
Program Equilibrium —
A Program Reasoning Approach

Wiebe van der Hoek∗ Cees Witteveen+ Michael Wooldridge∗

∗Department of Computer Science, University of Liverpool
Liverpool L69 3BX, UK

+Department of Software Technology, TU Delft
Mekelweg 4, 2628 CD, Delft, The Netherlands

Abstract
The concept of program equilibrium, introduced by Tennenholtz in 2004, represents one of

the most ingenious and potentially far-reaching applications of ideas from computer science in
game theory to date. The basic idea is that a player in a game selects a strategy by entering a pro-
gram, whose behaviour may be conditioned on the programs submitted by other players. Thus,
for example, in the prisoner’s dilemma, a player can enter a program that says “If his program
is the same as mine, then I cooperate, otherwise I defect”. It can easily be shown that if such
programs are permitted, then rational cooperation is possible in the prisoner’s dilemma. In the
original proposal of Tennenholtz, comparison between programs was limited to syntactic com-
parison of program texts. While this has the considerable advantage of simplicity, it does have
some important limitations. In this paper, we investigate an approach to program equilibrium in
which richer conditions are allowed, based on model checking – one of the most successful ap-
proaches to reasoning about programs. We introduce a decision-tree model of strategies, which
may be conditioned on strategies of others. We then formulate and investigate a notion of “out-
come” for our setting, and investigate the complexity of reasoning about outcomes. We illustrate
our approach with many examples.

1 Introduction

The prisoner’s dilemma is one of the most important and troubling scenarios considered by game the-
ory (see, e.g., [1] for a classic study of the prisoner’s dilemma). The prisoner’s dilemma is important
because the basic structure of the game seems to be very common in the everyday world: the dilemma
has something to say about scenarios ranging from how superpower nations will behave in nuclear
arms reduction treaties, to whether or not a bus passenger will pay their fare. The dilemma is trou-
bling because it seems frustratingly paradoxical: the dominant strategy equilibrium outcome (mututal
defection) makes every player strictly worse off than an alternative outcome (mutual cooperation).
Given its importance and seemingly paradoxical nature, it is hardly surprising that many researchers
have attempted to “recover” cooperation from the prisoner’s dilemma – to try to find some way of
explaining how and why mutual cooperation can and should rationally occur (see, e.g., [3, 4] for ex-
tensive references and critical discussion on this topic). The best-known variation in which mutual
cooperation is rational is when the players know that they will play the game with each other again
with a certain probability: if the probability is sufficiently high, then mutual cooperation becomes a
rational outcome [2, p.357].

1

One of the reasons we find the prisoner’s dilemma so very frustrating is that cooperation seems
so close. The problem is that each prisoner must commit to either cooperate or defect, whereas
intuitively, what each prisoner wants to say is “I’ll cooperate if he will”. In other words, each prisoner
wants to make his commitment contingent on the commitments of others. The difficulty, however, is
making this precise. In 2004, Moshe Tennenholtz introduced a fundamentally new way of looking
at the problem, which uses ideas from computer science to formalise the notion of a strategy that
is contingent on the strategies of others [11]. The basic idea in his approach is that a player in a
game selects a strategy by entering what we call a program strategy: a program whose behaviour
may be conditioned on the programs submitted by other players. Thus, for example, in the prisoner’s
dilemma, a player can enter a program strategy that intuitively says “If his program is the same as
mine, then I cooperate, otherwise I defect”. It can easily be shown that if such program strategies are
permitted, then rational cooperation is possible in the prisoner’s dilemma.

In the original proposal of Tennenholtz [11], comparison between program strategies was only
considered as textual comparison, i.e., string comparison of program strategy text. While this has
the advantage of being computationally simple and straightforward to implement, it does have some
important limitations. For example, it is very natural to consider the possibility of richer comparisons
between programs strategies; so that one can say “I’ll cooperate if his program has the same behaviour
as mine”. This conditions behaviour on whether program strategies are semantically equal, rather than
syntactically equal. Of course, such an approach is fraught with difficulties: we would have to define
some appropriate notion of semantic equivalence, and such program reasoning is notoriously complex,
both computationally and mathematically.

In this paper, we investigate an approach to program equilibrium in which richer comparisons
between program strategies are allowed, based on model checking [5] – one of the most successful
practical approaches to reasoning about programs. We introduce a decision-tree model of strategies,
which may be conditioned on strategies of others. We then formulate and investigate a notion of
“outcome” for our setting. We show that, in the prisoner’s dilemma, for example, the approach permits
mutual cooperation as an outcome, while not requiring that program strategies are syntactically equal.
With respect to formal results, we investigate the complexity of reasoning about outcomes, and show
that checking the existence of outcomes is NP-complete in general. Our approach is illustrated with
many examples.

2 Setting the Scene

In his seminal proposal [11], Tennenholtz proposed the idea of players in a game entering complex
strategies expressed as programs that may be conditioned on the program strategies of others. In [11],
the conditions permitted on programs were restricted to be comparisons of program text; that is,
comparing whether the “source files” for two programs were the same. Using this scheme, Tenneholtz

2

proposed that a player in the prisoner’s dilemma game should enter a program strategy as follows1:

IF HisProgram == MyProgram THEN
DO(COOPERATE);
ELSE
DO(DEFECT);
END-IF.

The intended meaning of this program strategy is straightforward: HisProgram is a string variable
containing the text of the other player’s program strategy, MyProgram is a string variable containing
the text of the program in which it is referred, DO(...) indicates a commitment to choosing one of
the available actions, and “==” denotes the string comparison test. Now, suppose one player enters
the program above: then the other player can do no better than enter the same program, yielding the
overall outcome of mutual cooperation as an equilibrium.

This is a remarkably simple and intuitive result, and represents one of the most compelling ap-
plications of ideas from computer science to game theory to date. It makes precise the intuition that
we discussed in the opening section, namely, the idea of one player saying “I’ll cooperate if he will”,
thereby conditioning his strategy on the strategies of others. But the idea also raises a number of
questions: How does the choice of programming language affect the types of outcome that can be
obtained? What other types of equilibrium might be considered in such a setting? In this paper, we
focus on just one issue: how to reason about the behaviour of program strategies within the program
strategy language. A key problem is that the comparison HisProgram == MyProgram is very
strict. It requires that the two programs have the same source code, which is not the same as requiring
that they are the same programs: many different source code programs can define the same program.
So, as a first modification of the basic idea, let us see if we can relax the requirement for syntactic
equivalence.

To make the discussion formal, we introduce some notation. Let Ag = {1, . . . , n} denote the set
of players in the game under consideration. Let Ac denote the set of actions that may be performed
by a player – in the prisoner’s dilemma, for example, we have Ac = {C,D}. (For convenience, we
are here assuming that all players have available the same set of actions.) Next, let Π = {π1, . . .}
denote the set of possible program strategies; for the moment, we do not define exactly what these
are. Crucially, we distinguish a program strategy from its syntactic representation in the strategy
programming language. Let LΠ = {`1, . . .} denote the set of possible strategy program texts, i.e.,
the set of “legal source code files” for strategy programs. Notice that strategy program texts LΠ are
syntactic objects while strategy programs Π are semantic objects. It is possible for multiple source
program texts to define the same program strategy. Now, a program strategy for a player i in an n
player game takes as input n program strategy texts, one for each player, (including its own program
text), and produces as output an action. Formally, we can understand such a program strategy as a
function:

πi : LΠ × · · · × LΠ︸ ︷︷ ︸
n times

→ Ac.

The strategy for the prisoner’s dilemma can then be understood as follows:

πi(`i, `j) =
{

C if `j = `i

D otherwise.
(1)

1We will not here formally define the “program strategy language” used by Tennenholtz – the key features should be
easy to understand from the example.

3

Here, the test `j = `i is a purely syntactic comparison of program texts. So, suppose we have available
a function [[. . .]], which gives the denotation of a program text. Formally:

[[. . .]] : LΠ → Π

that is to say:
[[. . .]] : LΠ → (LΠ × · · · × LΠ︸ ︷︷ ︸

n times

→ Ac).

If the denotation function is available as a primitive in the strategy programming language LΠ itself,
then we might imagine writing a “semantic” equivalent of the prisoner’s dilemma program strategy as
follows:
IF [[HisProgram]] == [[MyProgram]] THEN
DO(COOPERATE);
ELSE
DO(DEFECT);
END-IF.

This results in the following strategy program πi for player i:

πi(`i, `j) =
{

C if [[`j]] = [[`i]]
D otherwise.

(2)

This seems to solve the problem of requiring syntactic equality of programs, but it raises some prob-
lems of its own. It is, of course, unrealistic to have a denotation function of the type discussed above
in a realistic programming language, and comparing programs is equally unrealistic. So, what can
we do instead? The idea we pursue in this paper is to use simpler forms of program reasoning within
the language, and in particular, to allow programs to reason about each other’s behaviour using model
checking [5]. Model checking is an extremely successful technology for analysing the behaviour of
(typically finite state) systems and protocols by using temporal logic. The basic idea is that the state
transition graph of a system S can be understood as a modelMS for a temporal logic, and so checking
whether the system S satisfies a property ϕ expressed using the temporal logic amounts to evaluating
the model checking problem MS |= ϕ. Crucially, such evaluation can typically be done much more
efficiently than program reasoning of the kind suggested by (2), above. So, suppose we allow our pro-
grams to reason about each other’s behaviour using model checking. We might then imagine writing
a program strategy such as the following2:

IF HisProgram(MyProgram,HisProgram) |= DO(COOPERATE) THEN
DO(COOPERATE);
ELSE
DO(DEFECT);
END-IF.

Notice one important subtlety in this definition: when evaluating the behaviour of HisProgram
using the model checking query, the parameters MyProgram and HisProgram are passed. This
is because we need to understand how HisProgram will behave when faced with MyProgram.
The basic idea of the remainder of the paper is to explore this idea in more detail; since using a
“real” programming language would lead to great technical complexity (and almost certainly high
computational complexity), we define a “simpler” strategy programming language – intuitively, based
on decision trees.

2The notation used in this example intended to be suggestive only; don’t take it too seriously.

4

3 The Formal Framework

First, some preliminary definitions. We assume a set Ag = {1, . . . , n} of agents (|Ag| = n, n > 0).
Each agent i ∈ Ag has a repertoire Aci = {α1, . . . , αk} of actions (moves) that it can perform. To
keep the model simple, we will assume there are no pre-conditions attached to actions: every one
of an agent’s actions can be performed in every situation. We do not require that action sets Aci are
disjoint. We assume that a “noop” action null is included in every action set.

3.1 Strategies

We now define strategies in our framework. Conventionally, a strategy is assumed to be a kind of
conditional plan, which defines how an agent is to act in every possible circumstance. Typically, a
strategy is modelled as a function that maps a history of the system/game to date to a chosen action.
In our framework, inspired by the work of [11] as described above, strategies have a rather different
feel. Our strategies allow the behaviour of agents to be mutually conditioned on each other; and in
particular, we allow a strategy for agent i to be conditioned on the past and future behaviour of other
agents, allowing us to naturally, explicitly, and formally define strategies along the lines of “I will
cooperate if he will”. The difficulty is making this idea precise, and in particular, in defining the
notion of a “sensible” outcome when we may have a circular chain of conditions on agent behaviour
(e.g., where i’s strategy is conditional on j’s strategy, and j’s strategy is conditional on i’s strategy). We
define the notion of a stable outcome to capture the notion of a reasonable outcome in such a setting,
and investigate the properties of stable outcomes.

Technically, strategies in our framework look very much like decision trees, with an unusual kind
of condition on transitions. More formally, a strategy is a complete binary tree3 in which vertices are
labelled with actions and transitions/edges in the tree are labelled with transition guards. A transition
guard is a predicate on the behaviour of agents in the system. Suppose an edge (s, s′) in the strategy
tree for agent i is labelled with a transition guard Φ, and s′ is labelled with the action α. Then any
outcome in which (s, s′) appears must satisfy Φ; and thus any outcome in which i performs α in s′

must satisfy Φ. The condition Φ is not just a predicate on the past behaviour of agents in the system: it
may also refer to their future behaviour. The transition guard Φ may in fact also refer to the behaviour
of the agent i itself, giving strategies a somewhat self-referential flavour.

We formally define the language for transition guards later, but be assured that it will be rigorously
defined. For now, it suffices to note that LC will denote the set of formulae of the language, and that
the language contains the usual Boolean connectives (∧,∨,¬, . . .) with classical semantics. We write
Φ ≡ Ψ to mean that Φ,Ψ ∈ LC are equivalent – again, this notion will be formally defined later, but
the formulation is relatively conventional.

Formally, a strategy, σi, for agent i ∈ Ag is a structure:

σi = 〈Si,Ri, s0
i ,Ci,Li〉

where:

• Si is a (finite, non-empty) set of strategy states;

• Ri ⊆ Si × Si is a binary transition relation on Si, such that Ri 6= ∅;
3The decision to restrict strategies to binary decision trees means that we cannot directly represent multiway selections

in our strategies. This restriction greatly simplifies the constraints that strategies are required to satisfy, and the subsequent
technical presentation. The binary tree assumption is not an essential part of our framework; it just makes the exposition
simpler.

5

• s0
i ∈ Si is the initial state;

• Ci : Ri → LC labels each edge in Ri with a transition guard;

• Li : Si → Aci associates an action with each state;

such that:

• (Si,Ri) forms a complete binary tree with root node s0
i ;

• Li(s0
i) = null;

• if {(s, s′), (s, s′′)} ⊆ Ri then Ci(s, s′) ≡ ¬Ci(s, s′′).

The final condition ensures that branching in the tree has an “if. . .then. . .else. . . ” form. For
this reason, we often write the transition guard on the second outgoing edge of a node as “else”,
understanding that it is the negation of the condition on the first outgoing edge.

Let leaves(σi) denote the set of leaf nodes of σi.

3.2 Encounters and Outcomes

An encounter captures the idea of a collection of agents meeting, each with a strategy, conditioned on
the strategies of others. Formally, an encounter is a structure:

E = 〈Ag,Ac1, . . . ,Acn, σ1, . . . , σn〉

with components as previously discussed; we will require that all strategies have the same length and
breadth. Our goal is now to define what we mean by the “outcome” of a such an encounter. We start
with the notion of an individual outcome. An individual outcome for an agent i ∈ Ag is simply a
path through i’s strategy tree, starting from the initial state si

0 and ending in a leaf node. Formally, an
individual outcome ωi for i ∈ Ag with strategy σi is a sequence of states

ωi = (si
0, . . . , s

i
k)

such that:

• si
0 is the initial state of σi;

• si
k ∈ leaves(σi); and

• ∀j ∈ N s.t. 0 ≤ j ≤ k − 1, (si
j, s

i
j+1) ∈ Ri.

When it is clear from the context whose strategies we are talking about, or when the agent is not
relevant, we will also write ω for the outcome and s0, s1, . . . for the states. Let |ωi| denote the length
of ωi. We denote the element of ωi at position u ∈ N, (0 ≤ u < |ωi|) by ωi[u]. Thus ωi[0] is the initial
state of ωi, and ωi[|ωi| − 1] is the final state. Let Ωi denote the set of individual outcomes for i (over
E).

A collective outcome $ = 〈ω1, . . . , ωn〉 is then simply a tuple of such individual outcomes, one
for each agent i ∈ Ag. Let ΩE denote the set of collective outcomes for encounter E. Notice that the
definition of a collective outcome says nothing about whether an outcome is “reasonable” or not; we
address this issue later.

6

a2 b2

a1 o1 o2

b1 o4 o5

c2 d2

c1 (3, 3) (0, 5)
d1 (5, 0) (1, 1)

Figure 1: An abstract two-player strategic game (left) and the Prisoner’s Dilemma as an instance
(right)

Example 1 (Strategic Game Form, Prisoner’s Dilemma) Strategic games are a simple yet impor-
tant class of games. In a simplest setting, we have two agents, A = {1, 2}, each with two actions,
Aci = {ai, bi}. In such a game, actions and strategies coincide: the game’s duration is only one joint
action. For representation of such a game, see the table on the left hand side of Figure 1, where o1 is
the collective outcome, or state, that is the result of 1 doing a1 while 2 chooses a2, etc.

An instance of such a strategic game is obtained in the Prisoner’s Dilemma. Here, two prisoners
face the choice of either cooperating (ci), or defecting (di), when interrogated seperately about a
suspected crime. The sentence for their crime would normally be five years, but for this, there must
be sufficient evidence. The possibilities available to the prisoners are as follows: if one prisoner, say
agent 1, cooperates with the other prisoner and remains silent during interrogation (he plays c1), then
there are two possibilities. Either agent 2 also cooperates (in which case there is lack of evidence,
and both prisoners will be sentenced for two years, a gain of 3 over the worst possible sentence). If
however prisoner 2 defects, and declares the other prisoner to be guilty, prisoner 1 will get his five
year sentence (a payoff of 0) and prisoner 2 will walk free (a payoff of 5). This situation corresponds
with the outcome (0, 5) in the right hand side of Figure 1 for the entry 〈c1, d2〉. The game is symmetric,
and finally, if both players defect and give evidence about each other, they will be each locked up for
four years, a payoff of 1.

The strategy for player i in our framework may be depicted as follows:

null

αi

bi

Φ

else

si0

si1

si2

Here, Φ is a formula from our transition guard language LC to be introduced shortly.
The individual outcomes for agent 1 of the strategy depicted above are (s1

0, s
1
1) (the agent plays

a1) and (s1
0, s

1
2) (he plays b1). An example of a collective outcome is 〈(s1

0, s
1
1), (s

2
0, s

2
1)〉 (1 plays a1 and

2 plays a2): there are four collective outcomes possible in total.

Example 2 (Iterated Prisoner’s Dilemma) As the name suggests, in the Iterated Prisoner’s Dilemma
(IPD), players play the PD game a number of times. A strategy for a two-round PD looks as follows:

7

null

ci

di

Φ1

else

s0

s1

s2

ci

di

ci

di

Φ2
else

else

Φ3

Note that the actions available after each round are the same, but the conditions to play them
(Φ1,Φ2,Φ3) or not, may be different.

Example 3 (Extensive Game Forms) An example of game in extensive form is given below: again,
we have two players (1 and 2), and this time Ac1 = {L,R} and Ac2 = {l, r}. In the two games below,
player 1 plays first, and once he is finished, player 2 makes a move. Then, the game is finished. In the
game on the left, if player 1 plays L and then 2 chooses r, the game ends in outcome o2. A concrete
instance of this outcome is given on the right: 4 for player 1, and 2 for player 2.

1

2 2

7
1

4
2

3
8

6
5

L R

l r l r

1

2 2

o1 o2 o3 o4

L R

l r l r

One possible way to model the strategies for player 2 for this game is as in the figure below. In
fact, as we will see shortly, the strategy given here is more general than for the specific game: we
will shortly see how specific choices for the Φi’s make the strategies suitable for the game in extensive
form.

null

null

null

Φ1

else

s0

s1

s2

l

r

l

r

Φ2
else

else

Φ3

3.3 A Logic for Individual Outcomes

Recall that earlier, we mentioned the logic LC , which is used for transition guards in strategies. We
can now reveal exactly what LC is: it is a logic for expressing properties of collective outcomes $.
To define LC , we first define a logic LI for expressing the properties of individual outcomes. LI

8

is in fact a linear temporal logic with tense modalities for referring to the past and future [6]. The
primitive operators of LI are of the form do(α), with the fairly obvious interpretation “action α is
performed”. These operators are combined with the classical Boolean connectives (∧,∨,¬, . . .), and
with the future-time tense operators “ h” (next), “♦” (eventually), and “ ” (always), as well as the
past-time counterparts of these operators, x,♦• , . The syntax of LI is defined by the following
grammar:

ϕ ::= do(α) | ¬ϕ | ϕ ∨ ϕ | xϕ | hϕ | ♦ϕ | ♦• ϕ.
where α ∈ Ac1 ∪ · · · ∪ Acn. The remaining Boolean connectives are defined as abbreviations in the
usual way. The “always” and “heretofore” operators are defined as the duals of the diamond operators:

ϕ =̂ ¬♦¬ϕ ϕ =̂ ¬♦• ¬ϕ.
Formulae of LI are interpreted with respect to a strategy σi, an individual outcome ωi ∈ Ωi, and a
temporal index u ∈ N, via the satisfaction relation |=I :

σi, ωi, u |=I do(α) iff L(ω[u]) = α
σi, ωi, u |=I ¬ϕ iff not σi, ωi, u |=I ϕ
σi, ωi, u |=I ϕ ∨ ψ iff σi, ωi, u |=I ϕ or σi, ωi, u |=I ψ
σi, ωi, u |=I xϕ iff u > 0 & σi, ωi, u− 1 |=I ϕ
σi, ωi, u |=I hϕ iff u < |ωi| & σi, ωi, u + 1 |=I ϕ
σi, ωi, u |=I ♦ϕ iff ∃v ∈ N, u ≤ v < |ωi| s.t. σi, ωi, v |=I ϕ
σi, ωi, u |=I ♦• ϕ iff ∃v ∈ N, 0 ≤ v ≤ u s.t. σi, ωi, v |=I ϕ

Note that ♦ϕ in fact means ‘now, or sometime in the future’. We can define ‘sometime in the (real)
future’ as h♦ϕ. Similarly for h (‘always in the real future’), x♦• (‘sometime in the real past’)
and x (‘always in the real future’). Next, define a nullary predicate start = x⊥. It is easily seen
that start marks the beginning of time: it is only true when u = 0. (Although we did not explicitly
define⊥, one might take⊥ = (i : do(α))∧¬(i : do(α)), for a given agent symbol i and action symbol
α.)

3.4 A Logic for Collective Outcomes

We now extend LI to the language LC that will be used for transition guards. Formulae of LC express
properties of collective outcomes. Primitive expressions of LC are of the form (i : ϕ), where i ∈ Ag
and ϕ ∈ LI , meaning that the individual outcome ωi for agent i satisfies ϕ. These expressions are
combined with the classical Boolean connectives ∧,∨,¬, The syntax of formulae of LC is thus
given by the following grammar:

Φ ::= (i : ϕ) | ¬Φ | Φ ∨ Φ

where i ∈ Ag and ϕ ∈ LI . The semantics of the language are defined with respect to the satisfaction
relation “|=C”, via the following rules:

E, $, u |=C (i : ϕ) iff σi, ωi, u |=I ϕ
E, $, u |=C ¬Φ iff not E, $, u |=C Φ
E, $, u |=C Φ ∨Ψ iff E, $, u |=C Φ or E, $, u |=C Ψ

We again assume the remaining Boolean connectives are defined as abbreviations. We say a formula
Φ ∈ LC is satisfiable if E, $, u |=C Φ for some E, $, u, and valid if E, $, u |=C Φ for all E, $, u; we
indicate that Φ is valid by writing |=C Φ. If |=C Φ ↔ Ψ then we say that Φ and Ψ are equivalent.

9

Example 1 (Continued) Let us focus on the prisoner’s dilemma. By taking Φ = >we get the strategy
ci in PD, while Φ = ⊥ gives di. For i any of the agents, let ı denote the other agent. Now consider
Φ = (ı : cı). This strategy for i says that i will cooperate iff ı does. Note that nothing prevents an
agent to condition his choices on his own choices, so for instance a condition Φ = (i : di) in the PD
would correspond with a strategy in which i would cooperate if and only if he defects! Of course, we
need to explain what such a strategy ‘means’, which we will do shortly.

Example 2 (Continued) When specifying strategies in the iterated PD, we can make full use of the
temporal operators. For instance, a well known strategy in this game is the following. It is based on
the following simple decision (also known as reciprocal altruism in biology):

TIT-FOR-TAT: if my opponent cooperated in the previous move, then that is what I do
now, if however he defected, I will defect as well.

Of course the strategy should also prescribe what to do in the first round. Let us suppose the
strategy starts with a cooperative move. Then the TIT-FOR-TAT strategy with initial cooperate move
can be given as follows: label every transition to any state labeled with ci with the guard copyc:

start ∨ (ı : wcı) (3)

(and consequently, label all other transitions with ‘else’.) In a case like this, we say that the strategy
is such that all ci actions are conditioned on (3).

The strategy COPY-NOW would merely be the game where i will do exactly what ı will do: the
guard for ci-transitions would simply be (ı : hcı)

The following strategy is less forgivefull than TIT-FOR-TAT:

GRIM-TRIGGER: I will cooperate, but as soon as my opponent defected on me I will
defect as well, and never go back to cooperate again.

The guards for transitions leading to a state labeled with di would be:

(ı : w♦• dı) (4)

Forgiveness usually relates to events that happened in the past, but nothing prevents agent i from
conditioning his di actions on what ı does now, or even in the future:

(ı : ♦• dı) ∨ (ı : dı) ∨ (ı : ♦dı) (5)

The strategy that conditions di on (5) prescribes the following.

UNFORGIVING-EVER: I will defect if my opponent ever defects — be it in the past, now,
or in the future

Of course there are many variants of this: a strategy that defects if the opponent defected the
previous k rounds, for example (also known as TIT-FOR-k-TATS):

(ı : (dı ∧ w(dı ∧ . . . ∧ w(dı ∧ wdı) . . .))) (6)

or whenever the opponent defected k times in the past

(ı : ♦• (dı ∧ w♦• (dı ∧ . . . ∧ w♦• (dı ∧ w♦• dı) . . .))) (7)

10

Example 4 (Multiple Player Games) Let us briefly look at games where the number of players is n.
There are many strategies that one can think of in such situation. For instance, agent i could condition
an action ai on the majority (if any) chosing that action (now, or in the previous move, or if a was
the most popular action choosen thus far). Another conidition for action ai might be that everybody
choose a, etc.

4 Stable Outcomes

Suppose we are given an encounter E. How are we to identify the “reasonable” collective outcomes
of E? The key solution concept we define is the notion of a stable outcome. A stable outcome
is one in which every transition guard on every transition in every individual outcome is satisfied;
and thus all the mutually conditioned constraints imposed by agents are satisfied. Formally, if $ =
〈ω1, . . . , ωn〉 ∈ ΩE then $ is said to be stable if it satisfies the following condition:

∀i ∈ Ag, ∀u ∈ N s.t. 0 ≤ u < |ωi|, E, $, u |=C Ci(ωi[u], ωi[u + 1]).

Given an encounter E, let stab(E) denote the set of stable outcomes of E. In other words, an encounter
is stable if every condition for doing an action along a path, is true.

Example 1 (Continued) Let us look at the one shot PD game explained earlier. Let the condition for
doing ci for each agent i be Φi.

1. First suppose Φ1,Φ2 ∈ {>,⊥}. Each combination of such guards gives rise to one stable
outcome: the four combinations in total account for the table at the right-hand-side of Fig-
ure 1. More specifically, consider Φ1 = > and Φ2 = ⊥ then the only stable outcome is
〈(s1

0, s
1
1), (s

0
2, s

2
2)〉 (this corresponds to the outcome (c1, d2), or (0,5), in our example): similarly

for the other choices for conditions from {>,⊥}.

2. Suppose Φ1 = >. If Φ2 = (1 : hdo(c1)), this gives rise to the stable outcome 〈(s1
0, s

1
1), (s

0
2, s

2
1)〉

(both players cooperate: 〈c1, c2〉). If Φ2 = (2 : hdo(c2)) then there are two stable outcomes,
corresponding to the action profiles 〈c1, c2〉 and 〈c1, d2〉.

3. Suppose Φ1 = (1 : hdo(c1)). If Φ2 = (2 : hdo(c2)), then all possible collective strategies
are stable: If agent i plays ci, it is ‘justified’ by the condition Φi, and if i plays di, it is justified
by the alternative ¬Φ1.

4. Finally, suppose Φ1 = (2 : hdo(c2) (‘I cooperate if he cooperates’). If Φ2 = (1 : hdo(c1))
then the two stable outcomes correspond to the action profiles 〈c1, c2〉 and 〈d1, d2〉.

Notice that the final example above illustrates the straightforward encoding of Tennenholtz’s program
for the prisoner’s dilemma in our setting. As in Tennenholtz’s setting, mutual cooperation is a stable
outcome, and if Φi = (ı : hdo(cı)) then agent i cannot suffer the “suckers payoff”, where i co-
operates and ı defects. However, the benefit of our approach is that we are no longer reliant on the
syntactic form of the strategy; for example if player 2 used the syntactically different, but semantically
equivalent condition Φ2 = ¬¬(1 : hdo(c1)), then the result would be the same: mutual cooperation
remains a stable outcome.

11

Example 2 (Continued) Suppose prisoner 1 plays TIT-FOR-TAT. If 2 plays this as well, a stable
outcome is one in which both prisoners cooperate, all along the game. This is also the only stable
outcome: if a prisoner would defect, this is not justified by the condition (3). If prisoner 2 plays GRIM-
TRIGGER, the unique stable outcome is the same and this also holds when 2 plays UNFORGIVING-
EVER (5). Suppose now 1 is of type TIT-FOR-TAT, while 2 is like that, but he starts with a defecting
move:

¬start ∨ (1 : wc1) (8)

In this case, the stable outcome is the one in which 1 plays c1 in every odd round and d1 in every
even round, while 2 plays d2 in odd rounds and c2 in even rounds.

Let us now drop the assumption that a prisoner plays TIT-FOR-TAT. Assuming that both prisoners
use GRIM-TRIGGER, the stable outcomes are again plays in which only ci is used. In general, when 2
uses GRIM-TRIGGER stable outcomes are plays of length n such that 2 and 1 play k times ci, 2 plays
d2 at step k + 1 while 1 still plays c1, and from k + 1 on, 2 only plays d2 (what 1 will do in the game
from k + 1 on, depends on his strategy). If 1 plays TIT-FOR-TAT or GRIM-TRIGGER, k = n, the
length of the game.

If one player is of type GRIM-TRIGGER while the other is UNFORGIVING-EVER, again the only
stable outcome is the one in which only players cooperate. If 1 is of type GRIM-TRIGGER while
2 if of type UNFORGIVING-EVER, however, there are two stable outcomes: the one in which only
cooperation is played, and the one in which 1 uses c1 as a first move, while other moves of both
players are d.

Example 3 (Continued) Let us look at strategies for the game in extensive form of this example. Take
the strategy for agent 2 again, depicted at the left of the following figure (in which n represents ‘null’).
Φ1 could be (1 : hdo(R)), in which case state s2

1 corresponds with a state in which agent 1 has
played R, and s2

2 corresponds with a state where 1 played L.

n

n

n

Φ1

else

s2
0

s2
1

s2
2

l

r

l

r

Φ2
else

else

Φ3
n nT

t 20 t 21
l

r

Ψ

else

The diagram on the right of the figure shows a transformed version of the strategy on the left. First
of all, we adopt the convention that if an edge has an outgoing arc labelled >, then we do not need to
represent the alternative outgoing edge (so, Ri is strictly speaking not binary any longer, but it is easy
to add a non-significant node with a transition to it, a transition that will never be taken).

More importantly, another difference between the two strategies depicted above is that, in the
strategy on the right hand side, the condition Ψ to play l is uniform, in the sense it seems to be
regardless of what has happened earlier. However, we can cater for this in our object language as
follows. Suppose Φ1 = (1 : hdo(R)). Then, with choosing

12

Ψ = ((1 : wdo(R)) ∧ Φ2) ∨ ((1 : wdo(L)) ∧ Φ3)

we would get ‘a similar’ strategy. This claim needs to be made precise and can be generalised,
but for the moment we will use strategies as depicted on the right when talking about extensive game
forms. The two strategies for the agents would then look as follows:

n

L

R

Φ

else

s10

s11

s12

n

n

T

T

n nT

s20 s21 l

r

Ψ

else

s13

s14

s23

s24

So what are stable outcomes in this game? Let us first assume agent 2 only cares about his
own payoff: Ψ = (1 : wdo(R)). For agent 1, let us first assume that he knows that 2 is rational:
Φ = ⊥. The resulting encounter has one stable outcome: and leads to the outcome in which agent
1 obtains 3, and 2 obtains 8. Next, suppose Φ = ¬((1 : do(L)) → (2 : hdo(r))) (‘I play R iff
playing L would imply that would 2 answer with playing r’). Now there are two stable outcomes:
〈(s1

0, s
1
1, s

1
1), (s

2
0, s

2
1, s

2
4)〉 corresponding to 1 playing L, and 2 playing r, and the second stable outcome

being 〈(s1
0, s

1
2, s

1
4), (s

2
0, s

2
1, s

2
3)〉, corresponding to 1 playing R and 2 playing l.

Keeping the same Ψ, we can also identify a condition Φ for which there are three stable outcomes:
Φ = (1 : do(L)). Those stable outcomes correspond to the plays (L, l), (L, r) and (R, r). Finally, it is
easy to see that for Φ = (1 : do(L)) and Ψ = (2 : do(l)) all four possible global outcomes are stable.

Example 4 (Continued) We briefly revisit the example with several players. Suppose each agent can
do two actions (or votes), say yes and no. We specify the condition Φi leading to the yes node. Suppose
for every i,

Φi = Alli =
∧

j

(j : do(yes))

(‘I vote yes iff everybody does’.) The the only stable outcomes are those in which voting happens
unanomously: either all vote ‘yes’, or all vote ‘no’. (Let us call this set of (two) collective strategies
U.) To see this, note that in any other collective outcome, there is a ‘yes’ vote and a ‘no’ vote. Then
the agent i voting yes does not satisfy his condition Alli to do so. How about

Φi = All-Otheri =
∧
j6=i

(j : do(yes))

(‘I vote yes iff everybody else does’.) Certainly, the global outcome in which everybody votes yes is
stable. In fact, everybody using All-Otheri again leads to the set U of stable outcomes. U is also
obtained if Φi = Somei =

∨
j(j : do(yes)) and Some-Otheri =

∨
j6=i(j : do(yes)).

Suppose n is odd, say n + 1 = 2 · k, then we can define

Φi = Maji =
jx 6=jy∨
j1,...jk

x=k∧
x=1

(jx : do(yes))

13

(‘I vote yes iff a majority does’). Maybe surprisingly, the stable outcomes are again those in U.
Let us finally assume that not all agents use the same condition. Suppose n + 1 = 2k, and the

first k agents use Alli and the remaining k − 1 agents use Maji. Again the stable set is U. However, if
we assume the first k agents use Maji and the remaining k1 agents use Alli, the stable set consists U
together with the collective outcome in which exactly the first k agents vote yes.

From the discussion above, we can distill the following conclusions.

Theorem 1 (1) There exist encounters E such that stab(E) = ∅. (2) There exist encounters E
such that |stab(E)| = 1. (3) There exist encounters E such that |stab(E)| > 1. (4) Let E =
〈Ag,Ac1, . . . ,Acn, σ1, . . . , σn〉 be an encounter. Then it is possible to change the labeling function
Ci in the strategy σi for agent i in such a way, that the resulting encounter E′ satisfies the property
that all collective outcomes are stable.

Now, consider the decision problem NON-EMPTY STABLE SET, in which we are given an encounter
E, and asked whether or not stab(E) 6= ∅.

Theorem 2 NON-EMPTY STABLE SET is NP-complete.

Proof: Membership is by “guess-and-check”. For hardness, we reduce SAT. Given a SAT instance χ
over Boolean variables x1, . . . , xk, which we assume w.l.o.g. is in CNF, we construct an encounter Eχ

as follows. For each Boolean variable xi, create an agent i with Aci = {xi, null}, and define σi to be:

null

xi

null

i : O do(xi)

else

si0

si1

si2

Then create an agent z with Acz = {null, α}. Construct an LC formula χ′ by transforming the SAT

instance χ as follows: systematically substitute for each positive literal xi the LC expression (i :hdo(xi)), and for each negative literal ¬x substitute (i : hdo(null)). Now σz to be:

null

null

α

else

sz0

sz1

sz2

χ' ^ (z : O do(α))

We claim that stab(Eχ) 6= ∅ iff the χ is satisfiable. (⇐) Assume stab(Eχ) 6= ∅. Now, consider agent
z. First, notice that the individual outcome (s0

z , s
1
z) cannot be in any stable outcome, since this would

require that in the next state agent z does α, whereas in fact it does null. So, the individual outcome
for z contained in the stable outcome must be (s0

z , s
2
z), and hence the collective outcome must satisfy

¬(¬χ′ ∧ (z : hdo(α))) = ¬¬χ′ ∨ ¬(z : hdo(α)) = (z : hdo(α)) → χ′. Since the L(s2
z) = α this

implies that the antecedent of this condition is satisfied, hence the collective outcome must satisfy χ′.
This immediately implies that χ is satisfiable. (⇒) Assume χ is satisfiable. Then let X ⊆ {x1, . . . , xk}
be the set of variables made true under some satisfying assignment for χ. We construct a stable

14

outcome $χ(ω1, . . . , ωn) for Eχ as follows. First, for each agent i corresponding to variable xi, if
xi ∈ X then ωi = (s0

i , s
1
i), while if xi 6∈ X then ωi = (s0

i , s
2
i). Finally, set ωz = (s0

z , s
2
z). We claim that

the outcome $χ thus constructed is stable. The only non-obvious part is for the individual outcome
ωz: here the point is that the construction of the formula χ′ and outcomes for variable agents 1, . . . , k
are such that the outcomes for 1, . . . , k will satisfy χ′, ensuring that the guard on the transition (s0

z , s
2
z)

is satisfied.

Notice that in the proof of Theorem 2, the encounter Eχ that we construct for χ is such that stab(Eχ)
contains outcomes that are in a one-to-one correspondence with satisfying assignments for χ. We may
thus conclude:

Corollary 1 Given an encounter E, the problem of computing |stab(E)| is #P-complete.

5 Related Work and Conclusions

Several other authors have begun to consider aspects of program equilibria. Kalai et al. abstract away
from programs completely, and assume that each player has a “mutually conditioned commitment
device” [8]. In this setting, they prove a “commitment folk theorem”, analogous to the Nash folk
theorem in iterated games [9, p.143]. Fortnow considered the idea of playing a game over time,
and used a Turing machine model of program strategies, proving a generalised version of the folk
theorem [7]. Peters and Szentes consider the issue of “definable contracts”; their idea is to use a
Gödel numbering scheme for program strategies, so that a program strategy can intuitively say “I’ll
cooperate if his Gödel number is the same as mine” [10]. In future work, it would be interesting to
consider in more detail issues such as richer, more intuitive programming languages, and the questions
of what kinds of different equilibrium might be defined, and how the choice of languages affects the
ability to reach such equilibria. It would also be interesting to somehow introduce preferences into the
language, so that we can define generic strategies, that take into account preferences when selecting
actions. And finally, of course, it would be interesting to look at the cases where finding a stable
outcome is tractable.

References

[1] R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.
[2] K. Binmore. Fun and Games: A Text on Game Theory. D. C. Heath, 1992.
[3] K. Binmore. Game Theory and the Social Contract Vol 1. MIT Press, 1994.
[4] K. Binmore. Game Theory and the Social Contract Vol 2. MIT Press, 1998.
[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
[6] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science Vol

B. Elsevier, 1990.
[7] L. Fortnow. Program equilibria and discounted computation time. In Proc. TARK-09.
[8] A. T. Kalai, E. Kalai, E. Lehrer, and D. Samet. A commitment folk theorem. Games and Econ.

Beh., 2009.
[9] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[10] M. Peters and B. Szentes. Definable and contractible contracts. Unpublished, 2008.
[11] M. Tennenholtz. Program equilibrium. Games and Econ. Beh., 49:363–373, 2004.

15

