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Abstract. The robustness of Aumann’s seminal agreement theorem is
considered. A more detailed agent model is introduced where posteriors
are formed on the basis of lexicographic priors. We then generalize Au-
mann’s agreement theorem to lexicographic prior beliefs and show that
only a slight perturbation of the common lexicographic prior assump-
tion at some – even arbitrarily deep – level is already compatible with
common knowledge of completely opposed posteriors. Hence, contrary
to the conclusions of Aumann’s original impossibility result, agents can
actually agree to disagree.
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1 Introduction

The impossibility of two agents to agree to disagree is established by Aumann’s
(1976) so-called agreement theorem. More precisely, it is shown that two Bayesian
agents entertaining a common prior belief necessarily hold equal posterior beliefs
in an event upon receiving private information in the case of their posterior be-
liefs being common knowledge. In other words, distinct posterior beliefs cannot
be common knowledge among Bayesian agents with a common prior belief. In
this sense, agents cannot agree to disagree.

From an empirical as well as intuitive point of view the agreement theorem
seems quite startling, since people frequently disagree on a variety of issues,
while at the same time acknowledging their divergent opinions. It is thus natu-
ral to analyze whether Aumann’s impossibility result still holds with weakened
or slightly modified assumptions. For instance, Geanakoplos and Polemarchakis
(1982) show that without assuming common knowledge of the posteriors, agents
following a specific communication procedure can nevertheless not agree to dis-
agree, and Samet (1990) establishes the agreement theorem in a weakened epis-
temic model without negative introspection. Moreover, Bonanno and Nehring
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(1997) provide a rather comprehensive survey on further works on the agree-
ment theorem.

The common prior assumption in economic theory in general and in game
theory in particular is controversial and has been criticized, for example, by
Morris (1995). With regard to Aumann’s agreement theorem the question then
arises to what extent the impossibility of agents to agree to disagree depends on
their common priors. Here, we slightly weaken this assumption and then analyze
the robustness of Aumann’s theorem in such a marginally perturbed context.

First of all, we assume almost identical priors and show that agents can en-
tertain completely opposed posteriors while at the same time satisfying common
knowledge of these posteriors. In a more general context we then introduce an
enriched and arguably more plausible model of lexicographically-minded agents,
who form their posterior beliefs on the basis of lexicographic prior beliefs. More-
over, we provide an agreement theorem for lexicographic beliefs. For this theorem
to obtain, the agents’ prior beliefs do not only have to be identical according
to their primary perception of the state space but on all lexicographic levels.
However, only slightly perturbing the common lexicographic prior assumption
at some – even arbitrarily deep– level is already compatible with common knowl-
edge of completely opposed posteriors. In this sense agents can actually agree to
disagree. The non-robustness of Aumann’s agreement theorem as well as of its
lexicographic generalization considerably weakens its conclusion of the impossi-
bility of agreeing to disagree.

2 Aumann’s Model

Before our possibility result on agreeing to disagree is formally presented, we
briefly recall the required ingredients of Aumann’s epistemic framework. A so-
called Aumann structure A = (Ω, (Ii)i∈I , p) consists of a finite set Ω of possible
worlds, which are complete descriptions of the way the world might be, a finite
set of agents I, a possibility partition Ii of Ω for each agent i ∈ I representing
his information, and a common prior belief function p : Ω → [0, 1] such that∑

ω∈Ω p(ω) = 1. The cell of Ii containing the world ω is denoted by Ii(ω) and
contains all worlds considered possible by i at world ω. In other words, agent i
cannot distinguish between any two worlds ω and ω′ that are in the same cell
of his partition Ii. Moreover, an event E ⊆ Ω is defined as a set of possible
worlds. For instance, the event of it raining in London consists of all worlds
in which it does rain in London. Note that the common prior belief function
p can naturally be extended to a common prior belief measure on the event
space p : P(Ω) → [0, 1] by setting p(E) =

∑
ω∈E p(ω). In this context, it is

supposed that each information set of each agent has non-zero prior probability,
i.e. p(Ii(ω)) > 0 for all i ∈ I and ω ∈ Ω. Such a hypothesis seems plausible since
it ensures no piece of information to be excluded a priori. Moreover, all agents
are assumed to be Bayesians and to hence update the common prior belief given
their private information according to Bayes’s rule. More precisely, given some
event E and some world ω, the posterior belief of agent i in E at ω is given
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by p(E | Ii(ω)) = p(E∩Ii(ω))
p(Ii(ω)) . In Aumann’s epistemic framework, knowledge is

formalized in terms of events. The event of agent i knowing E, denoted by Ki(E),
is defined as Ki(E) := {ω ∈ Ω : Ii(ω) ⊆ E}. If ω ∈ Ki(E), then i is said to
know E at world ω. Intuitively, i knows some event E if in all worlds he considers
possible E holds. Naturally, the event K(E) =

⋂
i∈I Ki(E) then denotes mutual

knowledge of E among the set I of agents. Letting K0(E) := E, m-order mutual
knowledge of the event E among the set I of agents is inductively defined by
Km(E) := K(Km−1(E)) for all m > 0. Accordingly, mutual knowledge can
also be denoted as 1-order mutual knowledge. Furthermore, an event is said to
be common knowledge among a set I of agents whenever all m-order mutual
knowledge of it simultaneously hold. It is then standard to define the event that
E is common knowledge among the set I of agents as the infinite intersection of
all higher-order mutual knowledge. Formally, the event E is common knowledge
among the agents at some world ω if ω ∈

⋂
m>0 Km(E). Hence, the standard

definition of common knowledge of some event E can be stated as CK(E) :=⋂
m>0 Km(E). An alternative definition of common knowledge in terms of the

meet of the agents’ possibility partitions is proposed by Aumann (1976) and also
used in his agreement theorem. Before the meet definition of common knowledge
can be given some further set-theoretic notions have to be introduced. Given
two partitions P1 and P2 of a set S, partition P1 is called finer than partition
P2 or P2 coarser than P1, if each cell of P1 is a subset of some cell of P2.
Given n partitions P1,P2, . . . ,Pn of S, the finest partition that is coarser than
P1,P2, . . . ,Pn is called the meet of P1,P2, . . . ,Pn and is denoted by

∧n
j=1 Pj .

Moreover, given x ∈ S, the cell of the meet
∧n

j=1 Pj containing x is denoted
by

∧n
j=1 Pj(x). Now, according to the meet definition of common knowledge, an

event E is said to be common knowledge at some world ω among the set I of
agents, if E includes the member of the meet

∧
i∈I Ii that contains ω. Formally,

the meet definition of common knowledge of some event E can thus be stated
as CK(E) := {ω ∈ Ω :

∧
i∈I Ii(ω) ⊆ E}.

3 Motivating Example

We now turn to the possibility of agents to agree to disagree. The common prior
assumption is slightly perturbed in the sense of assuming arbitrarily close prior
belief functions for the agents. Indeed, the following example shows that two
Bayesian agents with almost identical prior beliefs can agree to disagree on their
posterior beliefs.

Example 1. Consider Ω = {ω1, ω2, ω3}, IAlice = IBob = {{ω1, ω2}, {ω3}} and
E = {ω1}. Moreover, let ε > 0 and pAlice : Ω → [0, 1] be Alice’s prior belief
function such that pAlice({ω1}) = ε, pAlice({ω2}) = 0, and pAlice({ω3}) = 1− ε.
Also, let pBob : Ω → [0, 1] be Bob’s prior belief function such that pBob({ω1}) =
0, pBob({ω2}) = ε, and pBob({ω3}) = 1−ε. At ω1 as well as at ω2, Alice’s posterior
belief in E is given by pAlice(E | IAlice(ω1)) = ε

ε+0 = 1, while Bob’s posterior
belief in E is given by pBob(E | IBob(ω1)) = 0

0+ε = 0. Suppose ω1 to be the actual
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world. Note that it is common knowledge at ω1 that pAlice(E | IAlice(ω1)) = 1
and pBob(E | IBob(ω1)) = 0. Hence, at world ω1 the two agents’ posterior beliefs
are common knowledge, yet completely different.

The preceding example illustrates that two agents can entertain absolutely op-
posing posterior beliefs, despite being equipped with arbitrarily close prior beliefs
and their posterior beliefs being common knowledge. Hence, agents can indeed
agree to disagree. Moreover, the slight perturbation of the common prior as-
sumption in Aumann’s impossibility result shows that the agreement theorem is
not robust. The agreement theorem itself is thus considerably weakened, since
it already ceases to hold if one of its central assumptions is only marginally
modified.

Farther, note that in Example 1 the agents agree to disagree on an event that
is considered unlikely to occur a priori. However, it would be fallacious to infer
the irrelevance of an event from its improbability. For instance, in the context
of dynamic games, precisely those events that are initially believed not to occur
can have a crucial influence on what agents do later on in the game and whether
their behaviour conforms to particular reasoning patterns or solution concepts.
In general, events that are surprising or deemed improbable can thus certainly
be relevant and should as other, more probable, events be handled with the same
care.

4 Lexicographic Prior Beliefs

Now the robustness of the agreement theorem is addressed from a more gen-
eral angle in terms of lexicographic beliefs. First of all, we introduce the notion
of lexicographic prior beliefs and use it to replace standard prior beliefs in Au-
mann structures. Then, we generalize Aumann’s theorem to lexicographic beliefs.
This generalization requires a considerable strengthening of the common prior
assumption to common lexicographical priors i.e. identical beliefs at all levels. Fi-
nally, it is shown that a small perturbation of completely identical lexicographic
beliefs at some – even at a lexicographically very deep – level does already yield
different posteriors that are common knowledge.

4.1 Extension to Lexicographic Prior Beliefs

Let Al = (Ω, (I)i∈I , (bi)i∈I) be called a lexicographic Aumann structure, where
bi is a lexicographic prior belief for all agents i ∈ I. More precisely, bi =
(b1

i , b
2
i , . . . , b

K
i ) for some K ∈ N is a finite sequence of prior belief functions

bk
i : Ω → [0, 1] for all k ∈ {1, 2, . . . ,K} such that

(1) Σω∈Ωbk
i (ω) = 1,

(2) for every ω ∈ Ω there exists k∗ ∈ {1, 2, . . . ,K} such that ω ∈ supp(bk∗

i ),
(3) supp(bk′

i ) ∩ supp(bk′′

i ) = ∅ for all k′ 6= k′′.
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Note that the first condition ensures that the agents’ prior belief functions ac-
tually are probability distributions at every lexicographic level. Moreover, the
second requirement guarantees that every world is assigned positive prior prob-
ability at some lexicographic level. Intuitively, no possible world is thus ex-
cluded a priori, while at the same time some worlds can be considered infinitely
more likely than other worlds before any information is received. Farther, ac-
cording to the third condition any distinct lexicographic levels never allot pos-
itive probability to a same world. This criterion seems natural as subsequent
lexicographic levels exhibit differences in infinite likeliness and hence a world
being in the support of some lexicographic level should not reappear at any
deeper lexicographic level. Besides, observe that the second and third condi-
tion imply that for every world the lexicographic level k∗ according to which
it receives positive probability actually is unique. Similar to the case of stan-
dard beliefs, an agent’s lexicographic prior belief can naturally be extended
to a lexicographic prior belief measure on the event space. Indeed, given an
event E ⊆ Ω, agent i’s lexicographic prior belief in E is given by the sequence
bi(E) = (b1

i (E), b2
i (E), . . . , bK

i (E)) = (Σω∈Eb1
i (ω), Σω∈Eb2

i (ω), . . . , Σω∈EbK
i (ω)).

With lexicographic prior beliefs Bayesian updating is defined as follows: given
an event E ⊆ Ω and a world ω, the posterior belief bi(E|Ii(ω)) is given by
bk∗

i (E∩Ii(ω))

bk∗
i (Ii(ω))

for the smallest k∗ ∈ {1, 2, . . . ,K} such that supp(bk∗

i )∩ Ii(ω) 6= ∅.
Modelling Bayesian agents with lexicographic priors provides very complete as
well as plausible agent model. Before any information is received no world is
excluded while at the same time some worlds can be considered infinitely more
likely than others by agents, and after information is received the agents up-
date the respectively relevant level of their lexicographic prior to form a unique
posterior. Note that a common lexicographic prior assumption requires identical
prior belief functions at all lexicographic levels for the agents.

4.2 Aumann’s Agreement Theorem for Lexicographic Prior Beliefs

It is now shown that common knowledge of the agents’ posterior beliefs together
with a strengthened common lexicographic prior assumption ensures the impos-
sibility of agents to agree to disagree.

Theorem 1. Let Al = (Ω, (Ii)i∈I , (bi)i∈I) be a lexicographic Aumann structure
such that bi = b for all i ∈ I, and let E ⊆ Ω be some event. If CK(

⋂
i∈I{ω ∈

Ω : b(E | Ii(ω)) = b̂i}) 6= ∅, then b̂i = b̂j for all i, j ∈ I.

Proof. Let ω′ ∈ Ω such that ω′ ∈ CK(
⋂n

i=1{ω ∈ Ω : b(E | Ii(ω)) = b̂i})
and consider agent i ∈ I. First of all, note that, since the meet is coarser than
i’s possibility partition, each cell of the meet can be written as the union of
the cells of i’s possibility partition that it includes. Hence, there exists a set
Ai ⊆ Ω such that

∧
i∈I Ii(ω′) =

⋃
ω′′∈Ai

Ii(ω′′) and for all ω1, ω2 ∈ Ai, if
ω1 6= ω2, then Ii(ω1) 6= Ii(ω2). Furthermore, by the definition of common
knowledge it follows that b(E | Ii(ω′′)) = b̂i for all ω′′ ∈

∧
i∈I Ii(ω′). Now,
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consider some world ω∗ ∈ Ai and let k ∈ {1, 2, . . . ,K} denote the smallest lex-
icographic level such that supp(bk) ∩

∧
i∈I Ii(ω∗) 6= ∅. Then, b(E | Ii(ω∗)) ·

bk(Ii(ω∗)) = bk(E ∩ Ii(ω∗)). Since b(E | Ii(ω)) = b̂i, it follows that b̂i ·
bk(Ii(ω∗)) = bk(E∩Ii(ω∗)). Summing over all worlds in Ai thus yields the follow-
ing equation of sums

∑
ω′′∈Ai

bk(E∩Ii(ω′′)) = b̂i ·
∑

ω′′∈Ai
bk(Ii(ω′′)). Therefore,∑

ω′′∈Ai
bk(E ∩ Ii(ω′′)) = bk∗

(
⋃

ω′′∈Ai
(E ∩ Ii(ω′′))) = bk(E ∩

⋃
ω′′∈Ai

Ii(ω′′)) =
bk(E ∩

∧n
i=1 Ii(ω′)) and

∑
ω′′∈Ai

bk(Ii(ω′′)) = bk(
⋃

ω′′∈Ai
Ii(ω′′)) = bk (

∧n
i=1

Ii(ω′)). Thus, the equation of sums can be written as bk(E ∩
∧n

i=1 Ii(ω′)) = b̂i

· bk (
∧n

i=1 Ii(ω′)), thence b̂i = bk(E∩
Vn

i=1 Ii(ω
′))

bk(
Vn

i=1 Ii(ω′))
. Since agent i has also been

arbitrarily chosen, b̂1 = b̂2 = . . . = b̂K = bk(E∩
Vn

i=1 Ii(ω
′))

bk(
Vn

i=1 Ii(ω′))
, which concludes the

proof. ut

From a lexicographic point of view Theorem 1 unveils a considerably strong com-
mon prior assumption for the impossibility of agents to agree to disagree. Indeed,
agents need to entertain absolutely identical priors at all lexicographic levels. In-
tuitively, the same complete perception of the state space has to be shared by all
agents including the way they assign probabilities to worlds considered infinitely
less likely than others. It seems highly demanding and somewhat implausible to
require agents not only to exhibit an equal perception on the state space in line
with their respective primary prior hypotheses but also in line with any revised
prior hypotheses they form.

4.3 Relaxing the Common Prior Assumption

We turn towards relaxing the common lexicographic prior assumption. Indeed,
it is shown that assuming distinct priors only at some lexicographic level already
enables agents to agree to disagree on their posteriors.

Theorem 2. Let Ω be a set of possible worlds, let I be a set of agents, and let
bi be a lexicographic prior belief on Ω for each agent i ∈ I such that bi 6= bj

for some agents i 6= j. Then, there exist a possibility partition Ii for all agents
i ∈ I, an event E, and a world ω ∈ Ω such that ω ∈ CK(

⋂
i∈I{ω′ ∈ Ω : bi(E |

Ii(ω′)) = b̂i}) and b̂i 6= b̂j.

Proof. Let k ∈ {1, 2, . . . ,K} be the first lexicographic level such that bk
i 6= bk

j .
Then, there exists a world ω ∈ Ω such that bk

i (ω) 6= bk
j (ω). Hence, bk

i (ω) > 0 or
bk
j (ω) > 0. Without loss of generality assume that bk

i (ω) > 0 and let Ii′ = {{ω′ ∈
Ω : ω′ ∈

⋃
k′≥k supp(bk′

i )}, {ω′ ∈ Ω : ω′ 6∈
⋃

k′<k supp(bk′

i )}} for all agents i′ ∈ I.
Then, bi(E | Ii(ω)) = bk

i (ω) and bj(E | Ij(ω)) = bk
j (ω). Now consider event

E = {ω} and observe that bi(E | Ii(ω)) = bi(E | {ω′ ∈ Ω : ω′ ∈ supp(bk
i )}) 6=

bj(E | {ω′ ∈ Ω : ω′ ∈ supp(bk
i )} = bj(E | Ij(ω)). Let b̂i denote the particular

values of i’s posterior belief for every agent i ∈ I. Note that then b̂i > 0 and
b̂i 6= b̂j . Moreover, since an agent’s posterior belief in any event always remains
constant throughout any of his possibility cells, and

∧
i′∈I Ii′ = Ii′ , it follows
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that
∧

i′∈I Ii′(ω) = Ii′(ω) ⊆
⋂

i′∈I{ω′ ∈ Ω : bi′(E | Ii′(ω′)) = b̂i}. Therefore,
ω ∈ CK(

⋂
i′∈I{ω′ ∈ Ω : bi′(E | Ii′(ω′))}), which concludes the proof. ut

Accordingly, it is already possible for agents to agree to disagree if only at some
lexicographic level they entertain different prior beliefs, despite their perception
of the state space being completely identical at all lower lexicographic levels.

Next, the robustness of agreeing to disagree with lexicographic beliefs is scru-
tinized. Indeed, a lexicographic Aumann structure is constructed in which two
agents entertain almost identical lexicographic prior beliefs, yet their posterior
beliefs are completely opposed and at the same time common knowledge.

Theorem 3. For all ε > 0 and for all k∗ > 0, there exists a lexicographic
Aumann structure Al = (Ω, (Ii)i∈{Alice,Bob}, (bi)i∈{Alice,Bob}), an event E ⊆ Ω,
and a world ω ∈ Ω, such that bk

Alice = bk
Bob for all k < k∗, bk∗

Alice and bk∗

Bob are
ε-close, ω ∈ CK(

⋂
i∈{Alice,Bob}{ω′ ∈ Ω : bi(E | Ii(ω′)) = b̂i}), b̂Alice = 1 but

b̂Bob = 0.

Proof. Consider the set of all possible worlds Ω = {ω1, ω2, . . . , ωk∗ , ωk∗+1, ωk∗+2},
the event E = {ωk∗+1}, the possibility partitions IAlice = IBob = { { ω1, ω2,
. . . , ωk∗−1 }, { ωk∗ , ωk∗+1 }, { ωk∗+2 } }, as well as two lexicographic prior be-
lief functions bAlice = (b1

Alice, b
2
Alice, . . . , b

k∗

Alice) and bBob = (b1
Bob, b

2
Bob, . . . , b

k∗

Bob)
that coincide for every lexicographic level k < k∗ and only differ at the last
lexicographic level k∗. More precisely, let the agents’ common lexicographic
prior beliefs up to level k∗ − 1 be given by bk such that bk(ωk) = 1 for all
k ≤ k∗ − 1, and let the agents’ ε-close lexicographic prior beliefs at level k∗

be given by bk∗

Alice(ωk∗) = ε, bk∗

Alice(ωk∗+1) = 0, and bk∗

Alice(ωk∗+2) = 1 − ε, as
well as, bk∗

Bob(ωk∗) = 0, bk∗

Bob(ωk∗+1) = ε, and bk∗

Bob(ωk∗+2) = 1 − ε, respectively.
Recall E = {ωk∗+1} and note that bAlice(E | IAlice(ωk∗)) = ε

ε+0 = 1, whereas
bBob(E | IBob(ωk∗)) = 0

0+ε = 0. Moreover, since an agent’s posterior belief in
any event always remains constant throughout any of his possibility cells and∧

i∈{Alice,Bob} Ii = Ii, it follows that
∧

i∈{1,2,...,n} Ii(ωk∗) = {ωk∗ , ωk∗+1} =
{ω′ ∈ Ω : bAlice(E | (IAlice(ω′)) = 1} ∩ {ω′ ∈ Ω : bBob(E | IBob(ω′)) = 0}, and
hence ωk∗ ∈ CK({ω′ ∈ Ω : bAlice(E | (IAlice(ω′)) = 1} ∩ {ω′ ∈ Ω : bBob(E |
IBob(ω′)) = 0}), which concludes the proof. ut

The preceding theorem illustrates that Aumann’s impossibility result is also
not robust with lexicographic beliefs. Indeed, only a slight perturbation of a
common lexicographic prior at some – even arbitrarily deep – level can already
yield completely opposed posteriors. A strong reliance of the impossibility of
agents to agree to disagree on the common prior assumption is thus unveiled.

Since the agreement theorem’s consequences are not preserved at the limit,
this non-robust result can be critically regarded. In other words, the possibility
results for agreeing to disagree in line with Example 1, Theorem 2 and Theorem 3
can be interpreted as objections to Aumann’s conclusion that it is impossible for
agents to agree to disagree. Farther, in case of a more precise and arguably more
natural agent model with various lexicographically ordered prior hypotheses on
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the state space, Theorem 1 shows that a considerable and somewhat implausible
strengthening of the common prior to a common lexicographic prior assumption
is needed to maintain the impossibility of agents to agree to disagree.

5 Conclusion

With regard to the controversial common prior assumption Aumann’s agree-
ment theorem has been shown not to be robust. Already a slight perturbation
of the common prior is compatible with common knowledge of completely op-
posed posteriors. Moreover, the agent model has been extended from standard
to lexicographic prior beliefs and a corresponding agreement theorem provided.
However, the impossibility of agents to agree to disagree is also not robust in
such an enriched lexicographic context. Indeed, only a slight difference of the
agents’ priors at some – even arbitrarily deep – lexicographic level may already
yield completely opposed posteriors. These possibility results for slightly per-
turbed common priors induce a critical stance towards Aumann’s non-robust
impossibility theorem.

The analysis of robustness of Aumann’s agreement theorem given here could
be applied to other assumptions of the theorem. For instance, a replacement of
common knowledge of the posteriors by some notion of approximate common
knowledge can be considered for future work. In a more general sense, the ro-
bustness of game-theoretic solution concepts that depend on the common prior
assumption could be considered such as Aumann’s (1987) Bayesian foundation
for correlated equilibrium.
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