
Judgement Aggregation Over Conflicting
Arguments: An Extended Abstract

Iyad Rahwan1,2 and Fernando Tohmé3
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Abstract. Consider a knowledge base consisting of a set of arguments
and a binary relation characterising conflict among them. There may be
multiple plausible ways to evaluate conflicting arguments. In this paper,
we ask: given a set of agents, each with a legitimate subjective evalua-
tion of a set of arguments, how can they reach a collective evaluation of
those arguments? After formally defining this problem, we extensively
analyse an argument-wise plurality voting rule, showing that it suffers a
fundamental limitation. Then we demonstrate, through a general impos-
sibility result, that this limitation is more fundamentally rooted. Finally,
we show how this impossibility result can be circumvented by additional
domain restrictions.4

1 Introduction

Argumentation has recently become one of the key approaches to automating and
analysing reasoning in the presence of conflicting information. A key milestone in
the development of argumentation in AI has been Dung’s landmark framework
[6]. Arguments are viewed as abstract entities, with a binary defeat relation
among them (resulting in a so-called argument graph).

Often, there are multiple reasonable ways in which an agent may evaluate
a given argument graph. Each possible evaluation corresponds to a so-called
extension [6] or labelling [4]. We ask: Given an argument structure and a set
of agents, each with a legitimate subjective evaluation of the given arguments,
how can the agents reach a collective compromise on the evaluation of those
arguments?

We formally define the problem of aggregating multiple evaluations of argu-
ments, in the spirit of preference aggregation [1] and judgement aggregation [8,
9]. We define a specific aggregation operator (argument-wise plurality voting)
and analyse some of its key properties. We then present an impossibility result
on the existence of good aggregation operators (in particular, satisfying collec-
tive rationality). Then, we show one way in which the impossibility result can
be avoided. In particular, we provide a full characterisation of the space of in-
dividual judgements that guarantees collective rationality using argument-wise
plurality voting.

4 A full version of this paper, with detailed proofs, appears in AAMAS 2010 [11]
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The paper makes three key contributions to the state-of-the-art in computa-
tional models of argument. Firstly, the paper defines and analyses the argument-
wise plurality voting mechanism for collective argument evaluation.

Our second contribution is a general impossibility result, showing that there
is no aggregation operator that can satisfy a few simple requirements (common in
social choice theory) for arbitrary argument graphs. This result not only helps
us avoid the fruitless pursuit of such operator, but also because it motivates
the need for specialised aggregation operators that work under more restrictive
conditions.

This leads to the third contribution. By showing how the impossibility result
can be avoided by restricting the space of possible individual judgements, we
provide guidance on circumventing the practical implications of the problem.

2 Preliminaries

We briefly outline key elements of abstract argumentation frameworks [6], as-
suming finite sets of arguments.

Definition 1. An argumentation framework is a pair AF = 〈A,⇀〉 where A
is a finite set of arguments and ⇀⊆ A×A is a defeat relation. We say that an
argument α defeats an argument β if (α, β) ∈⇀ (also written α ⇀ β).

An argumentation framework can be represented as a directed graph in which
vertices are arguments and directed arcs characterise defeat among arguments.
An example argument graph is shown in Figure 1. Argument α1 has two defeaters
(i.e. counter-arguments) α2 and α4, which are themselves defeated by arguments
α3 and α5 respectively. Let S+ = {β ∈ A | α ⇀ β for some α ∈ S}. Also let

α3 α2

α4

α1

α5

Fig. 1. A simple argument graph

α− = {β ∈ A | β ⇀ α}. We first characterise the fundamental notions of
conflict-free and defence.

Definition 2. Let 〈A,⇀〉 be an argumentation framework, let S ⊆ A and α ∈
A.

– S is conflict-free iff S ∩ S+ = ∅.
– S defends argument α iff α− ⊆ S+. Equivalently, we say that argument α is

acceptable with respect to S.
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Intuitively, a set of arguments is conflict free if no argument in that set defeats
another. A set of arguments defends a given argument if it defeats all its de-
featers. In Figure 1, for example, {α3, α5} defends α1. We now look at some
ways to characterise the collective acceptability of a set of arguments.

Definition 3 (Characteristic function). Let AF = 〈A,⇀〉 be an argumen-
tation framework. The characteristic function of AF is FAF : 2A → 2A such
that, given S ⊆ A, we have FAF (S) = {α ∈ A | S defends α}.

When there is no ambiguity about the argumentation framework in question, we
will use F instead of FAF .

Definition 4. Let S be a conflict-free set of arguments in framework 〈A,⇀〉.

– S is admissible iff it is conflict-free and defends every element in S (i.e. iff
S ⊆ F(S)).

– S is a complete extension if S = F(S).

Intuitively, a set of arguments is admissible if it is a conflict-free set that defends
itself against any defeater – in other words, if it is a conflict free set in which
each argument is acceptable with respect to the set itself.

An admissible set S is a complete extension if and only if all arguments
defended by S are also in S (that is, if S is a fixed point of the operator F). There
may be more than one complete extension, each corresponding to a particular
consistent and self-defending viewpoint.

Example 1. In Figure 1, the sets ∅, {α3}, {α5}, and {α3, α5} are all admissible
simply because they do not have any defeaters. The set {α1, α3, α5} is also admis-
sible since it defends itself against both defeaters α2 and α4. The admissible set
{α1, α3, α5} is the only complete extension, since F({α1, α3, α5}) = {α1, α3, α5}.

There are various approaches to differentiate between different complete exten-
sions (e.g. by defining grounded, preferred, stable extensions and so on [6]). In
this paper, we will take a liberal approach and consider any complete extension
as a reasonable point of view for an agent, satisfying the minimal criteria of
consistency and self-defence.

Crucial to our subsequent analysis is the notion of argument labelling [4]. It
specifies which arguments are accepted (labelled in), which ones are rejected
(labelled out), and which ones whose acceptance or rejection could not be de-
cided (labelled undec). Labellings must satisfy two conditions: (i) an argument
is in if and only if all of its defeaters are out; (ii) an argument is out if and only
if at least one of its defeaters is in.

Definition 5 (Argument Labelling). Let AF = 〈A,⇀〉 be an argumentation
framework. An argument labelling is a total function L : A → {in, out, undec}
such that:

– ∀α ∈ A : (L(α) = out ≡ ∃β ∈ A such that (β ⇀ α and L(β) = in)); and
– ∀α ∈ A : (L(α) = in ≡ ∀β ∈ A : ( if β ⇀ α then L(β) = out))
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If none of the two conditions is satisfied, then L(α) = undec (since L is a total
function).

Caminada [4] showed a one-to-one correspondence between possible labellings
and the set of all complete extensions.

3 Motivation and Scope

In this section, we give a simple example and use it to motivate the paper and
highlight the scope of its contributions. Consider the following simple example.

Example 2 (A Murder Case). A murder case is under investigation. To start
with, there is an argument that the suspect should be presumed innocent (α3).
However, there is evidence that he may have been at the crime scene at the time
(α2), which would counter the initial presumption of innocence. There is also,
however, evidence that the suspect was attending a party that day (α1). Clearly,
α1 and α2 are mutually defeating arguments since the suspect can only be in
one place at any given time. This problem can be modelled as an argumenta-
tion framework AF = 〈{α1, α2, α3},⇀〉 with ⇀= {(α1, α2), (α2, α1), (α2, α3)}.
Possible labellings are:

– L(α1) = in, L(α2) = out, L(α3) = in.
– L′(α1) = out, L′(α2) = in, L′(α3) = out.
– L′′(α1) = undec, L′′(α2) = undec, L′′(α3) = undec.

The graph and possible labellings are depicted in Figure 2.

α1 α2L α3

α1 α2L’ α3

α1: There is credible evidence 
that the suspect was at a party.

α2: A witness saw someone 
dressed like the suspect at 
the crime scene.

α3: The suspect is presumed 
innocent.

α1 α2L’’ α3
in out undec

Fig. 2. Graph with three possible labellings

Example 2 highlights a situation in which multiple points of view can be
taken, depending on whether one decides to accept the argument that the suspect
was at the party or the crime scene. Consider the following example.

Example 3 (Three Detectives). A team of three detectives, named 1, 2, and 3,
have been assigned to the murder case described in Example 2. Each detective’s
judgement can only correspond to a legal labelling (otherwise, his/her judgement
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is not admissible and can be discarded). Suppose that each detective’s judgement
is such that L1 = L, L2 = L′ and L3 = L′. That is, detectives 2 and 3 agree
but differ with detective 1. These labellings are depicted in the labelled graph
of Figure 3. The detectives must decide which (aggregated) argument labelling
best reflects their collective judgement.

L1 = 

in out

α1 α2 α3
1

L2 = 
2

α1 α2 α3

L3 = 
3

α1 α2 α3

Collective 
labelling?

α1: There is credible evidence 
that the suspect was at a party.

α2: A witness saw someone 
dressed like the suspect at 
the crime scene.

α3: The suspect is presumed 
innocent.

Fig. 3. Detectives with different judgements

Example 3 highlights an aggregation problem, similar to the problems of
preference aggregation [1] and judgement aggregation [8]. It is perhaps obvious
in this particular example that α3 must be rejected (and thus the defendant be
considered guilty), since most detectives seem to think so. For the same reason,
α1 must be rejected and α2 must be accepted. Thus, labelling L′ (see Example
2) wins by majority. As we shall see in our analysis below, things are not that
simple, and counter-intuitive situations may arise. To summarise, the question
is as follows: Given a set of agents, each with a specific subjective labelling of a
given set of conflicting arguments, how can agents reach a collective decision on
how to evaluate those arguments?

Below, we will explore the above question deeply. We introduce the argument-
wise plurality voting rule and study its key properties. We show that while
argument-wise plurality voting satisfies many desirable properties (e.g. anonim-
ity, strategy-proofness etc.), it can produce counter-intuitive results. We then
generalise this observation by presenting a general impossibility result on the
existence of collectively rational aggregation operators for argument labelling.
We then fully characterise restrictions on the space of individual judgements
under which the argument-wise plurality voting avoids the impossibility result.

4 Aggregation of Labellings

The problem we face is that of judgement aggregation [8] in the context of ar-
gumentation frameworks. In particular, taking as an input a set of individual
judgements as to how each argument in AF must be labelled, we need to come
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up with a collective judgement. If each agent i = 1, . . . , n has a labelling Li,
we need to find an aggregation operator, which we define as a partial function5

F : L(AF )n → {in, out, undec}A, where L(AF ) is the class of labellings of AF .
This means that for each α ∈ A, F (L1, . . . , Ln)[α] is the label assigned to α (if
F is defined for α).

Aggregation involves comparing and assessing different points of view. There
are, of course, many ways of doing this, as extensively discussed in the literature
of Social Choice Theory [7]. In this literature, a consensus on some normative
ideals has been reached, identifying what a ‘fair’ way of adding up preferences
should be. So for instance, if everybody agrees, the outcome must reflect that
agreement; no single agent can impose her view on the aggregate; the aggregation
should be performed in the same way in each possible case, etc.These informal
requirements can be formally stated as properties that F should satisfy [8, 5]:

Let AF = 〈A,⇀〉 be an argumentation framework, and suppose we have n
agents.

1. Universal Domain: Every possible profile of labellings (L1, . . . , Ln) is in the
domain of F .

2. Unanimity: If Li = L for i = 1, . . . , n, then
F (L1, . . . , Ln) = L.

3. Anonymity: given any permutation p : {1, . . . , n} → {1, . . . , n},
F (L1, . . . , Li, . . . , Ln) = F (Lp(1), . . . , Lp(i), . . . , Lp(n)).

4. Independence: for any α ∈ A, and any profiles (L1, . . . , Ln) and (L′1, . . . , L
′
n),

if ∀i we have: Li(α) = L′i(α),

then F (L1, . . . , Ln)[α]F (L′1, . . . , L
′
n)[α].

5. Neutrality: for any pair α, β ∈ A, and any profile (L1, . . . , Ln) if ∀i Li(α) =
Li(β) then F (L1, . . . , Ln)[α] = F (L1, . . . , Ln)[β]

6. Systematicity: for any α, β ∈ A and any profiles (L1, . . . , Ln) and (L′1, . . . , L
′
n),

if ∀i, Li(α) = L′i(β)

then F (L1, . . . , Ln)[α] = F (L′1, . . . , L
′
n)[β].

7. Monotonicity: For any α ∈ A, lα ∈ {in, out, undec} is such that given two
profiles (L1, . . . , Li, . . . , Ln) and (L1, . . . , L

′
i, . . . , Ln) (differing only in i’s

labelling), if Li(α) 6= lα while L′i(α) = lα,
F (L1, . . . , Ln)[α] = lα implies that
F (L1, . . . , L

′
i, . . . , Ln)[α] = lα.

8. Non-dictatorship: there is no i such that for any profile (L1, . . . , Li, . . . , Ln),
F (L1, . . . , Li, . . . , Ln) = Li.

9. Collective Rationality: F (L1, . . . , Ln), is a labelling.

In words, universal domain requires that F admits any logically possible pro-
file of agent judgements. Unanimity requires that if all agents submit the same
labelling, this labelling must be the collective one. Anonimity means that all
agents should have equal weight in the aggregation. Independence means that

5 We state that the function is partial to allow for cases in which collective judgement
may be undefined (e.g. when there is a tie in voting).
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collective judgement on each argument should only depend on individual judge-
ments about that particular argument. Systematicity combines independence
with neutrality across arguments. Monotonicity states that if an agent switches
its judgement on an argument in favour of the collective judgement, then the
collective judgement remains the same. Non-dictatorship means that no single
agent should always determine the collective judgement. Collective rationality
means that the aggregation is always a legitimate labelling.

Notice that these conditions are not independent since, for instance, System-
aticity implies Independence (just by choosing α ≡ β), but they reflect many
properties that researchers consider a ‘good’ aggregation operator should have.
In fact, it is trivial to show that Neutrality and Independence imply System-
aticity. Suppose that for any pair α, β ∈ A and any two profiles (L1, . . . , Ln)
and (L

′

1, . . . , L
′

n) such that ∀i Li(β) = Li(β) = L
′

i(β) we have, by Independence,

that F (L1, . . . , Ln)[β] = F (L
′

1, . . . , L
′

n)[β] and by Neutrality, F (L1, . . . , Ln)[α] =
F (L1, . . . , Ln)[β]. Therefore F (L1, . . . , Ln)[α] = F (L

′

1, . . . , L
′

n)[β].
Conversely, if we have Systematicity, Independence follows trivially by assuming
α = β while Neutrality arises by considering that for every i Li = L

′

i.

5 Argument-Wise Plurality Voting

An obvious candidate aggregation operator to check out is the plurality vot-
ing operator M . In this section, we analyse a number of key properties of this
operator. Intuitively, for each argument, it selects the label that appears most
frequently in the individual labellings.

Definition 6 (Argument-Wise Plurality). Let AF = 〈A,⇀〉 be an argu-
mentation framework. Given α ∈ A, M(L1, . . . , Ln)[α] = lα ∈ {in, out, undec, ∅}
iff

|{i : Li(α) = lα}| > max
l′α 6=lα

|{i : Li(α) = l′α}|

Otherwise, M(L1, . . . , Ln)[α] = ∅.

Example 4 (Three Detectives (cont.)). Continuing on Example 3, applying argument-
wise plurality:

– M(L1, L2, L3)[α1] = out

– M(L1, L2, L3)[α2] = in

– M(L1, L2, L3)[α3] = out

Note that in the case of ties, M is well-defined since ∅ is a member of every set.
However, when M(L1, . . . , Ln)[α] = ∅ for some α ∈ A, then the output of M is
obviously not a legal labelling (i.e. Collective Rationality will be violated).
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5.1 Strategic Manipulation

First, we ask whether the plurality aggregation rule is strategy-proof. Before such
analysis can be done, it is important to define what might motivate agents to
behave strategically, i.e. agent’s preferences over labellings.

We define agents’ preferences with respect to restricted sets of arguments
in order to model situations where agents have potentially different domains
of knowledge. As a motivating example, consider a court case where a medical
expert is called as an expert witness. This expert can put forward arguments
related to medical forensics, but would be unable to comment on legal issues.
Similarly, an agent’s arguments can be limited by their position to know. For
example, a friend may be in a position to comment on someone’s character,
while a stranger’s comments would not be of interest.

Let θi ∈ Θi denote the type of agent i ∈ I which is drawn from some set of
possible types Θi. The type represents the private information and preferences of
the agent. More precisely, θi determines agent i’s preferences are over outcomes
L ∈ L. By L1 �i L2 we denote that agent i weakly prefers (or simply prefers)
outcome L1 to L2. We say that agent i strictly prefers outcome L1 to L2, written
L1 �i L2, if and only if L1 �i L2 but not L2 �i L1. Finally, we say that agent
i is indifferent between outcomes L1 and L2, written L1 ∼i L2, if and only if
both L1 �i L2 and L2 �i L1.

Here, we consider focal-set-oriented agents. These agents have a core set
of arguments which they care about, and their only interest is in their exact
judgement on those arguments being adopted by the collective.

Definition 7 (focal-set-oriented). An agent i with labelling Li is focal-set-
oriented if there is a set of arguments Āi ⊆ A, called i’s focal-set, such that for
any labelling L:

1. Li ∼i L iff ∀α ∈ Āi, Li(α) = L(α);
2. Li � L otherwise.

Focal-set-orientation defines a very general class of agent preferences. An
example of a focal-set-oriented agent is a resolute agent, that is only satisfied if
the aggregated labelling exactly matches its own labelling. At the other extreme
is an agent with a focal argument, which only cares about the final status of a
single argument. In this case, the agent’s focal-set includes a single argument
only.

Strategy-proofness (also known as dominant strategy incentive compatibil-
ity) is an important property in analysing agents’ strategic incentives [10, page
871].6 In our context, it asks whether any agent has incentive to misreport its
labelling, given any possible reported labellings by other agents. Let L−i =
{L1, . . . , Ln}\Li denote the set of labellings of agents other than agent i.

6 In the literature, strategy-proofness and incentive compatibility are sometimes used
to mean the same thing, requiring us to state explicitly the type of equilibrium under
which the mechanism is implemented (e.g. in dominant strategies).
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Definition 8 (Strategy-Proof). Let i ∈ I be an arbitrary agent with a la-
belling Li. F is a strategy-proof aggregation operator iff
∀L−i,∀L∗i 6= Li, F (L1, . . . , Li, . . . , Ln) �i F (L1, . . . , L

∗
i , . . . , Ln)

In the context of focal-set-oriented preferences, strategy-proofness means that
if the outcome does not agree with an agent’s labelling of its focal arguments,
then the agent cannot alter this fact by mis-reporting its labelling. Formally, let
L = F (L1, . . . , Li, . . . , Ln) be the aggregated labelling when i reports its own
truthfully, and let L∗ = F (L1, . . . , L

∗
i , . . . , Ln) be the aggregated result when i

reports some arbitrary alternative L∗i . Strategy-proofness means that ∀α ∈ Āi,
Li(α) 6= L(α) implies Li(α) 6= L∗(α).

Theorem 1. Let I be a set of focal-set-oriented agents. The argument-wise plu-
rality rule M(.) is strategy-proof.

5.2 Other Social Choice Properties

Having analysed the strategic manipulability of argument-wise plurality voting,
we now turn to analysing whether it satisfies the properties listed above.

Theorem 2. The argument-wise plurality voting operator M satisfies properties
1 to 8.

Despite these promising results, it turns out that plurality operator does not
satisfy the collective rationality property.

Example 5. Consider arguments α1, α2, α3 and α4, with the attack relation de-
picted in Figure 4. Suppose we have three agents with the labellings L1, L2 and
L3. We have:

– M(L1, L2, L3)[α1] = out,
– M(L1, L2, L3)[α2] = out,
– M(L1, L2, L3)[α3] = out,
– M(L1, L2, L3)[α4] = out.

But then, M(L1, L2, L3) is not a labelling (see 4).

The above counter-example is a variant of the discursive dilemma [8] in the
context of argument evaluation, which itself is a variant of the well-known Con-
dorcet paradox.

It is worth noting that, when the preferences are focal-set oriented, labellings
are partitioned in two classes: top labellings, which satisfy the focal-set assign-
ment of labels and bottom labellings, which do not. These kinds of preferences
are called dichotomous. Brams and Fishburn [2] showed that approval voting, a
method according to which each voter can vote for as many candidates as she
likes, is strategy-proof on dichotomous preferences. So why not apply labelling-
wise approval voting instead of argument-wise plurality?

As it turns out, approval voting on labellings also fails to satisfy collective
rationality. Just consider a system with only two arguments, α and β in a cy-
cle of mutual defeat. Three rational labellings are possible for (α, β): (in, out),
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in out

α3
L1

α4α2

α1

α3
L2

α4α2

α1

α3
L3

α4α2

α1

α3 M(L1, L2, L3)

α4α2

α1

Fig. 4. Counter example to collective rationality

(out, in) and (undec, undec). Suppose there are only two agents, 1 and 2, with
focal sets, {α} and {β}, respectively. Then each one will have a top preferred
labelling, (in, out) for 1 and (out, in) for 2. Each one will vote only for her top
labelling. Then, instead of having a single labelling as an outcome, a tie obtains,
i.e. a set of two labellings, which certainly is not a rational labelling.

6 Is ‘Good’ Aggregation Possible?

In the previous section, we analysed a particular judgement aggregation operator
(namely, argument-wise plurality voting). We showed that while it satisfies most
key properties, it fails to always generate collectively rational judgements. This
is a significant limitation, and gives rise to a more important question of whether
any such operator exists. We now give a negative answer to this question, then
show how this impossibility result can be avoided by restricting the domain of
the voting rule.

6.1 An Impossibility Result

Social Choice Theory has been built around an impossibility result on the ag-
gregation of preferences (Arrow’s Theorem). A similar result has been found
on the aggregation of judgements in propositional settings [8] and extended to
more general logics [5]. The theorem below provides a counter-part for abstract
argumentation framework.

We now show that there exists no possible aggregation operator F that satis-
fies collective rationality along with only four other minimal conditions, namely:
universal domain, anonymity, systematicity, and unanimity.
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Theorem 3. There exists no F satisfying Universal Domain, Anonymity, Sys-
tematicity, Unanimity, and Collective Rationality.

The idea of the proof (shown in [11]) is as follows. Given any profile and its
permutation, any aggregation operator must yield the same result. By system-
aticity the result should be obtained on the same profile in the same way for
any pair of arguments. But this means that the number of agents that vote for
the ‘winning’ labellings on both arguments must be the same. Then a profile is
constructed, for which the aggregation operator is unable to yield an outcome
(i.e. legal profile) without violating this last requirement.

The above impossibility result highlights a major barrier to reaching good
collective judgement about argument evaluation in general. As mentioned ear-
lier, this is similar in flavour to Arrow’s celebrated impossibility theorem on
preference aggregation [1] and List and Pettit’s impossibility theorem on judge-
ment aggregation in propositional logic [8] (with the addition of unanimity). In
our case, unanimity was required because, unlike in propositional logic, we have
three possible labels. Unanimity prevents agents from switching to the third
label (e.g. undec) in order to settle disagreement (e.g. between in and out).

In our context, the result means that rational aggregation on argument eval-
uation can only be achieved at a cost to universal domain, unanimity, anonymity
or systematicity. Unfortunately, there is no escape from violating these condi-
tions or accepting irrational aggregate argument labellings without somewhat
lowering our standards in terms of desirable criteria.

6.2 Circumventing the Impossibility

Faced with the impossibility result, how can agents guarantee, in some way,
reaching collective argument evaluation that is collectively rational? Following
the tradition of social choice theory, we explore what restrictions on the domain
of the argument-wise plurality voting rule guarantee collective rationality. In
particular, we provide a full characterisation of the space of labelling profiles
that guarantees collective rationality using the argument-wise plurality voting
rule.

We first need a few conditions. The first is the no-tie condition which, as the
name suggests, means that agents can always make a collective decision on each
argument.

Definition 9 (No-Tie). Labelling profile (L1, . . . , Ln) satisfies the no-tie con-
dition if for any α ∈ A, there exists a label l such that |{i : Li(α) = l}| >
maxl′ 6=l |{i : Li(α) = l′}|.

Next, we present the notion of Condorcet winner, which captures the plurality
winner on an individual argument.

Definition 10 (Condorcet Winner). We say that a label lα ∈ {in, out, undec}
of an argument α ∈ A is a Condorcet Winner with respect to a labelling profile
(Li)

n
i=1, denoted CW (α, lα, (Li)

n
i=1) iff |{i : Li(α) = lα}| > |{i : Li = l′α}| for

every label l′α 6= lα.
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Next, we list the coordinated defeat condition. Intuitively, this condition means
that if an argument α is collectively rejected by the agents, then the agents must
also collectively agree (via plurality) on accepting at least one of the counter-
arguments against α. In other words, the agents’ individual attacks on α are not
arbitrary, but must exhibit some minimal degree of consensus.

Definition 11 (Coordinated Defeat). A labelling profile (L1, . . . , Ln) satis-
fies coordinated defeat if and only if the following holds:
CW (α, out, (Li)

n
i=1) if and only if ∃β ∈ A, such that β ⇀ α and CW (β, in, (Li)

n
i=1).

Finally, we need the following condition, which we call Uncoordinated Indecision.
Intuitively, it requires that if an argument α is collectively accepted by the
agents, then the agents must never collectively be undecided on or accept any
of the counter-arguments against α. Notice that, unlike the existence condition
in coordinated defeat, here the lack of indecision must hold for all defeaters.

Definition 12 (Uncoordinated Indecision). A labelling profile satisfies Un-
coordinated indecision if and only if the following holds:
CW (α, in, (Li)

n
i=1) if and only if @β ∈ A, such that β ⇀ α satisfies either

CW (β, undec, (Li)
n
i=1) or CW (β, in, (Li)

n
i=1).

Note that Uncoordinated Indecision implies that those who do not accept argu-
ment α lack sufficient coordination to gain plurality on the reasons behind their
position.

We now define the necessary and sufficient restrictions on labelling profiles
that guarantee collective rationality under argument-wise plurality voting.

Theorem 4. The argument-wise plurality voting rule M satisfies collective ra-
tionality if and only if each labelling profile (L1, . . . , Ln) in its domain satisfies
coordinated defeat, Uncoordinated Indecision and the No-Tie condition.

The careful reader will notice that the conditions of Coordinated Defeat and
Uncoordinated Indecision, required for the result, actually correspond to the
requirements of well-defined labellings (recall Definition 5). Indeed, this shows
that collective rationality requires strong conditions on the collective structure
of agents’ labellings. These conditions are quite strong, in the sense that they
cannot be reduced to properties of the individual labellings.

The full characterisation provided above has another consequence. In order
to achieve collective rationality while only appealing to restrictions on individual
labellings, we would need to make even stronger assumptions to those in Theo-
rem 4. For example, we could require that whenever an agent labels an argument
as out, then it must label each of its defeaters as in, and so on. While these kinds
of restrictions guarantee the necessary partial consensus among agents, they are
extremely unrealistic (even less realistic than the ones shown in the theorem).
This reveals that satisfying collective rationality is not easily achievable in prac-
tice with a kind of argument-wise plurality vote.
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7 Conclusion & Related Work

We explored the following question: Given an argument structure and a set of
agents, each with a legitimate subjective evaluation of the given arguments, how
can the agents reach a collective compromise on the evaluation of those argu-
ments? We (1) proved that argument-wise plurality voting satisfies many well-
known social choice properties, albeit not collective rationality; (2) proved the
impossibility of any aggregation operator that simultaneously satisfies collec-
tive rationality together with universal domain, unanimity, anonymity and sys-
tematicity; and (3) fully characterised the space of individual judgements that
guarantees collective rationality using argument-wise plurality voting.

Recently, Caminada and Pigozzi [3] presented some operators for aggregating
multiple argument labellings into a single labelling. They focused on a ‘compat-
ibility’ property: that the social outcome must not go against any individual
judgement, and showed that this can be achieved together with collective ratio-
nality. However, they did not explore whether these operators could satisfy other
classical social-choice properties. Our results provide an important complement
to their work, by identifying bounds on what can be achieved simultaneously by
any aggregation operator.
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