΦT 1, P
′) ∧ θ(ΦT 2, P

′)

{Semantics of LTL} iff σ, x |=LTL θ(ΦT 1, P
′) and σ, x |=LTL θ(ΦT 2, P

′)

{Induction Hypothesis} iff σ, x |=LTL θ(ΦT 2, P) and σ, x |=LTL θ(ΦT 2, P)

{Semantics of LTL} iff σ, x |=LTL θ(ΦT 1, P) ∧ θ(ΦT 2, P)

{Definition 5.2.1} iff σ, x |=LTL θ(ΦT 1 ∧ ΦT 2, P)

75

Chapter 5 Translation to LTL

Case ΦT = ΦT 1:

σ, x |=LTL θ(ΦT 1, P
′)

{Definition 5.2.1} iff σ, x |=LTL θ(ΦT 1, P
′)

{Semantic of LTL} iff σ, x+ 1 |=LTL θ(ΦT 1, P
′)

{Induction Hypothesis} iff σ, x+ 1 |=LTL θ(ΦT 1, P)

{Semantics of LTL} iff σ, x |=LTL θ(ΦT 1, P)

{Definition 5.2.1} iff σ, x |=LTL θ(ΦT 1, P)

Corollary 5.2.1. Let P and P ′ be two processes with P →∗ P ′. Furthermore, let
ΦT be a formula of PSTL. Then the following equivalence holds:

N JP ′K |=LTL θ(ΦT , P
′) iff N JP ′K |=LTL θ(ΦT , P).

Proof of Corollary 5.2.1
Immediate by Lemma 5.2.1.

That our translation is well-defined with respect to satisfaction of formulas is
shown by the following proposition. That is, if we have a translatable temporal
formula ΦT , a process sequence π and an integer number x such that π and x
satisfy ΦT , then the translation of ΦT is satisfied by the image of π under the
homomorphism g and x, and vice versa. We prove this statement by induction on
the translatable formulas. The base case involves Theorem 5.1.1 of the last section,
i.e., the well-definition of the structural translation, as well as Lemma 5.2.1, which
can be applied due to the isomorphic behaviour of g. This proposition is the core
of the proof for our main result, Theorem 5.2.1.

Proposition 5.2.1. Let g be the isomorphism of Definition 5.2.2. Then for every
process sequence π, x ∈ N and temporal formula ΦT , the following equivalence
holds:

π, x |= ΦT iff g(π), x |=LTL θ(ΦT , π(0)).

Proof of Proposition 5.2.1
By induction on the structure of formulas.

76

5.2 Translating formulas with temporal modalities

Base Case ΦT = ΦS:

π, x |= ΦS

{Definition 3.2.3} iff π(x) |=S ΦS

{Theorem 5.1.1} iff N Jπ(x)K |=LTL θS(ΦS , π(x))

{Definition 5.2.1} iff N Jπ(x)K |=LTL θ(ΦS , π(x))

{π(0)→∗ π(x) and Lemma 5.2.1} iff N Jπ(x)K |=LTL θ(ΦS , π(0))

{σ occurrence seq. of N Jπ(x)K} iff σ, 0 |=LTL θ(ΦS , π(0))

{g isomorph. ⇔ g(π)(x) = σ(0)} iff g(π), x |=LTL θ(ΦS , π(0))

Case ΦT = ¬ΦT 1:

π, x |= ¬ΦT 1

{Definition 3.2.3} iff π, x 6|= ΦT 1

{Induction Hypothesis} iff g(π), x 6|=LTL θ(ΦT 1, π(0))

{Definition 2.5.3} iff g(π), x |=LTL ¬θ(ΦT 1, π(0))

{Definition 5.2.1} iff g(π), x |=LTL θ(¬ΦT 1, π(0))

Case ΦT = ΦT 1 ∧ ΦT 2:

π, x |= ΦT 1 ∧ ΦT 2

{Definition 3.2.3} iff π, x |= ΦT 1 and π, x |= ΦT 2

{Induction Hypothesis} iff g(π), x |=LTL θ(ΦT 1, π(0))

and g(π), x |=LTL θ(ΦT 2, π(0))

{Definition 2.5.3} iff g(π), x |=LTL θ(ΦT 1, π(0)) ∧ θ(ΦT 2, π(0))

{ Definition 5.2.1} iff g(π), x |=LTL θ(ΦT 1 ∧ ΦT 2, π(0))

Case ΦT = ΦT 1:

π, x |= ΦT 1

{Definition 3.2.3} iff π, x+ 1 |= ΦT 1

{Induction Hypothesis} iff g(π), x+ 1 |= θ(ΦT 1, π(0))

{Definition 2.5.3} iff g(π), x |= θ(ΦT 1, π(0))

{Definition 5.2.1} iff g(π), x |= θ(ΦT 1, π(0))

77

Chapter 5 Translation to LTL

Case ΦT =ΦT 1:

π, x |=ΦT 1

{Definition 3.2.3} iff ∃y ≥ x : π, y |= ΦT 1

{Induction Hypothesis} iff ∃y ≥ x : g(π), y |=LTL θ(ΦT 1, π(0))

{Definition 2.5.3} iff g(π), x |=LTL θ(ΦT 1, π(0))

{Definition 5.2.1} iff g(π), x |=LTL θ(ΦT 1, π(0))

The main result of this section is Theorem 5.2.1. It is a straightforward appli-
cation of Proposition 5.2.1, where we set x = 0. That is, a process P satisfies
a temporal formula ΦT if and only if the structural semantics of P satisfies the
translated formula with respect to P .

Theorem 5.2.1. Let P be a structurally congruent process and ΦT be a formula
of PSTL as in Definition 3.2.1 where all atoms of ΦT are defined according to
Definition 5.1.6. Then

P |= ΦT iff N JP K |=LTL θ(ΦT , P).

Proof of Theorem 5.2.1
Let P |= ΦT , that is for every process sequence π with π(0) = P , we have

π, 0 |= ΦT .

Hence by Proposition 5.2.1, g(π), 0 |=LTL θ(ΦT , P), i.e., N JP K |=LTL θ(ΦT , P).
Conversely let N JP K |=LTL θ(ΦT , P), i.e., every occurrence sequence σ with

σ(0) = M0 satisfies θ(ΦT , P), where M0 is the initial marking of N JP K. Because
g is an isomorphism, for every σ, g−1(σ) is a process sequence of P , i.e., there is a
process sequence π with g(π) = σ. Hence g(π), 0 |=LTL θ(ΦT , P). With Proposi-
tion 5.2.1, we conclude π, 0 |=LTL ΦT . Therefore P |= ΦT .

5.3 Example: Client/Server

We recall Example 2.3.1 and its tagged process system (refer to Definition 4.1.2
and Example 4.1.1). The system of a server S and two clients C communicating

78

5.3 Example: Client/Server

via the public channel url is given by the following process equations.

C(url) := νip.url〈ip〉.ip(s).s(x).C⌊url⌋
S(url) := url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋

SYS := S⌊url⌋ |C⌊url⌋ |C⌊url⌋

The tagged process system of this definition is

CSYS(url) := νip.url〈ip〉.ip(s).s(x).CC⌊url⌋
CC(url) := νip.url〈ip〉.ip(s).s(x).CC⌊url⌋

SSYS(url) := url(y).νses.y〈ses〉.ses〈ses〉.SS⌊url⌋
SS(url) := url(y).νses.y〈ses〉.ses〈ses〉.SS⌊url⌋
SYSSYS := CSYS⌊url⌋ |CSYS⌊url⌋ |SSYS⌊url⌋

where we already omitted the unreachable process equations.
To construct the structural semantics of P ≡ SYSSYS, we will abbreviate the

fragments in fg(rf (Reach(P))) by Fi where 0 ≤ i ≤ 8. These fragments are given
by the following equalities.

F0 = SYSSYS

F1 = CSYS⌊url⌋
F2 = CC⌊url⌋
F3 = SSYS⌊url⌋
F4 = SS⌊url⌋
F5 = νip.url〈ip〉.ip(s).s(x).CC⌊url⌋
F6 = url(y).νses.y〈ses〉.ses〈ses〉.SS⌊url⌋
F7 = νip.(ip(s).s(x).CC⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.SS⌊url⌋)
F8 = νses.(ses(x).CC⌊url⌋ | ses〈ses〉.SS⌊url⌋)

Hence the Petri net N JP K consists of 9 places. It is shown in Figure 5.2. We
will now define some properties in PSTL and present the translation into LTL.
Consider the PSTL formulas ΦS1, ΦS2,ΦT 1 and ΦT 2 defined by

ΦS1 = C ∧ free(url) ≬ S ∧ free(url) ≬ ⊤
ΦS2 = res i (C ∧ free(url, i) ≬ S ∧ free(url, i) ≬ ⊤)

ΦT 1 = (ΦS1)

ΦT 2 = (ΦS1 ⇒(ΦS2))

79

Chapter 5 Translation to LTL

We get that P satisfies neither ΦS1 nor ΦS2. With at most four reactions, P
reaches a state

P ′ ≡ F6 |F5 |Q.

That is, all process sequences π of P include P ′. This process satisfies ΦS1, hence
P |= ΦT 1. For Q we get that either Q ≡ CSYS⌊url⌋ or Q ≡ F6. Now we consider
the possible reactions of F5 |F6, i.e.,

F5 |F6 |Q
→ νip.(ip(s).s(x).CC⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.SS⌊url⌋) |Q
≡ F7 |Q

This process satisfies ΦS2, since ΦS2 ≡̂ ΦS2 ≬ ⊤,

νses.ip〈ses〉.ses〈ses〉.SS⌊url⌋ |=S S ∧ free(url, i){i← ip}
ip(s).s(x).CC⌊url⌋ |=S C ∧ free(url, i){i← ip}

Q |=S ⊤

and

ip 6∈ fn(F7) ∪ fn(S ∧ free(url, i)) ∪ fn(C ∧ free(url, i)).

All reactions of F7 reach a process which is again structurally congruent to F7,
hence these process sequences satisfy ΦT 2. The process Q does not intervene with
these reactions, since it either expands to F6, or it can not react at all.

Observe that ΦS1 and ΦS2 are well-formed formulas with respect to Defini-
tion 5.1.6. In particular, they are restriction formulas (Definition 5.1.4). Hence,
we can translate these formulas into LTL. We decompose ΦS1 into its fragmentary
formulas

φ1 = C ∧ free(url)

φ2 = S ∧ free(url)

The fragmentary semantics of these formulas with respect to P are

Jφ1KP = {[F2], [F5]}
Jφ2KP = {[F4], [F6]}

hence the fragmentary semantics of ΦS1 are

JΦS1KP = {[F2 |F4], [F2 |F6], [F5 |F4], [F5 |F6]}.

80

5.3 Example: Client/Server

[F0]

[F1]

[F3]

t1

2

[F5]

[F6]

t2

t3

[F7]

t4

[F8]

t5

[F2]

[F4]

t6

t7

t8

Figure 5.2: The structural semantics of P ≡ SYSSYS

The translated formula θ(ΦS1, P) is

θ(ΦS1, P) = ([F0] ≥ 0 ∧ [F1] ≥ 0 ∧ [F2] ≥ 1 ∧ [F3] ≥ 0 ∧ [F4] ≥ 1

∧[F5] ≥ 0 ∧ [F6] ≥ 0 ∧ [F7] ≥ 0 ∧ [F8] ≥ 0)

∨ ([F0] ≥ 0 ∧ [F1] ≥ 0 ∧ [F2] ≥ 1 ∧ [F3] ≥ 0 ∧ [F4] ≥ 0

∧[F5] ≥ 0 ∧ [F6] ≥ 1 ∧ [F7] ≥ 0 ∧ [F8] ≥ 0)

∨ ([F0] ≥ 0 ∧ [F1] ≥ 0 ∧ [F2] ≥ 0 ∧ [F3] ≥ 0 ∧ [F4] ≥ 1

∧[F5] ≥ 1 ∧ [F6] ≥ 0 ∧ [F7] ≥ 0 ∧ [F8] ≥ 0)

∨ ([F0] ≥ 0 ∧ [F1] ≥ 0 ∧ [F2] ≥ 0 ∧ [F3] ≥ 0 ∧ [F4] ≥ 0

∧[F5] ≥ 1 ∧ [F6] ≥ 1 ∧ [F7] ≥ 0 ∧ [F8] ≥ 0)

For the sake of readability, we will omit all atoms of the form [Fi] ≥ 0, i.e., we
simplify the translated formula to

θ(ΦS1, P) = ([F2] ≥ 1 ∧ [F4] ≥ 1)

∨([F5] ≥ 1 ∧ [F4] ≥ 1)

∨([F2] ≥ 1 ∧ [F6] ≥ 1)

∨([F5] ≥ 1 ∧ [F6] ≥ 1)

The formula ΦS2 already is a fragmentary formula. The fragmentary semantics of
ΦS2 are

JΦS2KP = {[F7], [F8]}.

81

Chapter 5 Translation to LTL

We have already shown that F7 |=S ΦS2. That F8 |=S ΦS2 is due to

ses(x).CC⌊url⌋ |=S C ∧ free(url, i){i← ses}
ses〈ses〉.SS⌊url⌋ |=S S ∧ free(url, i){i← ses}

and the fact that ses is fresh with respect to F8 and the formulas C ∧ free(url, i)
and S ∧ free(url, i). Therefore, the translation of ΦS2 with respect to P is

θ(ΦS1, P) = [F7] ≥ 1 ∨ [F8] ≥ 1.

We see, that N JP K 6|=LTL θ(ΦS1, P) and N JP K 6|=LTL θ(ΦS2, P). Now we consider
the occurrence sequences of the structural semantics of P to verify that indeed
N JP K |=LTL θ(ΦT 1, P) and N JP K |=LTL θ(ΦT 2, P). As the translations of the
formulas are easy after translating the structural formulas, we will not explicitly
write them down. After transition t1 of the Petri net of Figure 5.2 fires, there
are three possible subsequent firing transitions, because the place [F1] carries 2
tokens. If t3 and t2 fire at least once, we reach a marking M with M([F5]) ≥ 1 and
M([F6]) ≥ 1. (If t2 fires twice, the only enabled transition of N JP K is t3). Hence
this marking satisfies θ(ΦS1,), i.e., N JP K |=LTL θ(ΦS1, P), which is N JP K |=LTL

θ(ΦT 1, P).

This marking enables t4, and after this transition fires, we get the marking M ′

with M ′([F7]) ≥ 1, i.e., θ(ΦS2, P) is true. All possible firing transitions either lead
to markings, where θ(ΦS1, P) is false, hence trivially satisfying the implication, or
to a markingM ′′ where againM ′′([F5]) ≥ 1 andM ′′([F6]) ≥ 1. So, we can conclude
that N JP K |=LTL (θ(ΦS1, P)⇒(θ(ΦS2, P))), that is N JP K |=LTL θ(ΦT 2, P).

5.4 Example: Bag

In this section, we will examine a data structure called bag. A bag can be filled
with arbitrary values and returns them in no specific order. We have already used
process equations defining a bag in Example 5.1.1. Now we will not only consider
a process filling the bag, but also a consumer process, which removes values from
the bag. We will directly give the tagged process system, since the definition of
the bag and the filling process are the same as in Example 5.1.1 and the definition
of the consuming process is straightforward. The following tagged process system

82

5.4 Example: Bag

describes the system of a bag, a filling and a consuming process.

SYSSYS := FILLSYS⌊in⌋ |BAGSYS⌊in, out⌋ |CONSSYS⌊out⌋
FILLSYS(in) := νval.in〈val〉.F ILLFILL⌊in⌋
FILLFILL(in) := νval.in〈val〉.F ILLFILL⌊in⌋

BAGSYS(in, out) := in(x).(out〈x〉.DBAG |BAGBAG⌊in, out⌋)
BAGBAG(in, out) := in(x).(out〈x〉.DBAG |BAGBAG⌊in, out⌋)
CONSSYS(out) := in(y).CONSCONS⌊out⌋

CONSCONS(out) := in(y).CONSCONS⌊out⌋
Furthermore, let P ≡ SYSSYS. The set Reach(P)/≡ is infinite, since an arbitrary

number of communications between the bag and the filling process can occur, where
the consumer never uses data. On the other hand, the set of reachable fragments
is finite up to structural congruence, because all data values νval.out〈cal〉.DBAG

are fragments and structurally congruent. Again, we abbreviate the fragments.

F0 = SYSSYS

F1 = FILLSYS⌊in⌋
F2 = BAGSYS⌊in⌋
F3 = FILLFILL⌊in⌋
F4 = BAGBAG⌊in⌋
F5 = νval.in〈val〉.F ILLFILL⌊in⌋
F6 = in(x).(out〈x〉.DBAG |BAGBAG⌊in, out⌋)
F7 = νval.out〈val〉.DBAG

F8 = CONSSYS⌊out⌋
F9 = out(x).CONSCONS⌊out⌋
F10 = CONSCONS⌊out⌋
F11 = DBAG

Now we consider the formulas

ΦS1 = BAG ∧ free(in) ≬ FILL ∧ free(in) ≬ ⊤
ΦS2 = rf (res v (BAG ∧ free(v, out)))

ΦT = (ΦS1 ⇒ΦS2)

The formula ΦT states, that whenever we have a bag and a filling process able to
communicate over the channel in, we finally get a processes, which is able to send
a saved value over the channel out.

83

Chapter 5 Translation to LTL

The process P satisfies neither ΦS1 nor ΦS2, but we will show that P satisfies
ΦT . After at most four reactions of P , we get a process which is congruent to

νval.in〈val〉.F ILLFILL⌊in⌋ | in(x).(out〈x〉.DBAG |BAGBAG⌊in, out⌋) |P ′

≡ F5 |F6 |P ′

where P ′ ≡ CONSSYS⌊out⌋ or P ′ ≡ out(x).CONSCONS⌊out⌋. Because

νval.in〈val〉.F ILLFILL⌊in⌋ |=S FILL ∧ free(in)

in(x).(out〈x〉.DBAG |BAGBAG⌊in, out⌋) |=S BAG ∧ free(in)

P ′ |=S ⊤

and due to the commutativity of ≬, we get that

F5 |F6 |P ′ |=S ΦS1.

Hence there is at least one reachable state of P satisfying ΦS1. Now we direct our
attention to ΦS2. As a first step of the examination of this formula, we expand
the abbreviation rf .

ΦS2 = res out res v (BAG ∧ free(v, out) ≬ ⊤) ∨ res v (BAG ∧ free(v, out) ≬ ⊤)

Observe, that no fragment satisfies the first part of the disjunction, since there is at
most one restriction on every fragment. The only fragment satisfying this formula
is F7 = νval.out〈val〉.DBAG. The only other fragment which is a sequential process
of BAG with out as a free name is F6. But F6 6|=S ΦS2, even though F6 contains
the bound name x. Consider the process

F ′
6 = νx.in(x).(out〈x〉.DBAG |BAGBAG⌊in, out⌋)

which is structurally congruent to F6. Now, we try to find a name m 6∈ fn(F ′
6) ∪

fn(BAG ∧ free(v, out)) such that F6 |=S BAG ∧ free(m, out). We can not choose
m = in, since in ∈ free(F ′

6). The only possibility for m would be m = x, but

in(x).(out〈x〉.DBAG |BAGBAG⌊in, out⌋) 6|=S BAG ∧ free(x, out).

For the satisfaction of ΦT , we have to consider every reachable process Q sat-
isfying ΦS1 and show that every possible process sequence starting in Q satisfies
ΦS2. If F7 ∈ fg(rf (Q)), this is obviously true. Let F7 6∈ fg(rf (Q)), which corre-
sponds intuitively to the situation, that the consuming process has removed every

84

5.4 Example: Bag

value from the bag. Since Q |=S ΦS1, there are Q′ and Q′′ such that Q ≡ Q′ |Q′′ |R
and

Q′ |=S FILL ∧ free(in)

Q′′ |=S BAG ∧ free(in).

If Q′ = F3, it can react to F5. Similarly, Q′′ = F4 can react to F6. Therefore, we
eventually get the situation described above, that is F5 |F6, which only can react
to a process structurally congruent to F7. Hence every process Q satisfying ΦS1

where F7 6∈ fg(rf (Q)) must react to a process containing F7. That is, every process
sequence starting in Q satisfies ΦS2. Altogether we have shown that P |= ΦT .

Now we translate ΦT to an equivalent formula of LTL. Therefore, we first trans-
late the structural formulas ΦS1 and ΦS2. The fragmentary semantics of ΦS1 and
ΦS2 are computed by

JBAG ∧ free(in)KP = {[F4], [F6]}
JFILL ∧ free(in)KP = {[F3], [F5]}

JΦS1KP = {[F4 |F3], [F4 |F5], [F6 |F3], [F6 |F5]}
JΦS2KP = {[F7]}.

If we omit all atoms of the form p ≥ 0, the translation of ΦT is

θ(ΦT , P) = ((([F4] ≥ 1 ∧ [F3] ≥ 1)

∨ ([F4] ≥ 1 ∧ [F5] ≥ 1)

∨ ([F6] ≥ 1 ∧ [F3] ≥ 1)

∨ ([F6] ≥ 1 ∧ [F5] ≥ 1))

⇒ ([F7] ≥ 1)).

The structural semantics of P are depicted in Figure 5.3). For the satisfaction
of the translation of ΦT , we will name the transitions as defined in this figure. We
show that every marking satisfying the premise of the implication also satisfies the
conclusion, i.e., [F7] ≥ 1. Let M be a marking with M([F5]) ≥ 1, M([F6]) ≥ 1
and M([F7]) = 0. Then, t4 is enabled. Firing t4 results in a marking M ′ with
M ′([F7]) = 1. Now, if a marking satisfies [F3] ≥ 1 and [F5] = 0, the transition t5
is enabled, whose firing marks [F5] with one token. A similar argument holds for
markings satisfying [F4] ≥ 1 and transition t6 which marks [F6] with one token.

Furthermore because of the structure of the net, only [F7] and [F11] can carry
more than one token at a time. We already assumed that [F7] carries no tokens,
and even if there are one or more tokens on [F11], M([F11) = c with c ≥ 1, t9 can

85

Chapter 5 Translation to LTL

only fire c times. Furthermore, the only circular dependencies in the net involve
the transition t4. Since every M satisfying the premise above leads to a marking
where t4 is enabled, this transition will eventually fire in all occurrence sequences
and the resulting marking satisfies [F7] ≥ 1. Hence for all occurrence sequences of
N JP K, we get σ |=LTL θ(ΦT 1, P).

86

5.4 Example: Bag

[F0]

[F8]

[F1] [F2]

[F9][F5] [F6]

[F10]

[F3] [F4]

[F7]

[F11]

t0

t1 t2 t3

t4

t5 t6

t7t8

t9

Figure 5.3: The structural semantics of P

87

Chapter 5 Translation to LTL

88

6 Conclusion and related work

Conclusion

In this thesis, we have defined a structural and temporal logic for the π-Calculus
called PSTL, which allows us to reason about the structural configuration and
the temporal evolution of processes. We have split the logic into two distinctive
subsets. First the structural formulas, which specify the structural aspect of a
process and second the temporal formulas, which describe the possible reactions
of the processes.

Besides the standard Boolean connectives, the syntax of structural formulas
includes an operator resembling the parallel composition of processes and a quan-
tifier on restricted names of processes. We have shown that the structural subset
of our logic is well-defined with respect to the Gabbay-Pitts-Property [GP99].
Furthermore, our restriction quantifier is νx-proper. This property distinguishes
well-defined quantification on hidden names from flawed and unsatisfactory quan-
tification as shown by Cardelli and Gordon [CG01]. We have explicitly proved
many equivalences of structural formulas, thereby increasing the intuition and un-
derstanding of structural reasoning with our logic.

Our temporal formulas are by design similar to LTL formulas, with the difference
that the atoms of our logic are possibly complex structural formulas. We have
thereby a rather strong restriction on the possible combinations of the operators
of the structural syntax and the temporal modalities. This restriction is intended,
to obtain clearly readable formulas and to simplify reasoning with our logic.

For the same purpose, we have introduced new atoms specifying derivatives of
processes. That is, all processes directly obtained from a process equation can
be identified by a single, simple atom instead of mentioning all these processes
explicitly. The drawback of this introduction is a blow-up of the number of process
equations defining a process system. This disadvantage is reduced by the fact that
normally a significant number of the newly created equations can be ignored, since
they are never expanded during the reactions of the process system.

Our last contribution is a translation of a subset of our logic to standard LTL
on Petri nets constructed according to the structural semantics by Meyer [Mey08].
This translation strongly relies on definitions introduced by Meyer that is in partic-

89

Chapter 6 Conclusion and related work

ular a new normal form for processes called restricted form and the decomposition
function, which splits processes along subprocesses not connected by restricted
names. We have shown that our translation is well-defined in the sense, that a
process satisfies a formula if and only if the structural semantics of the process
satisfies the translated formula. With this result, our logic can be used as a speci-
fication language for model checking π-Calculus processes. The tool Petruchio,
developed by Strazny [Str07] is an implementation of Meyers structural semantics.
It uses the Model Checking Kit (MCKIT) [SSE03] together with the model checker
SPIN [Hol97] as a back end to check the resulting Petri nets with respect to a given
LTL formula. At present, the work flow with Petruchio normally is as follows:

The user specifies the π-Calculus process she wants to check and uses the internal
compiler of Petruchio for the translation to a Petri net. After this compilation,
the user identifies the important places of the resulting Petri net, describes the
property to check with LTL and then invokes the model checker. Since the Petri
nets created with respect to the structural semantics consist normally of a large
number of places and transitions, the identification of important places is very
error-prone. Hence using our logic and subsequently applying the translation to
LTL on Petri nets defined in this thesis would increase the usability of Petruchio

significantly. For a schematic picture of the resulting work flow, see Figure 6.1.

π-Calculus PSTL

Structural Semantics Linear Temporal Logic

MCKIT/SPIN

√

Petruchio

Figure 6.1: Model checking π-Calculus-processes against PSTL-formulas with
Petruchio

90

In this thesis, we have not considered the “until” modality at all since we used
a definition of LTL following the early work of Pnueli. But our approach can be
generalised in a straightforward way, to handle formulas containing this modality,
due to the similarity of the semantics of PSTL and LTL.

Our result for translatable formulas is far from optimal. We restrict the use of
many operators and do not allow for negation at all. However, we believe that
translating formulas with negation is possible, by developing a treatment similar
to the translation of formulas containing the atomic formula ⊤. Furthermore, we
think that all formulas are equivalent to a formula in a normal form similar to
the restricted form of processes [Mey08]. For developing this normal form, more
structural equivalences than shown in the thesis are probably needed.

It is not possible to relate processes with their derivatives, which would be
convenient, for example to identify data values saved in a data structure. Such
identification is not reflected in the structural semantics and hence not expressible
with our logic.

Finally, our approach has yet to be implemented in the tool Petruchio.

Related Work

Even though structural properties have been always been discussed in concurrency
literature, most research concerned solely the behaviour of processes, for example
Hennessy-Milner-Logic [HM85]. However, the last years have shown increasing
interest in analysing the structural configurations of processes. This development
has been furthered by Gabbay and Pitts, who used Fraenkel-Mostovski (FM) set
theory to model hidden names [GP99]. Cardelli and Gordon [CG01] used their
results to explore logical properties of name restriction in the Ambient Calculus
[CGT98], an extension of the π-Calculus. Gabbay embedded the π-Calculus into
the FM set theory [Gab03], while Pitts defined a first order logic concerned with
variable binding [Pit03]. Independent from this development, Caires and Monteiro
explored the same questions by studying logical specifications of mobility in pro-
cesses [CM98]. All these developments concentrate on deductive systems for the
defined logics, which are not considered in this thesis at all.

In 2003, Caires and Cardelli published their work on a spatial and temporal
logic [CC01, CC02] for the π-Calculus, for which they provided a model-checking
algorithm. Charatonik and Talbot have examined decidability for the ambient
logic with name restriction with negative results [CT01].

Recently Mardare and Policriti have defined a Hilbert-style axiomatic system
for a spatial logic [MP08] on a subset of the Calculus of Communicating Systems

91

Chapter 6 Conclusion and related work

[Mil80]. Even though, they proved decidability of model checking for this subset,
their work lack consideration of name restriction.

92

Bibliography

[CC01] L. Caires and L. Cardelli. A spatial logic for concurrency (part i). In
Takayasu Ito, editor, Proceedings of the Fourth International Sympo-
sium on Theoretical Aspects of Computer Science (TACS 01), Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[CC02] L. Caires and L. Cardelli. A spatial logic for concurrency (part ii. In
In Proceedings of the 13th International Conference on Concurrency
Theory (CONCUR, pages 209–225. Springer-Verlag, 2002.

[CG00] L. Cardelli and A. D. Gordon. Anytime, anywhere: modal logics for mo-
bile ambients. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
365–377, New York, NY, USA, 2000. ACM.

[CG01] L. Cardelli and A. D. Gordon. Logical properties of name restriction.
In TLCA, pages 46–60, 2001.

[CG06] L. Cardelli and A. D. Gordon. Ambient logic. Mathematical Structures
in Computer Science, 2006. To appear.

[CGT98] W. Charatonik, A. D. Gordon, and J. Talbot. Mobile ambients. In
Theoretical Computer Science, pages 140–155. Springer-Verlag, 1998.

[CM98] L. Caires and L. Monteiro. Verifiable and executable logic specifica-
tions of concurrent objects in Lπ. In Chris Hankin, editor, Program-
ming Languages and Systems, Proceedings of ESOP’98, Lecture Notes
in Computer Science, pages 42–56. Springer-Verlag, 1998.

[CT01] W. Charatonik and J. Talbot. The decidability of model checking mo-
bile ambients. In CSL ’01: Proceedings of the 15th International Work-
shop on Computer Science Logic, pages 339–354, London, UK, 2001.
Springer-Verlag.

[CZ97] A. V. Chagrov and M. V. Zakharyaschev. Modal logics, volume 35 of
Oxford logic guides. Clarendon Press, 1997.

93

Bibliography

[Dam89] M. Dam. Relevance logic and Concurrent Composition. PhD thesis,
University of Edinburgh, 1989.

[Dam96] M. Dam. Model checking mobile processes. Information and Computa-
tion, 129:35–51, August 1996.

[EC80] E. A. Emerson and E. M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In Proceedings of the 7th Col-
loquium on Automata, Languages and Programming, pages 169–181,
London, UK, 1980. Springer-Verlag.

[Gab03] M. J. Gabbay. The pi-calculus in FM. In Fairouz Kamareddine, editor,
Thirty-five years of Automath, volume 28 of Kluwer applied logic series,
pages 247–269. Kluwer, November 2003.

[GP99] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax
involving binders. Logic in Computer Science, Symposium on, 0:214,
1999.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. JACM, 32(1):137–161, 1985.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[Hol97] G. Holzmann. The model checker spin. In IEEE Trans. on Software
Engineering, volume 23, pages 279–295, May 1997.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16:872–923, 1994.

[Mey07] R. Meyer. A Petri Net Semantics for π-Calculus Verification. In
Dagstuhl ”zehn plus eins”, pages 76–77. Verlagshaus Mainz GmbH
Aachen, 2007.

[Mey08] R. Meyer. A theory of structural stationarity in the π-calculus. Accepted
for publication in Acta Informatica, 2008.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[Mil99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, June 1999.

94

http://www.gabbay.org.uk/papers.html#picfm

Bibliography

[MP08] R. Mardare and A. Policriti. A complete axiomatic system for a process-
based spatial logic. In MFCS, pages 491–502, 2008.

[MPW91] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile pro-
cesses. volume 527 of Lecture Notes in Computer Science, pages 45–60.
Springer-Verlag, 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
parts i and ii. Information and Computation, 100(1):1–77, 1992.

[Pet62] C. A. Petri. Kommunikation mit Automaten. Technical report, 1962.

[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Inf. Comput., 186(2):165–193, 2003.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the
18th IEEE Symposium Foundations of Computer Science (FOCS 1977),
pages 46–57, 1977.

[Rei85] W. Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

[SSE03] C. Schröter, S. Schwoon, and J. Esparza. The Model-Checking Kit. In
W. van der Aalst and E. Best, editors, Applications and Theory of Petri
Nets 2003, volume 2679 of Lecture Notes in Computer Science, pages
463–472. Springer-Verlag, 2003.

[Str07] T. Strazny. Entwurf und Implementierung von Algorithmen zur Berech-
nung von Petrinetz-Semantiken für Pi-Kalkül-Prozesse. Master’s thesis,
University of Oldenburg, 2007.

[SW01] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile Processes.
Cambridge University Press, New York, NY, USA, 2001.

[Vaa93] F. W. Vaandrager. Expressiveness results for process algebras. pages
609–638. Springer-Verlag, 1993.

95

Chapter 6 Index

Symbol Index

+. .13
F .19
M . 11
Reach . 12, 18
[P] . 17
θ . 74
θS . 69
≬ . 27
caller .58
0 . 13
 . 25
 . 35
 . 24, 36
PSTL . 36
φ . 63
J·KP . 67
free .27
λ . 10
∧ . 24, 27, 36
¬ . 24, 27, 36
LTL .24
I . 49
bn . 14, 29
dec . 20
efn . 62
fn . 14, 29
retrieve . 22
sub . 28
supp . 11
|= . 37
|=S . 30
|=LTL . 25
 .24, 36
νa . 13
OC . 25
K⌊ã⌋ . 13

K(x̃) . 13
PN .11
π.P .13
| . 13
t• .10
•t .10
P . 13
Psf . 17
P 6=ν . 17
Pseq . 14
PF . 19
Pν . 19
PC . 37
{m/a} .16
→ . 18
→∗ . 18
x(y) . 13
renK . 50
̺ . 67
res. .27
res∗ .35
res∗rf . 63
rf . 20
≡rf .20
Prf . 19
N J·K .21
x〈y〉 . 13
σ . 25
 . 35
rf . 63
sf . 17
ΦS . 68
≡ . 17
ϕS .36
PSL . 27
{a← m} . 30

96

SYMBOL INDEX

SYS . 49
τ . 63
ỹ . 13
⊤ . 27
[〉 . 12
≡̂ . 32
f . 22
g . 75
p ≥ c . 24

97

Chapter 6 Index

Subject Index

νx-proper . 39
π-Calculus . 13

associativity
parallel composition 42

bisimulation . 19

channel . 13
commutativity

of substitution 30
parallel composition 42
restriction quantifier 42

decomposition function 20
domain . 9

formula
distributive laws 44
fragmentary 63
identificator.49
parallel composition 28
restriction . 67
restriction quantifier 28
satisfaction.30, 37
scope extrusion 43
structural . 68
subformula 28
validity 30, 37

fragment . 19
fragmentary semantics 67
function . 9

inverse .10

Gabbay-Pitts-property 38

homomorphism 10

image. .9

isomorphism . 10

linear temporal logic 24

marking . 11
initial .11

mobility . 13

name . 13
bound. .14, 29
ensured free 62
free . 14, 29
restricted . 13
sequence . 13
substitution of 15, 30

occurrence sequence 25

Petri net. .10
postset . 10
prefix. 13
preset . 10
process

call . 13
choice . 13
defining equation 13
identifier . 13
parallel composition 13
reachable . 18
reaction . 18
renaming . 50
restricted form. 19
restriction . 13
sequential .14
standard form 17
tagged process system 54

process sequence 37

98

SUBJECT INDEX

relation
congruence 16
equivalence . 9

restriction quantifier 28
arbitrary restriction quantifier 35
negation . 45
parallel composition with ⊤ . . . 46

retrieve function 22

semantics
PSTL. .37
disjunction.62
identificators59
LTL . 25
structural fragment of PSTL . . 30

structural congruence 17
structural equivalence.32
structural semantics 21
structural stationarity 23
substitution 15, 30
support . 11
syntax

PSTL. .36
fragmentary formula 63
LTL . 24
restriction formula 67
structural formula 68
structural fragment of PSTL . . 27

temporal logic . 23
token . 11
transition

enabled . 11
relation . 12
system. 12

translation
structural . 69
temporal. .74

99

Hiermit versichere ich, die vorliegende Arbeit selbständig und ohne fremde Hilfe
angefertigt zu haben. Die verwendete Literatur und sonstige Hilfsmittel sind voll-
ständig angegeben.

Oldenburg, den 27. November 2008

	Introduction
	Preliminaries
	Notations
	Petri nets
	The -Calculus
	Structural Semantics
	Linear Temporal Logic

	A connection based logic for the -Calculus
	Reasoning about structural properties
	Reasoning about temporal progress
	Properties of PSTL

	Complex atoms for simple reasoning
	Tagging Process Calls
	Semantics

	Translation to LTL
	Translating structural modalities to LTL
	Translating formulas with temporal modalities
	Example: Client/Server
	Example: Bag

	Conclusion and related work
	Bibliography
	Index
	Symbol Index
	Subject Index

