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Abstract. Putting together a number of known results from epistemic
game theory and modal logic, we argue for a language-based perspec-
tive on the question of the existence of a universal knowledge structure.
We first survey known results on universal structures, and explain why
the question is important for the foundations of game theory and inter-
active epistemology. We then observe that the notion universality that
is used in the current literature is based on a very fine-grained, model-
based description of the agents’ information. In a more coarse-grained,
language-based perspective, universal structures do exist, and most of
the structures used to show non-existence turns out to be information-
ally equivalent. We finish with some general remarks on the source of
language-dependency, and observe that similar phenomena also occur
for Harsanyi type spaces.

1 Introduction

It is a recurrent issue in epistemic game theory whether the formal models used
to formalize the players strategic uncertainty and higher-order information make
substantive assumptions about what the players know about each other, and in
particular about how information is impaired to them—see [1, 2] and references
therein. For Harsanyi type spaces, the issue has been solved by showing that there
exists a so-called universal type space, see for instance [3,4]. For qualitative
structures, a.k.a. Aumman, Kripke or partition structures, it has been shown
that in general no such universal structure exists [5-7].

In this preliminary report we focus on qualitative structures, and argue that
the existence of universal structures of this kind depends on the language one uses
to describe them. Our argument is based on a number of technical observations,
well-known in the interactive epistemology and epistemic logic literature. In
Section 2 we define qualitative structures, explain what a universal structure
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is, and state what is known about them, namely that they do not exist. In
Section 4 we explain why the question of the existence of universal structures is
important. Our main argument is in Section 5. There we provide an alternative
notion on universality, based on finitary modal epistemic languages, and observe
that according to this definition universal qualitative structures do exist. We
conclude with some general remarks, pointing out important open problems and
noting that the issue of language-dependency bears on Harsanyi type spaces as
well.

The contribution of this report is conceptual rather than formal: conveying
that the question of the existence of a universal knowledge structure is important
for the foundations of game theory and interactive epistemology, and arguing
for a language-based perspective on this question. The mathematics we use is
well-known, and at this level our contribution is to connect the dots. In the
conclusion, we do point to interesting and open mathematical questions, which
will be discussed in the full version of this paper.

2 Basic Definitions

knowledge structures are qualitative models of information and higher-order in-
formation. They are part of the standard toolkit in the foundations of game
theory [8,9] and in logic [10, 11], where they have been extensively used in epis-
temic characterization of solution concepts.

Definition 1 (Knowledge Structure). A knowledge structure M is a tuple
(W,N,R,V) where W is a nonempty set of states, N is a finite set of agents,
R is a collection of binary relations on W and V : W — 2FFOF jg g valuation
function from W to subsets of a given countable set of atomic proposition PROP.
We write R[w] for {w’ : wRw'}. A pointed knowledge structure is a pair M, w.

Each state of a knowledge structure describes the basic facts of the situation
being modeled as well as the information each agent has about these facts, and
about the information of the other agents. The valuation function V assigns to
each state a set of basic facts (i.e., atomic propositions) that are true at that
state. The relations encode the information that the agents have at each state.
Unless otherwise specified, the collection R is a set of indexed relations R;, one
for each agent ¢ in N. These relations are sometimes assumed to be equivalence
relations, and the partitions they induce are understood as encoding what the
agents know at each state (thus the name knowledge structures). In what follows
we keep this terminology, but remain general and assume the relations in R
are arbitrary binary relations on W. Thus, we are agnostic about the precise
informational attitude being formalized (eg., knowledge or belief).

In a knowledge structure with states W, we can define a function for each
agent i assigning to every ewent, or proposition, X C W the event “agent i
believes (or knows) that X is true”. Formally, a function is associated with each
relation in a knowledge structure:
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Definition 2 (R-Operators). Given a knowledge structure M = (W, N, R, V).
An R-operator is a function Og : 2% — 2W such that, for all X C W,
Or(X) ={w: R;jw] C X}.

When the relations R; are equivalence relations, for instance, the operator® O;
gives for each “event” X the set of states where i “knows” that X is true. Since
we do not assume that the R; are equivalence relations, in what follows we use
the terminology belief operators for the O;.

Mutual and higher-order information in knowledge structures correspond to
operations on the relations R;, and their corresponding operators. The most
extensively studied is common knowledge and common beliefs, which corresponds
to taking reflexive-transitive closures of the individual’s binary relations. The
following definition and observation is well-known, but we include it here for
completeness (see, for example, [12, p. 6]).

Definition 3 (Reflexive-transitive closure). Let G be a non-empty subset
of N, and let Rg, = U,cc{R:i : i € G}. The reflexive-transitive closure Rg; of
the set {R; : i € G} is defined as follows:

R} = ﬂ{R’G : R, is a reflezive and transitive relation on W s.t. Ry O Rg}

Given a set G C N of agents, we write O¢ for the operator corresponding to the
relation R, (cf. Definition 2).

3 Universal Structures - The state of the art

In most of the results showing non-existence of universal knowledge structure,
universality is conceived of in terms of “information-preserving mappings.” These
are functions between two knowledge structures that preserve both the ground
facts and the (higher-order) information. The most widely used notion of such
mapping are the so-called knowledge morphisms.

Definition 4 (Knowledge morphism - [5,7]). Given two knowledge struc-
tures M and M’ with the same labels (modulo ) for the relations in R and R/,
a knowledge morphism is a function f : W — W' such that, for all w € W,
ReR and R € R/,

1. for all p € PROP, p € V(w) iff p € V'(f(w)).
2. f(R[w]) = R'[f(w)], with f(Rw]) = {f(w) : wRw'}.

Intuitively, if there is no knowledge morphism from one structure to an-
other, then either they disagree on some basic facts or, more interestingly, the
agents have different information in each of them. That is, knowledge mor-
phisms are mappings that preserve not only basic propositional truth, condition

3 According to Definition 2, we should write Og, for the operator associated with
R;. For simplicity and since we assume each agent ¢ is associated with exactly one
relation R; in a knowledge structure, we will write O;.
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1, but also the the informational structure. More precisely, a well-known obser-
vation is that if there is a knowledge morphism f from a knowledge structure
M = (W,N,{R;}icn,V) to a knowledge structure M’ = (W', N, {R}}ien, V"),
then for all states w € W, all i € N and sets X C W,

w € O, (X) Hff f(w) € O (F(X)).

It is not difficult to see that a knowledge morphism is equivalent to the well-
studied bounded morphism, or p-morphism, familiar in modal logic literature (see
[12, Definition 2.10, pg. 59]). This equivalence assumes, as is done throughout
the literature on universal type spaces, that a knowledge morphism is a total
function. There are a number of well-known results about bounded morphisms
and modal languages that describe knowledge structures (cf. [12]) which we will
discuss in Section 5.

The first definition of a universal structure that we study is a knowledge
structure that “contain” all other knowledge structures in the following sense.

Definition 5 (Universality as mapping - 1). A structure M is M-universal
iff for any other structure M’ there is a knowledge morphism from [ from M

to M'.

A structure is M-universal whenever it is rich enough to contain the image of any
possible structure, under knowledge morphism. In the type space literature there
a different notion of universality has been used, boiling down to require that a
universal structure should contain all consistent set of ground facts and infor-
mation. This notion has a straightforward counterpart in knowledge structures,
which we explore briefly in Section 5.3.

Theorem 1 ([7]). There is no M-universal structure.

This result is based on an earlier non-existence result of [5] for knowledge struc-
tures whose relations are partitions. Meier’s result hold for arbitrary knowledge
structures.

In this report we want to look at such non-existence results from an logical
point of view, and in particular to revisit the notion of universality defined above.
There is already some work in this direction, starting with the work of [13] and
[6] to more recent work by [14] and [15], exploring the existence of universal
structures from a coalgebraic point-of-view. We briefly comment on these below.
Our primary concern in this report are conceptual issues,and so we start by
stressing the significance of such results for the foundations of game theory and
interactive epistemology.

4 Why Universal Structures?

The possibility of constructing a knowledge structure where one makes as less
substantive assumptions as possible hinges on whether universal knowledge struc-
tures exist or not. The question of the existence of universal structures is thus
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not only mathematically interesting, it is also important for the foundation of
game theory, and for interactive epistemology more generally.

Substantive assumptions are assumptions about how, and how much, infor-
mation is imparted to the agents, over and above those that are intrinsic to the
mathematical formulation of knowledge structures. The latter type of assump-
tions include, for instance, monotonicity and closure under intersection of the
operators generated by the relations R. Substantive assumptions, on the other
hand, concern what the agents know and believe about what the others know
and believe, and in particular what is commonly known in a given situation.
Given a countably infinite set of propositions or basic facts, for example, in
finite structures is will always be common knowledge that some logically con-
sistent combination of these basic facts are not realized, and a fortiori that for
logically consistent configurations of information and higher-order information
about these basic facts.

Extending the state space is the usual technique to relax substantive assump-
tions in a given knowledge structure. See, for example, the discussion already
in [8] and the extended discussion in [1]. Substantive assumptions are nontrivial
facts that are commonly known to some or all agents in a given situation. They
can also be said to describe a specific contezt of the situation being modeled.
By adding to a structure states where some of these agents are uncertain about
these facts, and expanding the relations R; accordingly, common knowledge of
these facts disappear.

The question naturally arises, then, whether for any knowledge structure
based on a set of basic facts PROP, there is a structure also based on PROP that
makes strictly less substantive assumptions, or whether by sufficiently expand-
ing the state space one can construct a structure where no, or at least as few
substantive assumptions as possible are made. If no such structure exists, any
choice of model for a given situation carries some substantive assumptions about
what the agents know and believe about each other, and this might compromise
the generality of the analysis done on such models. Universal structures, if they
existed, would be such structures that minimize the substantive assumptions.
M-universality indeed rules out by definition the possibility of finding another
structure where the agents “know” strictly less.

The non-existence results presented above are thus important, from a foun-
dational point of view, as they show that there is no ultimate safe retreat, so
to speak, where one can be sure that no substantive assumptions are made.
Whatever knowledge structure one builds, one can always point out to some
substantive assumptions that could be relaxed or need explaining.

This can been seen as quite negative for those inclined to the use of knowledge
structures to model strategic uncertainty. Non-existence results show that the
epistemic analysis of an interactive situation in terms of a knowledge structure
is always tinted by some substantive assumptions, that the analysis can never
claim to be as neutral as possible regarding the agents’ information.

In what follows, however, we argue that the situation is not as bad as it
looks, once we give up the idea that universal structures should be rich enough
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to represent any other structure whatsoever, and instead require that universal
structures should contain all that can be said about the agents’ information and
higher-order information in some natural logical language.

5 Structure-based and Language-Based Universality

In the pure semantic approach presented in Section 2, the set of events that the
agents can reason about is determined by the size and the configuration of the
knowledge structure itself. Agents can think about any set-theoretically definable
event in a given knowledge structure, however complex, and the hierarchy of
higher-order information can go as high in the set theoretical universe as the
structure itself permits.

Arguably, it is then not surprising that, absent additional structure on the
space of events that the players can think about, there does not exist a knowledge
structure capable of representing all possible epistemic states (i.e., a universal
knowledge structure). Recall that if there is a knowledge morphism f from M
to M’ then the image of everything that the agents knows or believe at any
state w in M is also known or believed at f(w). This means that for any subset
X, however complex, knowledge morphisms commute with the set-theoretical
operators Og generated by the relations in R.

In contrast with this fine-grained, structure-based perspective, syntactic ap-
proaches suggests an alternative view on information and informational equiv-
alence. Instead of letting the structure alone determine what events the agents
can know and believe in a given interactive situation, one first specifies this
syntactically, and then looks at the resulting definable informational events in
a given structure. This is common wisdom in modal logic, but it is of crucial
importance to the question of the existence of universal knowledge structures.

Whether or not universal structures will come out of such an approach will
of course depend on the expressive power of the language used to describe the
models. The full set-theoretical description of knowledge structures presented
above can be seen as an extreme case of that methodology. From this point
of view the non-existence results become less surprising. There is, however, a
plethora of well-studied, less expressive, but nevertheless intuitive languages at
one’s disposal, and as we now observe they provide straightforward, alternative
notions of informational equivalence and universality.

5.1 Finitary epistemic languages

In this report we use standard multi-agent epistemic logic with a “common
knowledge,” here a reflexive-transitive closure modality [10,11], as illustrative
case. This language has a long tradition in philosophy [16], computer science
[10], and epistemic game theory [9]. The observations we make in the following
sections, however, carry over to more expressive languages such as Propositional
Dynamic Logic [17] and the modal p-calculus [18].
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Let S be a signature for a class of knowledge structures: a finite set of agents
N, a countable set of proposition PROP and binary relations R; for each agent
1 € N. Epistemic languages are built from this signature as follow:

Definition 6 (Finitary Epistemic Language). Given a signature S, a fini-
tary epistemic language Lgy, is recursively defined as follows:

¢:=p|-¢|dN¢|DORro|Or. ¢
where 1 ranges over N, p over PROP, and R; over the R; and ) # G C I.
Epistemic languages are interpreted on a knowledge structure as usual:

Definition 7. We write ||¢||™ for {w € IM| : M,wIF ¢}. We omit M when
it is clear from the context.

M,wlkp iff peV(w)

M, w Ik =g ifft M,wlf ¢

MwlF oAy iff M,wlk¢ and M, w -y
M,wl-Og,¢ iff Vo(if wR;v then M, v I+ ¢)
M,wlEOp ¢ iff Vo(if wREv then M, v IF ¢)

It is well-known that the set of modally definable events in a given knowledge
structure can be strictly smaller than the set of all events. Furthermore, there are
elegant model-theoretic characterizations of the classes of knowledge structures
definable in this language?. By fixing explicitly what can be known and believed
by the agents in a given knowledge structure, such a syntactic approach provides
an alternative notion of informational invariance and of M-universality.

5.2 M-universality Revisited

The language specified above provides a straightforward notion of informational
equivalence. Instead of saying that two structures are informationally equivalent
whenever any event that is known or believed in one is known or believed in the
other, and vice versa, one just requires the two structures to be informationally
equivalent up to definability in Lgy,.

Definition 8 (Lgr-morphism). Given two knowledge structures M and M’

of signature S and an epistemic language Lpy for this signature, a function
W — W' if a Lgr-morphism iff, for allw € W and all ¢ € L :

M,wlk ¢ iff M, f(w) IF ¢.

4 For example, a class of pointed knowledge structures is definable by a (set of) modal
formulas iff the class is closed under bisimulations and ultraproducts and its com-
plement is closed under ultrapowers [12, Theorem 2.75, pg.107]. Bisimulations are
defined in the next section (Definition 9), see [12] for the definitions of an ultrapower
and ultraproduct of a class of knoweldge structures.
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L pr-morphisms are language-based notions of informational equivalence, and
they are of course weaker than knowledge morphisms. The information that
Lpr-morphisms preserve is not only dependent on the underlying knowledge
structure, but also on the expressive power of Lgy,.

Observation 2 FEvery knowledge morphism f from M to M’ is a Lgr-morphism,
but not the other way around.

The general situation is as follows: a knowledge morphism is a special case
of a bisimulation:

Definition 9 (Bisimulation). Given two knowledge structures M and M’
based on signature S, a bisimulation is a relation < between W and W' such
that, for allw € W and v € W', if w < v then, for all R; € R and R, € R/,

prop: for all p € PROP, p € V(w) iff p € V'(v).
forth: if wR;w’ then there is a v/ € W' such that vRjv" and w' < v'.
back: if vRiv' then there is a w' € W such that wR,w' and w' < v'.

It is a simple but instructive proof to see that any knowledge morphism is
a bisimulation (and not the other way around). Furthermore, it is well known
that if two knowledge structures are bisimilar then they satisfy the same Lgy,
formulas, but the converse does not necessarily hold unless the structures are
image-finite (i.e., for any relation R and state w, R[w] is finite, see [12, pp.
68,69]).

Knowledge morphism are thus sensitive to differences that cannot be ex-
pressed in Lpr. Up to what can be said in Lg, about the agents’ information,
two Lg-equivalent structures, even if there is no knowledge morphism between
them, are identical.

L pr-morphism suggest a natural alternative to M-universality. Instead of
requiring universal structures to be rich enough to embed any other structure,
one requires only the embedding to preserve what can be defined in Lgy.

Definition 10 (Universality as mapping - 2). Given a signature S, a struc-
ture M is Lgr-universal iff for any other structure M’ of the same signature
there is a Lgr-morphism f: W' — W.

Intuitively, a Lgr-universal structure is thus one where on makes no sub-
stantive assumption, as far as these can be expressed in Lgr,. This restriction to
the expressive power of Lgy, is the key to the following observation.

Observation 3 Let Az, be a sound and complete axiomatization of a given
class of knowledge structures K, and let M be the canonical model for Az, ,
constructed in the standard way. See [12] for details. For any knowledge structure
M € K there is Lpr-morphism f: W — WC.

Proof. Take f(w) ={¢: M,w IF ¢}.

Corollary 1. MC is L -universal.
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The standard canonical model construction for an axiomatization in Lg, of
a given class of knowledge structures is thus Lgr-universal. As [19] observes,
there are many structures that are Lgr-equivalent to the canonical model, and
some will of course make strictly less substantive assumptions in an absolute,
set-theoretical sense. These assumptions go beyond the expressive power of Lg,.
These are difference that the formal language cannot express.

Observation 3 and corollary 1 are completely standard in the modal logic
as well as the epistemic game theory communities; their import is rather the
conceptual point that whether there are structures where one makes as less sub-
stantive assumption as possible depends on the expressive power of the language
one uses to describe the agent’s information. As Theorem 1 shows, if one uses the
full resources of the language of set theory, then there is indeed no such structure.
However, if one works with a less expressive language (and so reduces the num-
ber of details taken into account in an epistemic analysis of a given interactive
situation) then there are structures which make no substantive assumptions.

Observation 3 can also be applied to the counter-example to the existence of
a universal knowledge structure provided by [5].

Corollary 2. Take any pointed structure W, for an arbitrary ordinal o and
as defined in [5, p.267-268]. Then there is Lr-morphism f: W — W from
W< the canonical model for S5 based on the set of basic fact 6.

This corollary is nothing but a preliminary observation; a full language-based
analysis of Heifetz and Samet’s construction should reveal that, at some point
in the sequence of ever increasing structures, there should be no difference up to
L pr-satisfaction. This can be formally proven using the well-studied notion of
(n-)bisimulation. We only state one key observation here and leave a complete
analysis for the full paper. We first give the formal definition of an n-bisimulation
that characterizes definability up to modal depth n.

Definition 11 (n-Bisimulation). Two pointed knowledge structures M, w and
M’ v are n-bisimular whenever there is a sequence < , C ... C < ¢ of relations
such that, for alli+1<n and w' € W andv' € W:

1. w e ,v;
2. If w' < gv' then V(w') = V' (V).
forth: If w' < 410" if W R;w” then there is a v € W' such that v'Riv" and

back: Same from W' to W.

The key observation is that at the “w stage” in the sequence of ever increasing
structures constructed, states that are “equivalent” in the model are in fact
bisimular: For a given ordinal «, let P*(w) be as defined in [5, p.265-266]. Take
any We. For all n < w, set w < 4w’ iff w' € P™(w).

Claim. < , is a n-bisimulation.
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Proof. P°(w) is the partition of W according to the propositional valuation,
so we automatically get that if w < qw’ then V(w) = V(w’). Now take any
w’ such that w < ,w’, and suppose w ~; v. We have to find a v’ such that
w' ~; v and v = ,_1v'. Take v/ = (v=""1 w'2"). [5] show on page 271 that
for all w and any ordinal 3, P?(w) = {w' : w<f = w'<F}. So we know that
v < ,—10". But we also know that w Sl = <=1 Since v’ <"1 = p<n—1 and
w ~; v we know that w'=""1 ~; v'="=1 in Wn=1 But then by Lemma 3.2 in
5], we know that there is a u ~; w’ in W such that «="~! = v'<"~!, But then

U < 10" < ,_1v, which completes the proof.

5.3 R-Universality

In the literature, a number of definitions of “universality” of a (type) structure
have been studied (see the discussions in [20] and the survey [21]). One such
definition of universality is not conceived directly in terms of mappings and
informational equivalence, but rather in terms of realizability (see [4]).

One can of course define a similar notion for knowledge structures. Basic
facts and the informational attitudes form a well-defined algebra on knowledge
structures [22, Chapter 6] and this provide an explicit notion of consistency. We
already mentioned monotonicity and closure under conjunction, but positive and
negative introspections are other famous examples of such constraints.

Definition 12 (Universality as realizability). Given a signature S and a
sound and complete axiomatization Az, of a class of knowledge structure IC, a
structure M € K is R-universal iff for all Ar,,, -consistent set I' there is a state
in W such that for all p € I'; M,w I+ ¢.

A R-universal structure is a structure that is rich enough to realize all con-
sistent sets of statements about what the agents know or believe about each
other, including the knowledge and beliefs of the others. This syntactical view
on knowledge structures goes back to the very beginnings of epistemic logic [16],
and lies behind the construction of canonical structures mentioned above:

Observation 4 M is R-universal.

It should be clear that a knowledge structure is R-universal iff it is Lg-
universal, once one relativize the later to axiomatize classes of knowledge struc-
tures. [23] provide a model-theoretic version of R-universality, and indeed show
that no such universal structures exist in general. The relation between M-
universality and the results in that paper will also be investigated in the full
version of this paper.

6 Language Dependency in Type Spaces and Unified
Perspective

It is interesting to note this language-dependency seems also to hold for type
spaces. [6] show, for instance, that if one moves from countable to finite additivity
of the underlying probability functions, then universal type spaces cease to exist.
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These results point towards an interesting question about knowledge struc-
tures, namely how robust are the non-existence results? Various results in the
type space literature have shown that the existence of a universal type space is
rather robust to relaxing the assumption on the underlying topology, but the
result in [6] show that it is not robust to a simple variation in the language used
to construct these structures. Is the situation similar for knowledge structures?

To put these results in perspective, a more general framework seems to be
needed. Such an abstract framework would also help to situate the language-
based perspective on knowledge structures with the current discussion on the
relation between belief hierarchies and type morphisms [24]. The co-algebraic
work cited above seems to provide the right tools for this but, at this point, the
general picture still missing.

7 Conclusion

In this preliminary report, we put together a number of basic observations in
order to argue that the question of whether universal knowledge structures exist
depends on the language that one use to describe them. Coarse-grained languages
yield universal structures, fine-grained languages do not.

At the conceptual level, the question is of course to which extend a fine-
grained analysis is needed or, the other way around, why would one choose
to ignore details and go for coarse-grained languages. Issues of computational
complexity speak in favor of the second approach, while notions of behavioral
equivalence seems to point towards the first. We do not take issue on this question
here, but rather ask, with one of the founding fathers of analytic philosophy: Of
what one cannot speak, must one pass over in silence?
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