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Università di Perugia, Italy

francesco.santini@dmi.unipg.it

Abstract. We revise classical results in Argumentation-based Logic Pro-
gramming, e.g., Defeasible Logic Programming (DeLP), under the um-
brella of Satisfiability Modulo CHR. Through this language it is pos-
sible to reason on arguments and have an underlying theory solver to
implement resolution of conflicts. Strict and defeasible rules, as well as
certainty scores associated with such rules (e.g., Possibilistic DeLP), can
be cast to SMCHR rules, which act as conflict “disentanglers”. At the
same time, we inherit several built-in theory solvers, as unification or
linear arithmetic, usable even in combination. SMCHR can be used also
to straightforwardly solve Argumentation based on Classical Logic, by
selecting a sat solver.

1 Introduction

This paper links Argumentation-based Logic Programming [10,24,14,28] (ALP)
to Satisfiability Modulo Theories (SMT ), with the purpose to have declarative
and powerful tools to reason in case of conflict, and reach a justifiable conclusion
with a support in Argumentation-based reasoning.

To accomplish such goal, we use Satisfiability Modulo Constraint Handling
Rules (SMCHR) [9], which in turn exploits the declarativeness of a rule-based
language as CHR [12,13], and binds it to SMT. Solving CHR constraints in other
propositional contexts typically relies on some external machinery. For example,
Prolog CHR implementations such as K.U.Leuven CHR system [27] use Prolog’s
default backtracking search to handle disjunction. The execution algorithm for
CHR is based on constraint rewriting and propagation over a global store of
constraints. CHR solvers are incremental: when a new constraint c is asserted,
we check c and the store against the rules in order to find a match. If there
is a match, we fire that rule, possibly generating new constraints in the store.
Otherwise c is simply added to the global store.

SMT solvers have applications such as program verification, program anal-
ysis, model checking, theorem proving, and constraint programming [20]. Most
SMT solvers support a mixed set of first-order theories, such as linear arithmetic
over the reals, arrays, uninterpreted functions, and so on. SMCHR is much more
flexible, as it can support any theory implementable in CHR.



In the following, we first show how to model Argumentation based on Clas-
sical Logic [3,4] by using SMCHR, hence exploiting its Boolean Satisfiability
solver (sat). For instance, the notions of argument and defeater are represented
by using SMCHR clauses. Then we provide a general overview on how to pro-
gram constraint-propagators on top of solvers (as the sat one), with the purpose
to resolve conflicts between arguments, e.g., arg ∧ ¬arg . In general, an unsat-
isfiable result (i.e., the asked goal is not satisfiable) from a solver points to an
inconsistency in the knowledge base: such conflict can be overcome by writing
an ad-hoc propagator to solve it by removing either arg or ¬arg from the con-
straint store. This decision can be taken by considering qualitative/quantitative
preference scores associated with arguments, which define a total/partial order
among arguments. A conflict resolution-procedure favours the preferred argu-
ment between two. In this sense, an example of naturally weighted frameworks
is Possibilistic Defeasible Logic Programming (P-DeLP) [1], where ALP is mixed
with belief scores.

The use of propagators brings us to refer to Argument-based Constraint Logic
Programming (ACLP). Constraint Logic Programming [15] is a form of Con-
straint Programming [26], where Logic Programming is extended to include
concepts from constraint satisfaction. A Constraint Logic Program is a Logic
Program that contains constraints in the body of clauses, besides the literals.
An example clause is A(X,Y ) : −X > Y,B(X), C(Y ): where X > Y is a con-
straint, and A(X,Y ), B(X), C(Y ) are literals, as in regular Logic Programming.
During the evaluation of such programs, encountered constraints are placed in a
constraint store; if this set is found to be unsatisfiable, the interpreter backtracks,
to find an alternative valid solution.

Several different proposals have been crafted to express ALP in ad-hoc logics
and settle such conflicts [10,24,14,28]. One of our goals is to offer the features
of SMCHR and propagators as a general means to resolve them. We take as
an example the Defeasible Logic Programming framework (DeLP) [14] with the
purpose to show how SMCHR can be used to model and solve various reasoning
processes in a particular instance of such logics. For example, we are able i) to
check the “correctness” of an argument structure (following its definition), ii) to
check if one argument is the counter-argument of another, and iii) if it is a proper
or a blocking defeater for it [14]. Then we show that similar considerations hold
for the possibilistic extension of DeLP, i.e., P-DeLP.

To summarise, the main motivations behind this paper are to:

– have a unifying solving framework in which to solve all the ALP propos-
als [10,24,14,28], independently developed;

– link constraint-based representation and solving techniques, as the design
of propagators, to help argument-based reasoning in an efficient way. Note
in this work we focus on non-Abstract Argumentation Frameworks [10],
where, on the contrary, AI-based techniques have been already successfully
applied [7]: e.g., sat, constraints, Answer Set Programming (ASP);

– design propagators (which collectively implement a “Theory”) on top of
different built-in solvers, and then to check their satisfiability (from this,



“Satisfiability Modulo Theory”). This unlocks the use of weights, which rep-
resent quantitative preferences on arguments, or some additional information
to be taken into account during the reasoning. Possibility scores in P-DeLP
are such an example. Efficient underlying solvers, as the bounds solver or
the simplex algorithm (see Sec. 3.2), optimise the search procedure in case
of complex debates, e.g., hundreds of arguments (supports and claims) and
complex constraints over them. This is clearly not possible by using boolean
solvers only, as a “plain” sat solver where values are not considered to check
satisfaction.

The paper is organised as follows: Section 2 opens the paper by introducing
the related work, since our proposal generalises them towards a single framework.
Then, in Sec. 3 we summarise the necessary background-notions to understand
SMCHR, its rewriting rules, and underlying solvers. Section 4 shows how to
model Argumentation based on Classical Logic, while Sec. 5 suggests how con-
straint propagators can be used to resolve conflicts. Section 6 shows how SMCHR
can represent strict and defeasible rules, and some reasoning processes of DeLP,
as checking counter-arguments or defeaters. Such processes can be also repro-
duced in case of weighted rules, i.e., in P-DeLP. Finally, Sec. 7 wraps up the
paper and hints directions for future work.

2 Related Work

In this section we revise some of the most important proposals that combine
Argumentation with Logic Programming.

One of the first attempt made for integrating Logic Programming and Ar-
gumentation is [22], where Donald Nute introduces a formalism called Logic for
Defeasible Reasoning (LDR). The proposed language has three different types of
rules: strict, defeasible, and defeaters. Even if LDR is not a defeasible formalism,
its implementation in d-Prolog is enhanced with comparison criteria between
rules.

In his seminal work [10] on Abstract Argumentation, Dung shows how that
argumentation can be viewed as a special form of logic programming with nega-
tion as failure, e.g. “a logic program can be seen as a schema to generate ar-
guments”. Then, he introduces a general logic-programming based method to
generate meta-interpreters for argumentation systems.

Two years later, inspired by legal reasoning, Prakken and Sartor [24] present
a semantics (given by a fixed point definition) and a proof theory of a system
for defeasible reasoning, where arguments are expressed in a logic-programming
language with both strong and default negation. Conflicts between arguments
are decided with the help of priorities associated with rules; such priorities can
be defeasibly derived as conclusions within the system.

Defeasible Logic Programming (DeLP) is another formalism introduced in
[14], where Logic Programming is extended with two types of rules: strict, and
defeasible. As in [24], the language encompasses both strong and default negation.



A query is satisfied, that is warranted from a DeLP program, if it is possible to
assemble an argument that supports the query and this argument is found to
be undefeated. This process implements an exhaustive dialectical analysis that
involves the construction of the arguments that support or attack a query.

In [28] the authors formulate a variety of notions of attack for extended logic
programs from combinations of undercuts and rebuts; moreover, they define
a general hierarchy of argumentation semantics, which is parametrised by the
notions of attack chosen by proponent and opponent. The proposed language is
proved to correspond to the one in [24]. Finally, they prove the equivalence and
inclusion relationships between the semantics, and they examine some essential
properties concerning consistency and coherence principles, which relate default
and explicit negation.

Since in Sec. 6.1 we also investigate possibilistic frameworks (i.e., P-DeLP [1]),
it is worth mentioning other proposals as probabilistic [19], weighted [11,18],
fuzzy [16], or more general semiring-based ones [5] (however, the last three pro-
posals are based on Abstract Argumentation).

One more work, supporting the claim that Argumentation theory is a suit-
able framework for uncertain reasoning, is [21]. The authors propose an approach
based on possibilistic ASP. The specification language is able to capture incom-
plete information and incomplete states of a knowledge-base at the same time.
By considering the evidence of each argument (e.g., maybe, likely, certain), it is
presented a conflict managing approach between possibilistic arguments, dealing
with the inconsistency of a possibilistic knowledge-base.

Other papers where the authors formalise argument-based decision-making
under uncertainty are [17,2,6].

3 CHR and Satisfiability Modulo CHR

3.1 Constraint Handlng Rules

Constraint Handling Rules (CHR) [12,13] is essentially a committed-choice lan-
guage consisting of multi-headed guarded rules that rewrite constraints into
simpler ones until they are solved. CHR rules define simplification of, and prop-
agation over, multi-sets of relations interpreted as conjunctions of constraint
atoms. Simplification rewrites constraints to simpler constraints while preserv-
ing logical equivalence (e.g. X < Y, Y < X <=> false). Propagation adds new
constraints, which are logically redundant but may cause further simplification
(e.g. X ≤ Y, Y ≤ Z ==> X ≤ Z). Repeatedly applying the rules incrementally
solves constraints (e.g. A ≤ B,B ≤ C,C ≤ A leads to A = B ∧ A = C). In
the following we show the formal syntax of such basic rules: r is the optional
unique-name of a rule, each H (and Hk\Hr) is the (multi-) head of a rule, and it
consists in a conjunction of one or more defined constraints indicated by commas
(H = h1, . . . , hn), G is the guard being a conjunction of built-in atoms, and B
the body being a conjunction of constraints:

– Simplification: [r@] H <=> [G|] B.



– Propagation: [r@] H ==> [G|] B.
– Simpagation: [r@] Hk \ Hr <=> [G|] B.

The @ symbol assigns a name r to a rule. A constraint (also built-in, as
=) is a predicate of First Order Logic. Rules are tried and (in case) fired in
the order they are written in the program (from top to bottom). For each rule,
one of its head constraints is matched against the last constraint added to the
store. Matching succeeds if the constraint is an instance of the head. If matching
succeeds and the rule has more than one head constraint, the constraint store
is searched for partner constraints that match the other head constraints. A
guard is a precondition on the applicability of a rule: it is basically a test that
either succeeds or fails. If the firing rule is a simplification rule, the matched
constraints are removed from the store and the body of the rule is executed by
adding the constraints in the body. Similarly for firing a simpagation rule, except
that the constraints that match the head-part preceding \ (i.e., Hk) are kept in
the store; a simpagation rule can be seen as a short hand for Hk, Hr ==> B,

Hr. If the firing rule is a propagation rule, its body is executed without removing
any constraint. The rule is remembered with the purpose to not fire it again
with the same constraints.

Basically, rules are applied to an initial conjunction of constraints (syntac-
tically, a goal) until exhaustion, i.e., until no more change happens. An initial
goal is called query. The intermediate goals of a computation are stored in the
so-called store. A final goal, to which no more rule is applicable, represents the
answer (or result) of a computation. Figure 1 shows four rules to reason on the
≤ relation: by posting the goal A ≤ B,B ≤ C,C ≤ A to the store we obtain a
final store containing the result {A = B,A = C}.

r e f l e x i v i t y @ X leq X <=> t rue .
antisymmetry @ X leq Y, Y l eq X <=> X = Y.
t r a n s i t i v i t y @ X leq Y, Y l eq Z ==> X leq Z .
idempotence @ X leq Y \ X leq Y <=> t rue .

Fig. 1. Four rules that implement a solver for a less-or-equal constraint.

3.2 Satisfiability Modulo CHR

SMCHR1 [8,9] is essentially a Satisability Modulo Theories (SMT) solver where
a theory T is implemented in CHR.

SMCHR follows the theoretical operational-semantics of CHR. No assump-
tions should be made about the ordering of rule applications. The SMCHR sys-
tem also treats deleted constraints differently from CHR. A deleted constraint
stays deleted “forever”, i.e. it is not possible to re-generate a copy of the same
constraint: for instance, a the program p(x) <=> p(x) always terminates.

1 http://www.comp.nus.edu.sg/~gregory/smchr/

http://www.comp.nus.edu.sg/~gregory/smchr/


The following list introduces all the solvers that can be plugged into SMCHR
at the time of writing [8,9]:

– eq : an equality solver based on union-find. This solver is complete for (dis-)
equality constraints.

– linear : a linear arithmetic solver over the integers based on the simplex al-
gorithm over the rationals. This solver is incomplete if there exists a rational
solution for the given goal.

– bounds: a simple bounds-propagation solver over the integers. This solver is
incomplete.

– dom: a simple solver that interprets the constraint int dom(x , l , u) as an
integer domain/range constraint x ∈ [l..u]. This, in combination with the
bounds solver, forms a Lazy Clause Generation (LCG) finite domain solver.
This solver is incomplete.

– heaps: a heap solver for program reasoning based on some of the ideas from
Separation Logic. This solver is complete.

– sat : the boolean satisfiability solver. This solver is complete and is always
enabled by default.

The SMCHR system assumes all solvers are incomplete, and therefore will
always answer “UNKNOWN” even if the goal is satisfiable. However, if the
user knows that a given solver combination is complete for a given goal, then
the answer UNKNOWN can be re-interpreted as a “SAT” response. SMCHR
returns the answer “UNSAT” to indicate that the goal is unsatisfiable. Some
performance benefits in using the sat solver are that it is possible to inherit all
the advantages of no-good clause learning, non-chronological back-jumping, and
unit propagation during computation [8].

4 SMCHR and Argumentation based on Classical Logic

In order to formalise argumentation, it is possible to use any logic to define the
logic entailment of the claim from the support (e.g., Modal Logic). In this intro-
ductory section, the aim is to briefly show how basic concepts in argumentation
can be represented in classical logic, and, ultimately, how such problems can
be encoded and solved in SMCHR. We represent atoms by lower case roman
letters (a, b, c, d, . . . ), formulas by greek letters (α, β, . . . ), and use ∧, ∨, →,
and ¬ to denote the logical connectives as conjunction, disjunction, negation,
and implication (respectively). We also use ⊥ to denote a contradiction. We use
` to denote the classical consequence relation, and so if ∆ is a knowledge-base
(we assume ∆ to be a finite set of formulas), and α is a formula, then ∆ ` α
denotes that ∆ entails α. ∆ ` ⊥ denotes that ∆ is contradictory (or equivalently
inconsistent). Thus, ∆ can represent facts, beliefs, views, etc.: the formulas in
∆ can represent certain or uncertain information, and they can represent ob-
jective, subjective, or hypothetical statements. Indeed, ∆ is not expected to be
consistent. Definition 1 describes a valid argument.



Definition 1 (Argument). An argument is a pair 〈Φ, α〉 such that 1) Φ 6` ⊥,
2) Φ ` α, and 3) Φ is a minimal subset of ∆ satisfying 2.

Argument supports are in ∆ (i.e., Φ ⊆ ∆), while a claim α is generally not
in ∆. For instance, we can have ∆ = {a, a→ b, c→ ¬b, c, d, d→ b,¬a,¬c}, and
an argument 〈Φ, α〉 = 〈{a, a→ b}, b〉.

Condition 1 in Def. 1 can be checked in SMCHR by invoking ./smchr and
just verifying the solvability of Φ. Asking the goal a ∧ (a→ b) returns a ∧ b and
UNKNOWN as result, which, being sat the complete solver loaded by default,
means that Φ 6` ⊥. Condition 2 in Def. 1 can be verified by passing Φ ∧ α, i.e.,
a ∧ (a→ b) ∧ b, which prints the same outcome as for 1). Therefore, Φ ` α, i.e.,
a ∧ (a→ b) ` b. Minimality (i.e., condition 3) is not a mandatory requirement
in general: here we suppose reasons for a claim to be exactly identified [25, pp.
137], which means that they do not incorporate irrelevant information. However,
a rough procedure to check it is to repeat checking condition 2 after removing
each clause-item from the support (see Sec. 7).

Informally, an argument that disagrees with another argument is described
as a counter-argument, thus highlighting points of contention. In logic-based
approaches, defeaters are arguments whose claim refutes the support of another
argument [22,24].2 Formally:

Definition 2 (Defeater). A defeater for an argument 〈Φ, α〉 is an argument
〈Ψ, β〉 such that β ` ¬(φ1 ∧ · · · ∧ φn) for some {φ1, . . . , φn} ⊆ Φ.

Let ∆ = {¬a, a ∨ b, a↔ b, c→ a}. Then, 〈{a ∧ b, a↔ b}, a ∧ b〉 is a defeater
for 〈{¬a, c → a},¬c〉. Checking if 〈Ψ, β〉 is a defeater of 〈Φ, α〉 can be accom-
plished in SMCHR by invoking the ./smchr interpreter and just asking the goal
(a ∧ b) ∧ (¬ a) ∧ (c→ a), i.e., Ψ ∧ β. Being UNSAT the returned result, we can
conclude that (c→ a) ` ¬((a ∧ b) ∧ (¬ a)).

5 An Overview of the Approach

In this section we suggest a general approach about how to use SMCHR to solve
conflicts like: claim ∧ ¬claim.

While the previous section only takes advantage of the sat solver, here we
program ad-hoc CHR propagators (still used in conjunction with the underlying
sat solver) in order to resolve conflicts between two conflicting claims: a prop-
agator is expressed as a rule like claim ∧ ¬claim ⇒ ?, where ? can be decided
by considering different factors, as a certainty score associated with claim and
¬claim [1], or taking into account if claims are the outcome of strict or defea-
sible (or weak) rules (see Sec. 6 and Sec. 2). Such propagators are used by the
solver to compute a fixed point of constraint propagation. Therefore, we detach

2 In some frameworks, a defeater can also refute the claim of an argument or the
rationale being used (e.g., logical connections in the support are not clear or sound),
not only its support.



the Theory for Argumentation from the solver beneath, which can be selected
among those in Sec. 3.2.

We show how SMCHR can represent information in the form of strict and
weak rules in a declarative manner. Weak rules are the key element for introduc-
ing defeasibility [23], and they are used to represent a relation between pieces
of knowledge that could be defeated when everything has been considered. For
instance, we can mark weak rules by tagging the produced claims with @w (@
is used for SMCHR atom-constants):

supp1 ∧ supp2 =⇒ claim(@w)

while a tag @s points to a strict rule instead:

supp3(X) =⇒ X >= 4 | ¬claim(@s)

X >= 4 is a guard, and it constrains the firing of this rule when variable X is
greater than 4 only. Afterwards, we need to envisage rules to resolve possible
conflicts in a store of constraints. By firing the previous two rules, then the store
contains both claim and ¬claim (one weak and one strict), that is an argument
and its counter-argument at the same time.

claim(X) ∧ ¬claim(Y )⇐⇒ X = @w ∧ Y = @s | ¬claim(Y )

claim(X) ∧ ¬claim(Y )⇐⇒ X = @s ∧ Y = @w | claim(X)

In this case, our constraint store contains both claim labelled with “weak”
and ¬claim labelled with “strict”, the first between the two rules will be fired
and the result will be the deletion of claim from the store, and the keeping of
¬claim.

Finally we consider the classical example described in Fig. 2, where we list
facts and strict/weak rules (i.e., →s and →w respectively).

bird(tweety) penguin(tweety)
bird(X)→w fly(X) penguin(X)→s ¬fly(X)

Fig. 2. The classical Tweety example.

In Fig. 3 we implement a possible conflict resolution in SMCHR for the
example in Fig. 2. By querying bird(tweety) ∧ penguin(tweety), the generated
final constraint-store is bird(tweety)∧penguin(tweety)∧¬fly(tweety ,@s). Hence
we correctly obtain that tweety is not capable of flying.

6 DeLP Solved in SMCHR

In this section we choose DeLP [14] among all Argument-based Logic Program-
ming frameworks (see Sec. 2) in order to show how SMCHR propagators can



bi rd (x ) =⇒ f l y (x ,@w) ;
penguin (x ) =⇒ not f l y (x ,@s) ;
f l y (x , b) ∧ not f l y (x , c ) =⇒ b = @w, c = @s | not f l y (x , c ) ;

Fig. 3. SMCHR rules coding the Tweety example.

effectively model such plethora of systems. DeLP variables are represented with
constraint variables. A DeLP program is a set of i) facts, ii) strict rules, and iii)
defeasible rules.

– Facts are ground literals representing atomic information or its negation.
– Strict rules represent non-defeasible rules, and they are represented as L0 ←
L1, . . . , Ln.

– Defeasible rules represent tentative information, in the form of rules like
L0 � L1, . . . , Ln.

In words, a defeasible rule is used to represent tentative information that may
be used if nothing could be posed against it. On the contrary, the information
that represents a strict rule, or a fact, is not tentative. A DeLP-program is
denoted by a pair (Π,∆) distinguishing a subset Π of facts and (only two)
strict rules, which represent non-defeasible knowledge, and a subset ∆ of (eight)
defeasible rules. In Fig. 4 we consider the same example given in [25, Ch. 2].
Π ∪∆ collect information and reason on three rooms a, b, and c, linking their
illumination to the day (working or holiday), to the switch position (on/off),
to the electricity presence (yes/no), and to the time of the day (day/night): for
instance, the first defeasible rule states that “it is reasonable to believe that if
the switch of a room is on, then the lights of that room are on”. This rule is
in ∆ because its conclusion can be defeated in case, for instance, there is no
electricity.

In Fig. 5 we show a possible encoding to SMCHR of the DeLP program in
Fig. 4. All the rules in Fig. 4 (both in Π and ∆) are encoded in a SCMHR
propagation-rule in Fig. 5, one by one. Facts, which represent pieces of indefea-
sible information (i.e., they are in Π as well), are not represented through rules,
but with the constraints

switchOn(a), switchOn(b), switchOn(c),not electricity(b),not electricity(c),

emergencyLights(c),night(a),night(b),night(c), sunday(a), sunday(b),
sunday(c), deadline(a), deadline(b), deadline(c).

Such set of F constraints (or part of it) can be passed to the SMCHR in-
terpreter (in “and”) as part of a global goal. If we ask the entire F we obtain
an UNSAT result, meaning that not all of them can be warranted, i.e., we have
contradictions in our knowledge-base.

A DeLP-query is a ground literal Q that a DeLP program tries to warrant.
Our SMCHR can straightforwardly check it. There are several queries that suc-
ceed with respect to the program in Fig. 5 because they are warranted, e.g.,
illuminated(a) ∧ switchOn(a). File argCheck.chr stores our “Theory” as a set



Π



night . switch on(a).
∼day ← night . switch on(b).
∼dark(Y )← illuminated(X). switch on(c).
sunday . ∼electricity(b).
deadline. ∼electricity(c).

emergency lights(c).

∆



light on(X) � switch on(X).
∼lights on(X) �∼electricity(X).
lights on(X) �∼electricity(X), emergency lights(X).
dark(X) �∼day .
illuminated(X) �∼lights on(X),∼day .
working at(X) � illuminated(X).
∼working at(X) � sunday .
working at(X) � sunday , deadline.

Fig. 4. Π collects facts and strict rules in DeLP, while ∆ provides defeasible
rules.

/∗ S t r i c t r u l e s ∗/
night (x ) =⇒ not day (x ) ;
i l l umina t ed (x ) =⇒ not dark (x ) ;

/∗ De f e a s i b l e r u l e s ∗/
switchOn (x ) =⇒ l i ghtsOn (x ) ;
not e l e c t r i c i t y (x ) =⇒ not l ightsOn (x ) ;
not e l e c t r i c i t y (x ) ∧ emergencyLights ( x ) =⇒ l i ghtsOn (x ) ;
not day (x ) =⇒ dark (x ) ;
not day (x ) ∧ l i ghtsOn (x ) =⇒ i l l um ina t ed (x ) ;
i l l umina t ed (x ) =⇒ workingAt (x ) ;
sunday (x ) =⇒ not workingAt (x ) ;
sunday (x ) ∧ dead l ine (x ) =⇒ workingAt (x ) ;

Fig. 5. argcheck.chr : a SMCHR propagator coding the DeLP example in Fig. 4.

of propagation rules, and it is shown in Fig. 5. If we call ./smchr --solver

argCheck.chr and we ask the goal Q = illuminated(a) ∧ switchOn(a) then we
obtain UNKNOWN, which, being the default sat solver complete, can be rein-
terpreted as SAT (Q is then warranted). The output of the smchr interpreter
is shown in Fig. 11, where we can also see the number of generated constraints
(three: lightsOn(a), not dark(a) and workingAt(a)), and other information re-
lated to search, as the number of backtracks. Other queries cannot be warranted
instead: for instanceQ = switchOn(a)∧not lightsOn(a) returns UNSAT, because
switchOn(a) propagates to lightsOn(a), which however conflicts with part of Q.
Indeed, also two contradictory constraint in a query, as day(a) ∧ not day(a),
trivially disagree, and the answer is UNSAT as well.

A derivation using Π only is called a strict derivation, that is only the first
two rules in Fig. 5. A defeasible derivation of a literal Q by using (Π,∆), denoted
by (Π,∆) |∼ Q, is a finite sequence of ground literals in form of L1, L2, . . . , Ln

with Ln = Q, where i), Li is a fact in Π, or ii) there exists a strict or defeasible



LOAD solver "sat"
LOAD solver "argcheck.chr"

> illuminated(a) /\switchOn(a)
UNKNOWN:
illuminated(a) /\
lightsOn(a) /\
not dark(a) /\
switchOn(a) /\
workingAt(a)
TIME 0
CONSTRAINTS 3
BACKTRACKS 0
CLAUSES 3
DECISIONS 0
PIVOTS 0

Fig. 6. Output of archCheck.chr with illuminated(a) as query.

rule in (Π,∆) with head Li and body B1, . . . , Bk and each B is an Lj element
of L1, L2, . . . , Ln, with j < i. A derivation is defeasible if at least one defeasible
rule is used. This brings us to define a valid argument structure:

Definition 3 (Argument Structure [14]). Let H be a ground literal, (Π, ∆)
a DeLP-program, and A ⊆ ∆. The pair 〈A,H〉 is an argument structure if:3

1. there exists a defeasible derivation for H from (Π,A),
2. there is no defeasible derivation from (Π,A) of contradictory literals.

With respect to Fig. 4, if we considerA = {∼lights on(X) � ∼electricity(X)}
and H = ∼lights on(b), we can check if 〈A,H〉 is a valid argument structure by
using the SMCHR rules in Fig. 7, which collect all the strict rules in Π plus A,
as required by 2) in Def. 3. If we set as goal all the facts F in Π, i.e.,

Q = F = night(a)∧night(b)∧night(c)∧switchOn(a)∧switchOn(b)∧switchOn(c)∧
sunday(a) ∧ sunday(b) ∧ sunday(c) ∧ deadline(a) ∧ deadline(b) ∧ deadline(c)∧

not electricity(b) ∧ not electricity(c) ∧ emergencyLights(c)

then the obtained output is UNKNOWN and the new (six) constraints generated
in the store are

defeasibleNotLightsOn(b), defeasibleNotLightsOn(c),not day(a),not day(b),

not day(c), strictLightsOn(b).

Having constraint defeasibleNotLightsOn(b) in the store means that we gen-
erated H = ∼lights on(b) by using at least one defeasible rule. Thus, 1) in Def. 3
is satisfied, as well as 2), since a result of UNKNOWN (i.e., SAT because the
solver is complete) means that no contradictory literals have been generated.
Note that the same holds for H = ∼lights on(c), as it can be appreciated from
the same final store of constraints above.

3 We do not consider here a third property, i.e., that there is no proper subset A′ of
A such that A′ satisfies 1) and 2).



/∗ S t r i c t r u l e s ∗/
night (x ) =⇒ not day (x ) ;
i l l umina t ed (x ) =⇒ not dark (x ) ;

/∗ De f e a s i b l e r u l e s ∗/
not e l e c t r i c i t y (x ) =⇒ not l ightsOn (x ) ∧ de feas ib leNotLightsOn ( ) ;

/∗1∗/ de feas ib leNotLightsOn (x ) ∧ l i ghtsOn (x ) =⇒ s t r i c tL i gh t sOn (x ) ;
/∗2∗/ de feas ib leNotLightsOn (x ) ∧ de f ea s ib l eL ight sOn (x ) =⇒ f a l s e ;

Fig. 7. A SMCHR program to check the validity of an argument structure (see
Def. 3) by using (Π,A), where A = {∼lights on(X) � ∼electricity(X)} and Π
is supposed as taken from Fig. 4.

Rule 2 in Fig. 7 is used to have an UNSAT response in case there are two
defeasible derivations leading to the contradiction that lights are on and off at
the same time. Therefore, we use this rule to check property 2) in Def. 3. Rule 1
in Fig. 7 is used to add a constraint (in this case, strictLightsOn(b)) warning that
there is also a strict derivation contradicting our defeasible derivation for b. If we
wish to remove such a conflict, we only need to add the following (simpagation)
rule to Fig. 7, which can remove the constraint strictNotLightsOn(b) from the
store:

strictLightsOn(x) \ defeasibleNotLightsOn(x) <=> strictLightsOn(x);

Now we can turn our attention to model and check counter-arguments and
defeaters in DeLP:

Definition 4 (Counter-Argument [14]). 〈B,S〉 is a counter-argument for
〈A,H〉 at literal P , if there exists a sub-argument 〈C,P 〉 of 〈A,H〉 such that P
and S disagree, that is, there exist two contradictory literals that have a strict
derivation from Π ∪ {S, P}.

Consider two valid argument-structures 〈{illuminated(X) � ∼lights on(X),
∼day , light on(X) � switch on(X)} , illuminated(b)〉 and 〈{dark(X) � ∼day},
dark(b)〉. We can accomplish this check by writing a new SMCHR program with
the first two rules of Fig. 5; then we ask a queryQ = F∧{illuminated(b), dark(b)},
which contains all the facts F in Π in conjunction with S ∪ P . As answer we
get UNSAT, meaning that one is the counter-argument of the other (obtained
by only using strict derivations).

In DeLP the argument comparison criterion between two arguments is mod-
ular [14]. For this reason, Def. 5 abstracts away from the comparison criterion,
assuming there exists one (denoted by �):

Definition 5 (Proper/Blocking Defeaters [14]). Let 〈B,S〉 be a counter-
argument for 〈A,H〉 at point P , and 〈C,P 〉 the disagreement sub-argument. If
〈B,S〉 � 〈C,P 〉 (i.e., 〈B,S〉 is “better” than 〈C,P 〉) then 〈B,S〉 is a proper
defeater for 〈A,H〉. If 〈B,S〉 is unrelated by the preference relation to 〈C,P 〉,
(i.e., 〈B,S〉 6� 〈C,P 〉, and 〈C,P 〉 6� 〈B,S〉) then 〈B,S〉 is a blocking defeater
for 〈A,H〉.



type night ( var o f atom , num) ; type i l l umina t ed ( var o f atom , num) ; type
dark ( var o f atom , num) ;

i l l umina t ed (x , y ) \ dark (x , z ) ⇐⇒ y $ > z ∧ r := (y − z ) | not dark (x ,
r ) ∧ pDefeater I l luminatedDark (x ) ;

i l l umina t ed (x , y ) \ dark (x , z ) ⇐⇒ y $ = z ∧ r := (y − z ) | not dark (x ,
r ) ∧ bDefeater I l luminatedDark (x ) ;

Fig. 8. dark ∧ not dark : resolving conflicts with scores.

In SMCHR, preference can be computed and/or constrained in the guard of a
rule, thus allowing us to even represent dynamic preferences, i.e. preferences that
are subject to some conditions, as suggested in [24] or in implemented systems
as GORGIAS4. Therefore, in the approach adopted below we opt to associate a
score with each argument, and we compute a new numeric result by resolving a
conflict, for instance subtracting the strength of a support from another:

supp(X) ∧ ¬supp(Y ) <=> X >= Y ∧ Z := X − Y | claim(Z)

supp(X) ∧ ¬sup(Y ) <=> X < Y ∧ Z := Y −X | ¬claim(Z)

In these two rules, contradictory constraints supp(X) and supp(Y ) are the
same argument but with a different preference score. They are removed from the
store through a simplification rule, and the result is the a claim with a different
preference score Z, computed in the guard of the rules. If X ≥ Y ($ >= in
SMCHR), supp wins over ¬supp, otherwise the store contains ¬claim. In both
of the cases, the final preference Z is the difference between X and Y .

If we import such conflict-resolution method in our running-case (Fig. 4), we
can model it via the program in Fig. 8. The type of constraints is defined at the
beginning of Fig. 8 in order to let the program correctly manage operations on
their arguments. We set the query Q to dark(b, 2 ) ∧ illuminated(b, 3 ). Hence,
argument illuminated(b) is associated with a preference value equal to 3, and
dark(b) to 2. The program in Fig. 8 states that illuminated(b) propagates to
not dark(b), if the first preference score is greater/equal than the preference
score of dark(b), and the preference of not dark(b) is their difference. The first
rule generates a proper defeater in the store when the preference is strictly better.
If the two scores are the same, the second rule generates a blocking defeater
instead. With our query Q, we fire the first rule and we obtain illuminated(b, 3 )∧
not dark(b, 1 ) ∧ pDefeaterIlluminatedDark(b) in the store.

6.1 A Bridge from Constraints Towards P-DeLP

Finally, we show how SMCHR and constraints have an impact on weighted
extensions of ALP (see also Sec. 2). Possibilistic Defeasible Logic Programming
(P-DeLP) [1] is an extension of DeLP in which defeasible rules are attached with
weights, belonging to the real unit interval [0..1], in the following discretised to

4 http://www.cs.ucy.ac.cy/~nkd/gorgias/

http://www.cs.ucy.ac.cy/~nkd/gorgias/


type sw1 (num) ; type sw2 (num) ; type sw3 (num) ; type pumpClog (num) ; type
pumpFuel (num) ; type pumpOil (num) ; type oi lOk (num) ; type fuelOk (num) ;
type engineOk (num) ; type heat (num) ; type lowSpeed (num) ;

/∗ S t r i c t ∗/
pumpClog (x ) =⇒ not fuelOk (x ) ;

/∗ De f e a s i b l e ∗/
sw1 (x ) =⇒ x $ <= 60 | pumpFuel ( x ) ;
sw1 (x ) =⇒ x $ > 60 | pumpFuel (60) ;
pumpFuel ( x ) =⇒ x $ <= 30 | fuelOk (x ) ;
pumpFuel ( x ) =⇒ x $ > 30 | fuelOk (30) ;
sw2 (x ) =⇒ x $ <= 80 | pumpOil ( x ) ;
sw2 (x ) =⇒ x $ > 80 | pumpOil (80) ;
pumpOil ( x ) =⇒ x $ <= 80 | oi lOk (x ) ;
pumpOil ( x ) =⇒ x $ > 80 | oi lOk (80) ;
oi lOk (x ) ∧ fuelOk (y ) =⇒ x $ <= y ∧ x $ <= 30 | engineOk (x ) ;
oi lOk (x ) ∧ fuelOk (y ) =⇒ y $ <= x ∧ y $ <= 30 | engineOk (y ) ;
oi lOk (x ) ∧ fuelOk (y ) =⇒ 30 $ <= x ∧ 30 $ <= y | engineOk (30) ;
heat (x ) =⇒ x $ <= 95 | not engineOk (x ) ;
heat (x ) =⇒ x $ > 95 | not engineOk (95) ;
heat (x ) =⇒ x $ <= 90 | not oi lOk (x ) ;
heat (x ) =⇒ x $ > 90 | not oi lOk (x ) ;
lowSpeed (x ) ∧ pumpFuel ( y ) =⇒ x $ <= y ∧ x $ <= 70 | pumpClog (x ) ;
lowSpeed (x ) ∧ pumpFuel ( y ) =⇒ y $ <= x ∧ y $ <= 70 | pumpClog (y ) ;
lowSpeed (x ) ∧ pumpFuel ( y ) =⇒ 70 $ <= x ∧ 70 $ <= y | pumpClog (70) ;
sw2 (x ) =⇒ x $ <= 80 | lowSpeed (x ) ;
sw2 (x ) =⇒ x $ > 80 | lowSpeed (80) ;
sw3 (x ) ∧ sw2 (y ) =⇒ x $ <= y ∧ x $ <= 80 | not lowSpeed (x ) ;
sw3 (x ) ∧ sw2 (y ) =⇒ y $ <= x ∧ y $ <= 80 | not lowSpeed (y ) ;
sw3 (x ) ∧ sw2 (y ) =⇒ 80 $ <= x ∧ 80 $ <= y | not lowSpeed (80) ;
sw3 (x ) =⇒ x $ <= 60 | fuelOk (x ) ;
sw3 (x ) =⇒ x $ > 60 | fuelOk (80) ;

Fig. 9. SMCHR rules coding the RP-DeLP example in [1].

[0..100] since SMCHR works with integer numbers only. Such score expresses
the relative belief or preference strength of arguments. Each fact pi is associated
with a certainty value that expresses how much the relative fuzzy-statement is
believed in terms of necessity measures. Weights are aggregated in accordance
to (p1∧· · ·∧pk → q, α) iff (p1, β1), . . . , (pk, βk) with (q,min(α, β1, . . . , βk)). Such
computational evaluation can be naturally encoded into SMCHR, as we show in
the following example.

The program in Fig. 9 encodes in SMCHR an example provided in [1]. We
suppose to have an intelligent agent controlling an engine with three switches
sw1 , sw2 and sw3 . These switches regulate different features of the engine,
such as the pumping system, speed, etc. Figure 9 shows certain and uncertain
knowledge an agent has about how this engine works.

By querying sw1 (100 ) we obtain UNKNOWN and fuelOk(30 ), thus correctly
deriving pumpFuel with a certainty score equal to 0.3, that is the minimum value
among all the constraints in the store: sw1 (100 ), pumpFuel(60 ), and fuelOk(30 ).

By switching the first two switches on, i.e., sw1 (100 ) ∧ sw2 (100 ), the agent
knows that the engine works with a certainty score equal to 0.3. The result is
UNKNOWN, and the final constraint store is:

engineOk(30 ) ∧ fuelOk(30 ) ∧ lowSpeed(80 ) ∧ not fuelOk(60 ) ∧ oilOk(80 )∧



type goa l1 ( var o f num, var o f num, num) ; type goa l2 ( var o f num, num) ;
type goa l3 ( var , num) ;

goa l1 (x , y , c ) =⇒ not i n t g t (x , y ) ∧ not i n t g t c (y , c ) ;
goa l2 ( z , d ) =⇒ i n t g t c ( z , d ) ;
goa l1 (x , y , c ) \ goa l2 ( z , d ) ∧ i n t g t c ( z , d ) ⇐⇒ d $ >= c ∧ k:= c − 2 |

goa l3 ( z , k ) ∧ i n t g t c ( z , k ) ;

Fig. 10. An example of negotiation using goal arguments and the bounds prop-
agator.

pumpClog(60 ) ∧ pumpFuel(60 ) ∧ pumpOil(80 ) ∧ sw1 (100 ) ∧ sw2 (100 )

6.2 Argumentation and solvers different from SAT

With a small example, in this section we would like to justify the use of solvers
different from sat, and consequently justify why it is interesting to keep the The-
ory and the satisfiability as separated, i.e., why to use SMCHR. In the example
in Fig. 10 we show two arguments supporting different goals, that is goal1 and
goal2. If they are in conflict, goal2, belonging to a different agent, is withdrawn,
and goal3 is added, thus reaching a final (consistent) conclusion. The solution is
found by calling ./smchr.macosx --solver ex.chr,bounds: therefore, we add
a (incomplete) bounds solver, in order to bind the solution variables. The argu-
ments support constraints on the variables, which are object of negotiation: for
instance, int gt(x,y) imposes x > y, and int gt c(x,c) imposes that x has to be
greater than a constant c. These are two examples of several primitive built-in
constraints directly supported by SMCHR. If goal2 supports that y > d and
goal1 supports y 6> c, if d > c a conflict arises. This conflict is resolved by the
third rule in Fig. 10: goal2 is withdrawn from the store and a new argument
goal3 is added, supporting the constraint y > c− 2. A possible output is shown
in Fig. 3.1, using Q = goal1 (x, y, 5) ∧ goal2 (y, 9).

> goal1(x,y,5) /\ goal2(y,9)
UNKNOWN:
y > 3 /\
goal1(x,y,5) /\
goal3(y,3) /\
int lb(y,4) /\
not x > y /\
not y > 5 /\
not int lb(x,6) /\
not int lb(y,6)

Fig. 11. A possible output for the program in Fig 10, given Q = goal1 (x, y, 2)∧
goal2 (y, 9). int lb(y, 6) states that 4 is the lower (reachable) bound of y, and not
int lb(x, 6) and not int lb(y, 6) are the (unreachable) upper bounds of x and y
respectively.



7 Conclusion

We have presented how a constraint propagator as SMCHR can be used to
fast prototyping different reasoning problems linked to Argumentation-based
Logic Programming. The use of constraints becomes interesting when resolving
conflicts depends on relations among arguments and/or their preference value, as
in P-DeLP. Such methodology can use different solvers, e.g. sat or bounds. The
ideas in this paper suggest the potentiality of having such a powerful declarative
tool, paving the way for Argumentation-based Constraint Logic Programming.

The future goal is to have an automatised SMCHR-based framework where to
model also dynamic reasoning over argumentation lines (where each argument
structure in a sequence is a defeater of the predecessor), and dialectical trees
(where each path from the root to a leaf corresponds to a different acceptable
argumentation line). Clearly, arguments can be iteratively added to such tree
during a debate. Some reasoning side-procedures, as checking the minimality of
an argument support, can be programmed on top of SMCHR by, for instance,
embedding SMCHR into an imperative language.
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