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Abstract. The effect of synchronous communication upon the dynamics
of knowledge gain is investigated. In a previous paper [6] we have de-
fined necessary conditions for knowledge gain in such systems. We now
show that our definitions are tight. Utilizing these conditions, we show
that when agents follow the full information protocol, a bound exists on
the level of interactive knowledge that can be attained without common
knowledge. This result is hedged by showing that in general no bound on
the number of levels of EG that will imply CG exists.

1 Introduction

The growing body of research dealing with the dynamics of interactive epis-
temics has brought to light some of the intricate relations between time, knowl-
edge and action [10, 19]. Yet the potential impact of another factor, namely
communication, is often abstracted away.

In distributed computing however, the characteristics of the communication
layer are vigorously studied. In particular, the distinction between synchronous
and asynchronous communication is cardinal here. Knowledge oriented results
pertaining to this distinction have mostly been concerned with asynchronous
communication. Thus [12] have shown that common knowledge cannot be
attained in the face of unreliable communication. Complementing this result,
Chandy andMisra [8] have identified the necessarymessage exchange thatmust
take place in order for agents in an asynchronous system to gain interactive
knowledge to any finite degree. Yet in many if not most multi agent systems,
some degree of synchrony can be assumed. This is the case in game theoretic
analysis, and as has been shown by van Benthem et al. [18], this assumption is
also implicit in Dynamic Epistemic Logic.

The main thrust of the current paper is to show that synchronous communi-
cation entails a rich underlying causal structure that imposes certain epistemic
constraints, and that can be used to purposefully achieve others. Our analysis
follows the approach of Chandy andMisra in characterizing interactive knowl-
edge gain in terms of the underlying causal structure that relates agents in
particular knowledge states. A different approach has recently been proposed
By Apt et. al in [2].

Suppose that as a result of a nondeterministic occurance at time t, Alice
comes to possess a juicy bit of information, namely that ϕ. Suppose that due



to its nondeterministic nature, no one else could possibly come to know that
ϕ indepedently. In an important paper [8], Chandy and Misra showed that
in asynchronous systems, interactive knowledge is essentially determined by
message sequences. Thus, if at time t′ Bob knows that Alice knows ϕ, which
we denote by KBKAϕ, then there is a message sequence starting with Alice after
time t, and reaching Bob by t′. As shown in [8], this property generalizes nicely:
if we add Charlie into the story, then for KCKBKAϕ to hold, there must be a
message chain starting at Alice, passing through Bob, and reaching Charlie. We
use the term knowledge gain to describe the process of attaining a high level of
interactive knowledge. The crux of the argument here is that for Bob to gain
knowledge about Alice, he must be somehow causally affected by her, and
yet in asynchronous systems there is no way for Alice to causally affect Bob,
epistemically or otherwise, except by means of a message chain.

Switching to a synchronous setting adds considerable complexity to any
potential analysis of knowledge gain.3 For example, if messages are known to
arrive at most b time units after being sent, Alice could potentially let Bob know
that KAϕ by time t + b, by not sending him any message after time t (say if
Bob and Alice have a previous agreement that Alice will send Bob messages
at every time point until, if ever, she finds out that ϕ). Moreover, we could
have KCKBKAϕ at t + b, despite there being no message exchange between Bob
and Charlie, or between Alice and Bob. In fact, this level of knowledge could
be reached without a single message being sent (and received) in the duration
(t, t + b].

As these examples illustrate, the flow of information in synchronous sys-
tems is nontrivial. In a previous paper [6], we suggested a causal notion that
we call syncausality, and showed that it is necessary for knowledge gain in syn-
chronous settings. Interactive knowledge gain and common knowledge gain
were shown to require richer structures that simple message chains, that we
call centipedes and centibrooms. We briefly discuss these definitions, as well as
our formal framework, in Section 2. Novel results start in Section 3, where we
complete the characterization of knowledge gain, interactive knowledge gain
and common knowledge gain by showing that the suggested causal structures
cannot be strengthened. This is shown by defining the full information protocol
(fip) for synchronous systems, where agents are fully cooperative in dispersing
new information, and showing that under this protocol the causal structures
are also sufficient for knowledge gain. We continue looking into fip in Section
4, where we show that there exists a bound on the depth of finite interactive
knowledge that can be reached in a group G of agents, before common knowl-
edge is attained.We provide a tight bound on this depth, as a function of |G| and
the elapsed time. Roughly speaking, it takes time to achieve deep knowledge
without having common knowledge. We also show that, somewhat surprisingly,
this bound depends not only on synchronous communication but also upon cer-
tain qualities of the protocol. These results interactwith Parikh’s [15] convincing
motivation for the relevance of finite depth interactive knowledge without com-

3 See Parikh and Ramanujam’s [16] for some related analysis.



mon knowledge, both in real life scenarios as well as in game theoretic settings.
Section 5 briefly discusses possible extensions of this paper.

This paper’s main contributions are:

– The scope of causal analysis of the epistemic dynamics is extended. It is
shown that the causal notions of syncausality, centipedes and centibrooms
fully characterizeknowledge gain, interactive knowledge gain and common
knowledge gain in synchronous systems respectively.

– The causal definitions make explicit the role of time in determining attain-
able states of interactive knowledge.

– The usage of protocols, the commonly known aspects of the agents’ behav-
ior, in epistemic analysis is exemplified. Such common knowledge has a
drastic effect on the evolution of knowledge in the system.

– The levels of interactive knowledge that can be attained without reaching
common knowledge are studied.
• When agents follow fip, there is a boundM = (|G| − 1)(d− 1)+ 2,where d

denotes the elapsed time since an event that has taken place, such that
EM
G

implies common knowledge in G that the event has occured. This

bound is shown to be tight: EM−1
G

can hold without implying CG. This
demonstrates the role played by the time elapsed in determining when
levels of EG give rise to common knowledge. Moreover, it shows that
the time interacts with the size of G in this matter, in a nontrivial way.

• No bound on the number of levels of EG that will imply CG exists in
general. Namely, a protocol is presented in which Ek

G
can be attained

with arbitrarily large k in one round of communication, without CG

holding.
– Analysis of cases where both temporal and epistemic considerations exist
is done by means of a timestamping technique reminiscent of the freeze
quantifier of [1].

2 Definitions and Preliminary Results

In this section we present the background for the analysis performed in the
paper. We start by describing the model and semantic definitions, Then, we
present the material from our previous paper [6] discussing notions of causality
and how they impose necessary conditions on knowledge gain.

2.1 The Model

This paper follows the runs and systems approach of Fagin et al. [10] to model-
ing multi-agent systems. Two essential building blocks are used to define the
formal model. The context in which the agents are operating, and the agents’
protocols, which determine their behavior. A context γ and a protocol profile
P = (P1, . . . ,Pn) for the agents define a unique system R = R(P, γ), which is the
set of all possible runs, or histories, of P in the context γ. The truth of facts of



interest can change from one run to another, and within a run, from one time
point to the next. We thus focus on facts that are true at points (r, t), specifying
the run and time in question. In every point (r, t), the system is in a particular
global state. The global state is identified with a tuple of local agent states, as
well as a state for the environment, which accounts for, e.g., messages in transit.

In this paper we focus our attention a particular synchronous context γ s. We
use R s to denote a system R(P, γ s) consisting of the set of all runs of protocol P
in the synchronous context γ s. A detailed definition of the models and the
context γ s are presented in Appendix A. Its main properties are highlighted
below.

– We assume that agents can receive external inputs from the outside world.
These are determined in a genuinely nondeterministic fashion, and are not
correlatedwith anything that comes before in the execution or with external
inputs of other agents.

– The set of agents is denoted byP. The network consists of a weighted graph
over P, in which edges stand for communication channels, and the weights
are natural numbers. We denote by bi j the weight for the channels from i
to j, and it represents the upper bound on transmission times for messages
sent along this channel. A copy of the network, as well as the current global
time, are part of every agent’s local state at all times, and hence are common
knowledge at all times.

– The environment agent is in charge of choosing these external inputs, and
of determining message transmission times. The latter are also determined
in a nondeterministic fashion, subject to the constraint that delivery satisfies
the transmission bounds.

– Time is identified with the natural numbers, and each agent is assumed to
take a step at each time t. For simplicity, the agents follow deterministic
protocols. Hence, a given protocol P for the agents and a given behavior of
the environment completely determine the run.

– Events are message sends and receives, external inputs, and internal com-
putations performed by the agent. All events in a run are distinct, and we
denote a generic event by the letter e. Since an event occurs at a unique site,
we assume disjoint sets {Ei}i∈P, of events for each process. A nondeterministic
(or ND) event is the arrival of an external input, or a message delivery that
occurs strictly before the transmission bound bi j for its channel is met.

2.2 Syntax and Semantics

We follow the framework of [10] very closely. We focus on a simple logical
language in which the set Φ of primitive propositions consists of propositions
of the form φe for all events e, as well as ones of the form time = t for times t.
To obtain the logical language L, we close Φ under propositional connectives
and knowledge formulas. Thus, Φ ⊂ L, and if ϕ ∈ L, i ∈ P, and G ⊆ P,
then {Kiϕ,EGϕ,CGϕ} ⊂ L. The formula Kiϕ is read agent i knows ϕ, EGϕ is read
everyone in G knows ϕ, and CGϕ is read ϕ is common knowledge to G. In addition,



given the role that time plays in our analysis, we add a timestamping operator
as well. Thus, if ϕ ∈ L and t ∈N, then ϕ@t is a formula.

The truth of a formula is defined with respect to a triple (R, r, t). We write
(R, r, t) � ϕ to state thatϕholds at time t in run r, with respect to systemR. Unless
stated otherwise, it is always assumed that r ∈ R in a triple (R, r, t). Denoting by
ri(t) agent i’s local state at time t in r, we inductively define

(R, r, t) � φe if event e occurs at time t in r;
(R, r, t) � time = t′ if t′ = t;
(R, r, t) � ϕ@t̂ if (R, r, t̂) � ϕ;
(R, r, t) � Kiϕ if (R, r′, t′) � ϕ for every run r′ satisfying ri(t) = r′

i
(t′);

(R, r, t) � EGϕ if (R, r, t) � Kiϕ for every i ∈ G; and
(R, r, t) � CGϕ if (R, r, t) � (EG)

kϕ for every k ≥ 1.

Propositional connectives are handled in the standardway, and their clauses are
omitted above. By definition, Kiϕ is satisfied if ϕ holds at all points at which i
has the same local state. Thus, given R, the local state determines what facts are
true. Intuitively, a fact ϕ is common knowledge to G if everyone in G knows ϕ,
everyone knows that everyone knows ϕ, and so on ad infinitum. In particular,
if (R, r, t) � CGϕ then (R, r, t) � KihKih−1 · · ·Ki1ϕ, for every string KihKih−1 · · ·Ki1

and h > 0.
We write R � ϕ and say that “ϕ is valid in R” if (R, r, t) � ϕ holds for all r ∈ R

and t ≥ 0. A formula is valid, written � ϕ, if it is valid in all systems R. Two
simple but very useful properties of the timestamping operator @ are captured
by the following:

TS1 � time = t → (ϕ↔ ϕ@t) and
TS2 � (ϕ@t)@t′ ↔ ϕ@t

We now turn to summarize the preliminary results introduced in [6]. We
start with a discussion of relevant notions of causality in synchronous contexts.

2.3 Causality

Notions of potential causality play a crucial role in the analysis of knowledge
gain. Typically, causality is considered among events. For ease of exposition,
we consider causal relations among agent-time pairs (i, t), which we call nodes.
There is no loss of generality in doing so, because in our particular framework
it is possible to identify an event with the node at which it occurs. Consider the
following forms of precedence among nodes:

Local precedence: (i, t)
ℓoc
7−→ (i, t′) if t ≤ t′.

Message precedence: (i, t)
msg
7−→ ( j, t′) if i sends a message at (i, t) that is

received by j at ( j, t′). This notion is defined with respect to a particular run
r.



Timeout precedence: (i, t)
t/o
7−→ ( j, t + bi j) if i and j are connected by a

channel with transmission bound bi j. If agent j does not receive a message
from i by time t + bi j, it can “timeout” and determine that i did not send j a
message at time t.

Different combinations of these relations can be used to describe different

meaningful causal relations. Thus, for example, the transitive closure
L
−→=

{
ℓoc
7−→,

msg
7−→}∗ of local precedence and message precedence gives rise to Lamport

causality [13], which plays a central role in the analysis of asynchronous systems.
Under this notion, nodes at distinct sites can only be causally related by means
of a message chain leading from one agent’s node to the other’s. Chandy and
Misra used Lamport causality to characterize knowledge gain in asynchronous

systems. Another causal relation that we make use of is d= {
ℓoc
7−→,

t/o
7−→}∗, the

transitive closure of local precedence and timeout precedence, which we call
silent causality. Silent causality reflects the pace at which information can spread
in the network without messages actually being sent. This pace is determined
by the upper bounds on transmission time, so it is also the speed at which a
message is delivered if agents relay it as fast as possible, but en route messages
are maximally delayed. We think of this pace as the speed of silence. In the
synchronous context γ s, all three forms of precedence can give rise to a causal
connection between nodes. As a result, we define syncausality among nodes

in a run of γ s to be { = {
ℓoc
7−→,

msg
7−→,

t/o
7−→}∗, the transitive closure of all three.

Syncausality is thus a fusion of Lamport’s causality and silent causality. As
Theorem 2.1 below shows, syncausality is closely related to knowledge gain
regarding events at a remote site.

Intuitively, we’d like to say that, at a given node for Alice, she can know
about an event e that occurred at Bob’s site only if the event syncausally precedes
Alice’s current node. This is too strong, however. For example, Alice may know
at 10pm that Bob is in bed, because he always goes to sleep by 9:30. In this
case, Alice’s knowledge did not require any transfer of information; it was
guaranteed based on Bob’s protocol. In order to avoid such issues, we consider
knowledge gain regarding nondeterministic events. Recall that these are either
external inputs to the agents, or the arrival of messages that are received strictly
before they must according on the bound bi j for the channel they are sent on.
Before such an event occurs, there is no guarantee that it will occur.

Theorem 2.1 (Basic Knowledge Gain [6]). Let e be an ND event at (i0, t) in run
r ∈ R s. If (R s, r, t′) � Ki1 φ

e
@t

then (i0, t){ (i1, t
′).

2.4 Centipedes and Centibrooms

Syncausality is necessary for the basic form of knowledge gain in the syn-
chronous setting, just as Lamport causality (message chains) is necessary in
the asynchronous case. However, while the same message chains also describe



higher-level knowledge gain in the asynchronous setting, in synchronous sys-
tems a more complex casual structure is required, as stated by Theorem 2.3
below. This structure, that we call centipede, combines syncausality and silent
causality restrictions. Centipedes are shown in Figure 1 and defined below.
A guiding intuition behind the theorem is that the synchronous environment
allows for a relaxation of the strict message sequence that characterizes asyn-
chronous knowledge gain, by allowing nodes along the path from (i0, t) to (ik, t

′)
to divert information to the intermediate agents i1, .., ik−1, if it can be guaranteed
that the information will reach these agents by t′.

Definition 2.2 (Centipede). Let r ∈ R s, let ih ∈ P for 0 ≤ h ≤ k and let t ≤ t′. A
centipede for 〈i0, . . . , ik〉 in the interval (r, t..t′) is a sequence θ0 { θ1 { · · · {
θk of nodes such that θ0 = (i0, t), θk = (ik, t

′), and θh d (ih, t
′) holds for

h = 1, . . . , k − 1.

(i0, t) ///o/o/o/o θ1 ///o/o/o/o/o

��
�

�

�
θ2 ///o/o/o/o

��
�

�

�

... ///o/o/o/o θk−1 ///o/o/o/o

��
�

�

�
(ik, t

′)

(i1, t
′) (i2, t

′) (ik−1, t
′)

Fig. 1. A Centipede for 〈i0, . . . , ik〉 in (r, t..t′)

Notice that each of the intermediate nodes θh = ( jh, th) with h < k takes place
at a time th ≤ t′. Moreover the nodes (i1, t

′),. . . ,(ik, t
′) at the legs of the centipede

all occur at time t′. Note that the legs of a centipede are not necessarily pairwise
distinct, so that there could be 1 ≤ h < g ≤ k such that (ih, t

′) = (ig, t
′).

Theorem 2.3 (Centipede Theorem [6]). Let r ∈ R s = R(P, γ s), and let e be an
ND event at (i0, t) in r. If (R s, r, t′) � KikKik−1 · · ·Ki1 φ

e
@t
, then there is a centipede for

〈i0, . . . , ik〉 in (r, t..t′).

Turn now to common knowledge, which has been shown to be of particu-
lar import and use in many epistemic scenarios [3, 10]. The centibroom causal
structure is depicted in Figure 2 and defined below. It roughly corresponds to a
centipede in which all intermediate nodes coincide.

Definition 2.4 (Centibroom). Let t ≤ t′ and G ⊆ P. There is a centibroom �〈i0,G〉
in (r, t..t′) if there exists a node θ such that (i0, t){ θ d (ih, t

′) holds for all
ih ∈ G.

Theorem 2.5 shows that the existence of a centibroom it is a necessary con-
dition for common knowledge.

Theorem 2.5 (Common Knowledge Gain [6]). Let r ∈ R s = R(P, γ s), and let e be
an ND event at (i0, t) in r. If (R s, r, t′) � CG φ

e
@t
, then there is a centibroom �〈i0,G〉 in

(r, t..t′).
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Fig. 2. A Centibroom, �〈i0,G〉 in (r, t..t′)

It is interesting to relate our results concerning common knowledge to those
given byApt et al. in [2]. In the formal systemdefined in [2], commonknowledge
in group G cannot be attained unless a message is broadcast to all agents in G
simultaneously. In contrast, the setting discussed here allows for a wider range
of ways to attain common knowledge. A series of point-to-point messages, or
even a combination of messages and silence, can also serve. The difference in
the results can be traced to the fact that in the framework we use, the protocol
that the agents follow is an explicit parameter determining the system (i.e.,
the set of runs) in which knowledge is evaluated. The protocol, in turn, plays
an important role in determining the information flow within an execution. In
the frameowrk of [2], the class of protocols under consideration is somewhat
restricted. Within this restricted class, they show that a series of point-to-point
messages cannot give rise to common knowledge. Our results show that there
are many reasonable protocols for which point-to-point messages can give rise
to common knowledge.

3 Sufficiency of Causal Structures

Theorems 2.3 and 2.5 state that the centipede and centibroom structures are
necessary for knowledge and, respectively, common knowledge gain regarding
nondeterministic events, regardless of the protocol used by the agents. We now
show that these results are tight. Namely, there is a protocol for which these
structures are sufficient, as well as necessary for the corresponding form of
epistemic gain.

Definition 3.1 (Full-information Protocol). The full information protocol for syn-
chronous systems, fip, is one in which every agent i ∈ P sends its local state on
each of its outgoing channels at every time step.

In fip the agents convey all of their knowledge as fast as they can. Roughly
speaking, knowledge is spread in the system as fast as the communication
channels will allow. In fact, syncausality captures the spread of knowledge
under the fip. Denoting R fip= R(fip, γ s), we can show:

Lemma 3.2. If ( j, t)
r
{ (i, t′) and (R fip, r, t) � K jϕ then (R fip, r, t′) � Ki(ϕ@t) .



Proofs not shown in this section can be found in Appendix B. Intuitively, if
an event e takes place at (i, t), then all neighbors j of i will receive a message
from i no later than time t + bi j, after which K j φ

e
@t

will hold. Observe that
there are no “silent messages” in fip, in the sense that agents constantly sendin
explicit messages on all outgoing channels. Nevertheless, the d relation still
relates nodes, and it does so even more strongly than { does. Note first that
( j, t)d (i, t′) implies that ( j, t){ (i, t′). Moreover,{ is dependent on the current
run’s nondeterministic behavior, since message precedence is dependent upon
realized transmission times. The d relation however, is determined by the
context γ s alone. So that if (i, t) d ( j, t′) holds in a run r of the system, it will
do so in all runs of the system. Thus, as we show in Lemma 3.3, agent j knows
already at time t that its current knowledge will be available to i at t+b( j, i). This
serves to explain the crucial function playedby silent causality in fip information
flow, despite the fact that the agents are never really silent. Formally then, we
have:

Lemma 3.3. If ( j, t)d (i, t′) and (R fip, r, t) � K jϕ then (R fip, r, t) � K j(Ki(ϕ@t)@t′ ) .

Lemmas 3.2 and 3.3 capture the essential epistemic aspects of the fip in the
synchronous contextγ s. They facilitate proving that centipedes and centibrooms
are sufficient for ensuring the appropriate levels of knowledge in this setting.

Theorem 3.4. If (R fip, r, t) � Ki0ϕ and there is a centipede for 〈i0, . . . , ik〉 in (r, t..t′),
then (R fip, r, t′) � KikKik−1 · · ·Ki1Ki0 (ϕ@t) .

Showing that the existence of a centibroom is sufficient for common knowl-
edge gain in everyR fipsystemmakes use of the InductionRule for CommonKnowl-
edge, which states that from R fip

� α→ EG(α ∧ β) we can infer R fip
� α→ CGβ.

Theorem 3.5. If (R fip, r, t) � Ki0ϕ and there is a centibroom �〈i0,G〉 in (r, t..t′), then
(R fip, r, t′) � CG(ϕ@t).

Proof Assume that the conditions of the theorem hold, and let the single
intermediate node in the centibroom �〈i0,G〉 be ( j, t j). In particular, ( j, t j) d

(i, t′) for every i ∈ G. From (R fip, r, t) � Ki0ϕ and (i0, t)
r
{ ( j, t j) we have by

Lemma 3.2 that (R fip, r, t j) � K j(ϕ@t). We now use the induction rule with α set

to (time = t′) ∧ (K j (ϕ@t))@t j , and β being ϕ@t. Since R
fip
� α → β in this case,

it suffices to show that R fip
� α → EGα. Thus, let r

′ ∈ R fip and suppose that
(R fip, r′, t̂) � (time = t′) ∧ (K j (ϕ@t))@t j . In particular we have by TS1 and TS2

that (R fip, r′, t j) � K j ((K j (ϕ@t))@t j ). Fix i ∈ G. Since ( j, t j) d (i, t′), we have by

Lemma 3.3 that (R fip, r′, t′) � Ki ((K j(ϕ@t))@t j ). Moreover, the fact that the time is

part of the local state in γ s implies that (R fip, r′, t′) � Ki(time = t′). It follows
that (R fip, r′, t′) � Kiα, and since i was an arbitrarily chosen member of G then
(R fip, r′, t′) � EGα. It follows that R fip

� α → EGα. Since β = ϕ@t we obtain by the
Induction Rule that R fip

� α → CG(ϕ@t). Finally, since (R fip, r, t′) � α we obtain
that (R fip, r, t′) � CG(ϕ@t), as desired. �Theorem 3.5



Note that both Theorems 3.4 and 3.5 provide us with a stronger result than is
needed for showing sufficiency.Weonly claim the appropriateness of centipedes
and centibrooms for gained knowledge about nondeterministic events, whereas
the fip protocol allows us to show sufficiency for any fact ϕ such that (R fip, r, t) �
Ki0ϕ.

4 Common Knowledge as a Finite Conjunction

Common knowledge is typically perceived in terms of an infinite conjunction
of Ek, for k > 0. There are definitions of common knowledge in terms of a
fixed point (see, e.g., [14, 10, 5]). The centibroom structure and the necessity of
centibrooms for common knowledge supports the fixed-point view.

Even though the fixed point definition implies the infinite conjunction, Fis-
cher and Immerman [11] had shown that in finite-state systems, where the set
of all global states in a system R is finite, there is a power k such that CG is
equivalent to Ek

G
. The fip protocol, coupled with the perfect recall inherent in γ s,

produces a state space whose size is unbounded. Yet nevertheless, given the
role of the centipede and centibroom structures in γ s, we now show that there
are cases in which common knowledge is a finite conjunction when running fip
in γ s as well.

Roughly speaking, it takes time to obtain deep knowledge without having
common knowledge. Indeed, we obtain a sharp bound on the depth of Ek

G
that can be obtained d time units after the occurrence of a nondeterministic
event. Given a group of size |G| = g and natural number d > 0, we denote by
Mdg = (d − 1)(g − 1) + 2. We prove

Theorem 4.1. Let r ∈ R fip, d > 0, |G| = g, and assume that e is an ND event at (i0, t)

in r. If R fip, r, t + d � E
Mdg

G
φe
@t

then R fip, r, t + d � CG φ
e
@t
.

Theorem 4.1 follows directly by Theorem 3.5 from the following lemma:

Lemma 4.2. Let R s = R(P, γ s), let d > 0, |G| = g, and assume that e is an ND event

at (i0, t) in r. If (R s, r, t + d) � E
Mdg

G
φe
@t

then there exists a centibroom �〈i0,G〉 in
(r, t..t + d).

Proof Assume that (R s, r, t + d) � E
Mdg

G
φe
@t
. If (i0, t) is a centibroom �〈i0,G〉

in (r, t..t + d) then we are done. Otherwise |G| > 1, and moreover there is some
j ∈ G such that (i0, t) 6d ( j, t′). For notational convenience, let us denote the
agents of G by { j0, . . . , jm}, where (i0, t) 6d ( j0, t

′). Denote M = Mdg − 1 and let
f (h) = j(hmodm+1) for all h ≤ M. Thus, f maps natural numbers into members
of G, every sequence of m + 1 adjacent numbers are mapped to the full set
{ j0, . . . , jm} = G, and f (0) = j0. We focus on a knowledge formula of the form

Ψ (e) = K f (M) K f (M−1) · · ·K f (1)K f (0) φ
e
@t .

Observe that there are M + 1 = (|G| − 1) · (d − 1) + 2 knowledge operators
in Ψ (e), all of which belong to agents in G. By assumption, (R s, r, t + d) �



EM+1
G
φe
@t
, and hence in particular (R s, r, t + d) � Ψ (e). The Centipede Theo-

rem implies that there exists a centipede for 〈i0, f (0), f (1), .., f (M)〉 in (r, t..t + d).
Let 〈(i0, t), Ω

0, Ω1, . . . , ΩM−1, ( f (M), t + d)〉 be such a centipede. By definition
of a centipede we have that (i0, t) { Ω0 and Ω0

d ( j0, t + d). Since ‘d’
is transitive, the fact that (i0, t) 6d ( j0, t + d) implies that (i0, t) 6d Ω0. Since
‘d’ is reflexive we have that (i0, t) , Ω

0. Recall by definition of f and the
fact that |G| > 1 that f (M) , f (M − 1). Hence, by Lemma B.1 we have that
( f (M), t + d) 6d ( f (M − 1), t + d). It follows thatΩM−1

, ( f (M), t + d).

By Lemma B.1, if Ωh = Ωh′ then Ωh = Ωĥ = Ωh′ for every ĥ in the range

h ≤ ĥ ≤ h′. LetΦ1, . . . , ΦD denote the maximal sub-sequence of distinct nodes in
the sequenceΩ0, . . . , ΩM−1. LemmaB.1 implies that the times atwhich the nodes
(i0, t), Φ1, . . . , ΦD, ( f (M), t + d) occur form a strictly increasing sequence, and so
D ≤ d − 1. For all b in the range 1 ≤ b ≤ D define s(b) = {k : Ωk = Φb}. Since
M = (|G| − 1) · (d− 1)+ 1 andD ≤ d− 1, we have by the pigeonhole principle that

|s(b̂)| ≥ |G| for at least one index b̂. Since the set s(b̂) consists of at least |G| = m+ 1
consecutive natural numbers, we have that { f (k) : k ∈ s(b̂)} = { j0, . . . , jm} = G.

By definition of the centipede it follows that Ωb̂ d ( j, t + d) for all j ∈ s(b̂) = G,
and soΩb̂ gives rise to a centibroom �〈i0,G〉 in (r, t..t + d), as required. �

Lemma 4.3. For every t ≥ 0, d > 0 and g > 1 there exists a run r ∈ R fip, an ND event
e at (i0, t) in r and a set of agents G ⊆ P of size |G| = g, such that

(R fip, r, t + d) � E
Mdg−1

G
φe@t ∧ ¬CG φ

e
@t.

Theorems 4.1 and 4.3 tightly bound the levels of Ek
G
that can hold common

knowledge necessarily arising. They draw an essential connection between this
bound, the size of the set of agents in question, and the time that elapses since
the ND event of interest occurs. It is natural to ask whether this property is
restricted to fip, or perhaps may be true in general. We now show that it is not
true for all protocols. In fact, there is a protocol that can attain arbitrary levels
of interactive knowledge quickly, without giving rise to common knowledge.

Example 4.4. Let γ̂ s be a context with P = {i0, 1, 2}, where the network is a star
with center at i0, and the communication bounds are bi0,1 = bi0,2 = 1. We assume
that i0 can receive nondeterministic external input x at time t, and that this input
is of interest to agents 1 and 2. Further, i0 receives external input on every time
point, that allows it to choose a natural number k ≥ 0 and an agent h ∈ {1, 2}. We
consider a protocol P̂ in which only i0 can move, it moves only at time t, and
acts as follows: it sends the message 〈k + 1, φex

@t
〉 to the agent h̄ , h, and if k > 0

it also sends 〈k, φex
@t
〉 to the agent h. If k = 0 then no message is sent to agent h.

An inductive argument now shows

Lemma 4.5. Let r ∈ R = R(P̂, γ̂ s), let G = {1, 2} and assume that ex takes place at
(r, t). Then (R, r, t + 1) � Ek

G
φex
@t
, yet R � ¬CG φ

ex
@t
.



The example can be extended to sets |G| of any size, by replacing treating
all of the agents in G \ {h} as h̄ was in P̂. We note that the epistemic structure
obtained here is similar to that of the electronic mail game of Rubinstein [17].
One distinguishing feature is that in P̂ the high degree of interactive knowledge
is obtained in one step, with two messages, whereas k messages were required
in the game. The same epistemic structure also arises in the analysis of the initial
states of the muddy children puzzle [10], or of the Conway paradox [9].

5 Conclusions

The causal relations underlying synchronous systems can be further explored
in a number of ways. For example, we would also like to explore the dynamics
of ignorance in such a system. Moreover, synchrony is a working assumption
in many multi agent conceptualizations, and hence we believe that the current
analysis may be fruitfully applied. Noting that our defined causal relations are
a prerequisite for any epistemic change, one such application may be to explore
its ramifications in the context of belief revision [4]. Alternatively, utilizations
for mechanism design [7] may also be of interest.
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A Detailed Model

A.1 Contexts, Protocols and Systems

Formal semantics for knowledge in systems is given by Fagin, Halpern, Moses,
and Vardi [10]. We shall simplify the exposition somewhat here, and review
what we hope will be just enough of the details to support the analysis in this
paper. Essentially all of the definitions in this section are taken from [10].

Informally, we view a multi agent system as consisting of a setP = {1, . . . , n}
of agents connected by a communication network.We assume that, at any given
point in time, each agent in the system is in some local state. A global state is just
a tuple g = 〈ℓe, ℓ1, . . . , ℓn〉 consisting of local states of the agents, together with
the state ℓe of the environment. The environment’s state accounts for everything
that is relevant to the system that is not contained in the state of the agents.

A run is a function from time to global states. Intuitively, a run is a complete
description of what happens over time in one possible execution of the system.
A point is a pair (r, t) consisting of a run r and a time t. If r(m) = 〈ℓe, ℓ1, . . . , ℓn〉,
thenwe use ri(m) to denote agent i’s local state ℓi at the point (r, t), for i = 1, . . . , n,
and re(m) to denote ℓe. For simplicity, time here is taken to range over the natural
numbers rather than the reals (so that time is viewed as discrete, rather than
dense or continuous). Round t in run r occurs between time t − 1 and t.

We identify a protocol for a agent i with a function from local states of i to
nonempty sets of actions. (We often consider deterministic protocols, in which
a local state is mapped to a singleton set of actions. Such a protocol essentially
maps local states to actions.) A joint protocol is just a sequence of protocols
P = (P1, . . . ,Pn), one for each agent.

We generally study knowledge in runs of a given protocol P in a particular
setting of interest (in this paper the setting is synchronous, with global clocks



and bounds on message transmission times). To do this, we separately describe
the setting, or context, in which P is being executed. Formally, a context γ is a
tuple (G0,Pe, τ), where G0 is a set of initial global states, Pe is a protocol for the
environment, and τ is a transition function.4 The environment is viewed as run-
ning a protocol (denoted by Pe) just like the agents; its protocol is used to capture
nondeterministic aspects of the execution, such as the actual transmission times,
external inputs into the system, etc. The transition function τ describes how the
actions performed by the agents and the environment change the global state.
Thus, if g is a global state and a = 〈ae, a1, . . . , an〉 is a joint action (consisting of
an action for the environment and one for each of the agents), then τ(a, g) = g′

specifies that g′ is the state that results when a is performed in state g.

A run r is consistent with a protocol P if it could have been generated when
running protocol P. Formally, run r is consistent with joint protocol P in context γ
if

1. r(0) ∈ G0, so that it starts from a γ-legal initial global state, and

2. for all t ≥ 0, the transition from global state r(t) to r(t + 1) is the result
of performing one of the joint actions specified by P and the environment
protocol Pe (the latter is specified in γ) in the global state r(m). That is, if
P = (P1, . . . ,Pn), Pe is the environment’s protocol in context γ, and r(m) =
〈ℓe, ℓ1, . . . , ℓn〉, then there must be a joint action a = 〈ae, a1, . . . , an〉 such that
ae ∈ Pe(ℓe), ai ∈ Pi(ℓi) for i = 1, . . . , n, and r(m+1) = τ(a, r(m)) (so that r(m+1)
is the result of applying the joint action a to r(m)).

We use R(P, γ) to denote the set of all runs of P in γ, and call it the system
representing P in context γ.

A.2 The Synchronous Context γ s = (G s
0
,P s

e
, τs)

This paper considers knowledge in systems arising in a particular synchronous
context. We now present some of the particular assumptions made, by describ-
ing the components of the context. In the following sections we will use R s

to denote a system system representing P in context γ s, where P is an arbi-
trary protocol over which we make no assumptions, and γ s is the synchronous
context described below.

The environment’s state Recall that the environment’s state keeps track of relevant
aspects of the global state that arenot represented in the local states of the agents.

We assume that the environment’s state has three components ℓe = (Net,
t/o
7−→

,Histe), where

4 Dependingon the application, a context can includeadditional components, to account
for fairness assumptions, probabilistic assumptions, etc. Moreover, additional aspects
of a context that are usually suppressed from the notation are nonempty sets Int and
Ext of internal actions for the agents and external inputs, respectively.



1. Net is a labelledgraph (P,E,w) describing the network topology andbounds
on transmission times. Its nodes are agents, and adirected edge (i, j) captures
the fact that there is a channel from i to j in the system. Moreover, the label
1 ≤ w(i, j) ∈N is an upper bound on the time that amessage sent on (i, j) can
be in transit. The contents of Net are not affected by τs, and so Net remains
constant throughout the run.

2. The variable
t/o
7−→ keeps track of global time. As we shall see its value starts

at
t/o
7−→= 0, and advances by 1 following each round. It is a notion of global

time because we assume that agents have access to its value as described
below. Finally,

3. Histe records the sequence of joint actions performed so far. Since, as wewill
discuss below, there is no message loss in γ s, theHiste component uniquely
determines the contents of all channels. Indeed, a message µ is in transit at a
given global state g if theHiste component in g records that µ has been sent,
and does not record its delivery.

Agent local states We assume that local states have three components ℓi =

(Neti,
t/o
7−→i, histi), where Neti and

t/o
7−→i are copies of the Net and

t/o
7−→ values from

the environment’s state. The histi component records the local events that take
place at i. It consists of an initial local state for i, followed by a sequence record-
ing all local events that have taken place so far. If we denote by inpi(k) the set of
messages and external inputs delivered to i in round k, then histi at time t ≥ 0
consists of the sequence 〈initi, ai(1), inpi(1), . . . , inpi(m − 1), ai(m − 1), inpi(m)〉. In
particular, in the global states ofG s

0
, the histi component contains only the initial

state initi.

The set G s
0
of initial global states We assume that associated with γ s there is a

set Initi of possible initial states for each agent i ∈ P. We define G s
0
to be the set

of global states g = (ℓe, ℓ1, . . . , ℓn) satisfying: (1)
t/o
7−→i= 0 for all i ∈ P and

t/o
7−→= 0;

(2) the network components Net and Neti are all identical; (3) for every i ∈ P,
histi = 〈initi〉,with initi ∈ Initi; and (4)Histe is the empty sequence.

Actions and external inputs Associated with the context γ s are sets Int of internal
actions for the agents and sets Ext of external inputs, respectively. For ease of
exposition we assume that ⊥ ∈ Ext, where ⊥ stands for the empty external
input. Moreover, we generally assume that Ext , {⊥}, so that there is at least
one nontrivial possible external input. We assume that agents can perform send
actions and internal actions. The local action ai(k) that i contributes to the joint
action in round k + 1 consists of a finite sequence of distinct send and internal
actions. (Recall that the local action is determined by the protocol, based on
the local state.) We use external inputs to model spontaneous events. They are
generated by the environment. In addition to external inputs, the environment
is in charge of message delivery. Thus, the environment’s action ae(k) consists of
a finite sequence of external inputs to be delivered to various individual agents,



and a (possibly empty) set of messages that are to be delivered in the current
round.

The environment’s protocol P s
e The environment in γ s is in charge of delivering

external inputs to agents, and determining message deliveries. We define P s
e (g)

to be the set of actions ae = (σx, σd) such that

1. σx ∈ (P × Ext) is a sequence assigning to each agent i ∈ P an external input
(possibly the empty input ⊥) it receives in the current round, and

2. σd is a sequence 〈(1,M1), . . . , (n,Mn)〉 where (i) for every i ∈ Proc the set Mi

consists of messages that are in transit in g, and (ii)Mi contains all messages
in transit to i whose transmission time bounds, as specified in Net, will be
violated (expire) if the message is not delivered in the current round.

Notice that P s
e is genuinely nondeterministic. Exactly one of the actions in

P s
e (g) will be performed in global state g in any given instance. By definition of
R(P, γ s), however, if r(k) = g then the system contains a run extending the prefix
r(0), . . . , r(k) for every possible environment action in P s

e (g). Another point to
note is that our definition does not enforce (and hence does not assume) FIFO
transmission; had we done so, channels would be considered to be queues, and
the nondeterministic choices of messages to deliver would have to obey FIFO
order. Finally, the fact that external inputs are delivered in a nondeterministic
fashion implies they are not correlated in any way, and they do not depend
on anything that happens before they are delivered. This is the sense in which
external inputs can be viewed as independent, “spontaneous” events.

The transition function τs The transition function τs implements the joint actions
in a rather straightforwardmanner. In every round: (i) the global clock variables
t/o
7−→ and

t/o
7−→i are advanced by one; (ii) a copy of the joint action is added to

the environment’s history log Histe; and (iv) a record for the current round is
added to i’s local history log histi, containing all message deliveries to agent i,
all external inputs to i, and the sequence of snd actions and internal actions
performed by i in the current round.

B Proofs

Lemma B.1 (Identity of centipede nodes [6]). If (i, t) { ( j, t′) then t ≤ t′, with
t = t′ holding only if i = j.

Lemma 3.2. If ( j, t)
r
{ (i, t′) and (R fip, r, t) � K jϕ then (R fip, r, t′) � Ki(ϕ@t) .

Proof Let{nt be the relation defined by the non-transitive clauses in the defini-
tionof{. Bydefinitionof{, there exists a sequenceofnodes 〈( j0 , s0), ( j1, s1), .., ( jn, sn)〉
in r such that ( j0, s0) = ( j, t), ( jn, sn) = (i, t′), and ( jl, sl) {

nt ( jl+1, sl+1) for every
l < n.

We prove the claim by induction on the length of the sequence.



n = 0 : Then j = j0 = jn = i and t = t′. By assumption (R fip, r, t) � K jϕ. So by
definition of K operator and since j = i we obtain that for every r′ such that
(r′, t) ∼i (r, t) (R

fip, r′, t) � ϕ. Using the definition of @ we get that (R fip, r′, t) �
ϕ@t, but since t′ = t this gives us (R fip, r′, t′) � ϕ@t′ . Now from our choice of
r′s we get (R fip, r, t′) � Ki(ϕ@t).

n > 0 : Assume that the inductive claimholds forn−1.Thuswehave thatR fip, r, sn−1 �
K jn−1(ϕ@t).Moreover, bydefinitionof the sequencewehave that ( jn−1 , sn−1){

nt

( jn, sn). By definition of{nt there are three options to consider:
1. jn−1 = jn and sn−1 ≤ sn - in this case by perfect recall we have that
R fip, r, sn � K jn (ϕ@t).

2. Agent jn−1 sends a message in round sn−1, which is received by jn in
round sn - since all agents are running the fip protocol, message contents
are the local state of sender. As we inductively assume R fip, r, sn−1 �
K jn−1 (ϕ@t), we get that R fip, r, sn � K jn (K jn−1(ϕ@t)@sn−1). Application of the
Knowledge Axiom on every run r′ such that (r′, sn) ∼ jn (r, sn) gives us

that R fip, r, sn � K jn (ϕ@t).
3. ( jn−1, jn) ∈ E and sn = sn−1 + b( jn−1, jn) - Since in fip every agent sends its

local state to all neighbors on every round, and since we assume that
R fip, r, sn−1 � K jn−1(ϕ@t), then by sn a message sent by jn−1 in round sn−1
is guaranteed to have arrived at jn, and hence, as shown in case (2), we
get R fip, r, sn � K jn (ϕ@t).

�

Lemma 3.3. If ( j, t)d (i, t′) and (R fip, r, t) � K jϕ then (R fip, r, t) � K j(Ki(ϕ@t)@t′ ) .

Proof Since ( j, t)d (i, t′), and since this property is determinedby the contextγ s,
we have that ( j, t)d (i, t′) in every run r′ ∈ R fip. Moreover, sinced⊆{, we have
that ( j, t) { (i, t′) in every such run. Applying Lemma 3.2 to every run r′ such
that (r′, t) ∼ j (r, t) we get that (R fip, r′, t′) � Ki(ϕ@t). By definition of @ this gives us

(R fip, r′, t′) � Ki(ϕ@t)@t′ . By choice of runs r′ we get that (R fip, r, t) � K j(Ki(ϕ@t)@t′ )
�

Theorem 3.4. If (R fip, r, t) � Ki0ϕ and there is a centipede for 〈i0, . . . , ik〉 in (r, t..t′),
then (R fip, r, t′) � KikKik−1 · · ·Ki1Ki0 (ϕ@t) .

Proof Let 〈(i0, t), ( j1, t1), .., ( jk−1, tk−1), (ik, t
′)〉 be a centipede for 〈i0, . . . , ik〉 in

(r, t..t′). We show by induction on h that (R fip, r, th) � K jh ((KihKih−1 . . .Ki0 (ϕ@t))@t′ ).
Recall that the global time t appears as a component of all local states. Thus,
(r, t) ∼i (r

′, t′) is possible only if t′ = t.

h = 0: By assumption (R fip, r, t) � Ki0ϕ. By the definition of � for K operator we
obtain that (R fip, r′, t′) � ϕ for every (r′, t) such that (r′, t) ∼i0 (r, t). The defi-
nition of @ implies that (R fip, r′, t) � ϕ@t for every such run r′. It follows that
(R fip, r, t) � Ki0(ϕ@t). By positive introspection for Ki0 and the definition of
� we have that (R fip, r′, t) � Ki0(ϕ@t) for every (r′, t) such that (r′, t) ∼i0 (r, t).



Perfect recall and the definition of � for @ imply that (R fip, r′, t) � (Ki0(ϕ@t))@t′
holds for all such r′. Finally, by the choice of r′ we obtain that (R fip, r, t) �
Ki0 ((Ki0(ϕ@t))@t′), as desired.

h > 0: Assume for h − 1 and show for h. The inductive assumption gives us that
(R fip, r, th−1) � K jh−1((Kih−1 . . .Ki0 (ϕ@t))@t′ ). By definition of centipede we have

that ( jh−1, th−1){ ( jh, th). Thus using Lemma 3.2 we obtain that (R fip, r, th) �
K jh ((Kih−1 . . .Ki0(ϕ@t))@t′ )@th−1 . Using TS2 we reduce this back to (R fip, r, th) �
K jh ((Kih−1 . . .Ki0(ϕ@t))@t′ ). Again, based on the centipede definition we have
that ( jh, th)d (ih, t

′). Using Lemma 3.3 it follows that

(R fip, r, th) � K jh ((Kih((Kih−1 . . .Ki0(ϕ@t))@t′ ))@t′).

Bydefinitionof theK operatorweget that (R fip, r′, th) � (Kih(Kih−1 . . .Ki0 (ϕ@t))@t′)@t′
for every r′ such that (r′, th) ∼ jh (r, th). By definition of @, we obtain that

(R fip, r′, t′) � Kih (Kih−1 . . .Ki0 (ϕ@t))@t′). Applying the TS1 rule we obtain that
(R fip, r′, t′) � KihKih−1 . . .Ki0 (ϕ@t). We can thus re-introduce @t′ and obtain that
(R fip, r′, th) � Kih (Kih−1 . . .Ki0 (ϕ@t))@t′ . Finally, since this is true for every r′ sat-
isfying (r′, th) ∼ih (r, th) we obtain that (R fip, r, th) � K jh(KihKih−1 . . .Ki0(ϕ@t)@t′ ),
completing the inductive step.

In particular, we obtain (R fip, r, t′) � Kik (KikKik−1 . . .Ki0 (ϕ@t)@t′ ) since jk = ik
and tk = t′. We conclude the proof by using the Knowledge Axiom to de-
rive (R fip, r, t′) � KikKik−1 . . .Ki0 (ϕ@t)@t′ and from this, using TS1, (R fip, r, t′) �
KikKik−1 . . .Ki0 (ϕ@t) and we are done. �Theorem 3.4

Lemma 4.3. For every t ≥ 0, d > 0 and g > 1 there exists a run r ∈ R fip, an ND event
e at (i0, t) in r and a set of agents G ⊆ P of size |G| = g, such that

(R fip, r, t + d) � E
Mdg−1

G
φe@t ∧ ¬CG φ

e
@t.

Proof Fix d, g. Defineγ s
d,g

to be a synchronic contextwith the followingparticular

properties:

– Let P = { j0, j1, .., jg−1}
⋃
{i0}
⋃
{hk,l}1≤k<d,0≤l<m

– Let G = { j0, .., jg−1}. For every l < g, denote by G−l the set G \ { jl}.
– The network graph is complete, and the bounds set on the edges are as
follows
1. for every k < d and l ≤ g, b(hk,l, j) = 1 for all j ∈ G−l
2. for every other i, j ∈ P, b(i, j) = d + 1

For every 1 ≤ k < d, use Hk to denote the set {hk,l}0≤l<g. Note that for every
r ∈ R s

d,g
, as the agents are running the fip, every agent sends every other agent

a message on every time unit. Note also that there can be no �〈i0,G〉 node
in (r, 0..d), because for every agent i there exists at least one j ∈ G such that
b(i, j) > d.

Choose r ∈ R s
d,g

such that R s
d,g
, r, d � φe

@0
where e ∈ Ei and such that all sent

messages arrive at the speed of silence, except for the following ones:



1. For every h ∈ H1, the message sent from i0 to h at time 0 arrives at time 1.
2. For every 1 ≤ k < d − 1, for every pair of agents h1 ∈ Hk and h2 ∈ Hk+1, the

message sent by h1 to h2 at time k arrives at k + 1.
3. For every h ∈ Hd−1 and j ∈ G, the message sent from h to j at time d − 1

arrives at time d

The existence of r is warranted by the exhaustiveness of the representing
system R s

d,g
.

Use f (k) to denote the value (g − 1) · k for every k > 0. Fix a sequence S =
〈i0, i1, .., i f (d−1)+1〉 such that {i1, .., i f (d−1)+1} ⊆ G. Observe that for every 1 ≤ k < d,
the subsequence sk〈i f (k−1)+1, .., i f (k)〉 contains exactly g− 1 elements, and so there
must exist some j(k) ∈ G such that j(k) , i for every i ∈ sk.

We now define a node sequence 〈(i0, t), θ1, .., θ f (d−1), (i f (d−1)+1, d)〉 and show

that it is a centipede for S in (r, 0..d). For every l = 1.. f (d − 1), let k = ⌈ l
g−1⌉, and

define θl = (hk, j(k), k). Observe that f (k − 1) < l ≤ f (k), and hence by choice of
j(k) that b(hk, j(k), il) = 1. Since k ≤ d − 1 we obtain that θl d (il, d). Moreover,

if l < f (d − 1) then θl { θl+1. For if k > l
g−1 then θl = θl+1 and the result

stems from the reflexivity of {, while if k = l
g−1 then, noting that θl ∈ Hk

and θl+1 ∈ Hk+1, we get the result from clause (2) above. Finally, we note that
(i0, t){ θ1 = (h1, j(1), 1) since h1, j(1) ∈ H1 and using clause (1), and similarly that
θ f (d−1) = (hd−1, j(d−1), d − 1){ (i f (d−1)+1, d) since hd−1, j(d−1) ∈ Hd−1 and from clause
(3) above.

We have shown that there exists a centipede in (r, 0..d) for every sequence
〈i0, i1, .., i f (d−1)+1〉 such that {i1, .., i f (d−1)+1} ⊆ G. By Theorem 3.4 we get that
R s

d,g
, r, t′ � Ki f (d−1)+1Ki f (d−1) · · ·Ki1 φ

e
@0

for every such sequence. We thus obtain, con-

sidering that f (d− 1)+ 1 = (g− 1)(d− 1)+ 1 =Mdg − 1, that R
s
d,g
, r, t′ � E

Mdg−1

G
φe
@0

, by definition of E operator. �

Lemma 4.5. Let r ∈ R = R(P̂, γ̂ s), let G = {1, 2} and assume that ex takes place at
(r, t) and that i0 also chooses k nondeterministically. Then (R, r, t + 1) � Ek

G
φex
@t
, yet

R � ¬CG φ
ex
@t
.

Proof For every h′ ∈ {1, 2} and k′ ≥ 0, letKh′ ,k′ be the formulaKh′Kh̄′Kh′Kh̄′ · · · φ
ex
@t
,

where there are exactly k′ K operators in the formula.
Assume that i0 has chosen k, h. We now show by induction on 0 ≤ d ≤ k that

if h receives the message 〈d′, φex
@t
〉 for some d′ ≥ d, then R, r, t + 1 � Ed

G
φex
@t
.

d = 0: By assumption we have that R, r, t � φex
@t
. Since φex

@t
is stable we also get

R, r, t + 1 � φex
@t
. Since by definition, E0

G
φex
@t

is an abbreviation for φex
@t
, we

also have R, r, t + 1 � Ed
G
φex
@t
.

d > 0: Assume for d− 1 and show for d. Suppose that agent h receives the message
〈d′, φex

@t
〉 for some d′ ≥ d. Let r′ ∈ R such that (r′, t+ 1) ∼h (r, t+ 1). Then, as h

receives the samemessage also in r′, by the inductive assumption, and since
d′ ≥ d > d− 1, we have that R, r′, t+ 1 � Ed−1

G
φex
@t
. Hence, by the semantics of

the K operator we get that R, r, t + 1 � KhE
d−1
G
φex
@t
.



By protocol P̂, h̄ recives the message 〈d′ + 1, φex
@t
〉 in r. Let r′ ∈ R such that

(r′, t + 1) ∼h̄ (r, t + 1). The same protocol dictates that in every such run r′,
h receives the message 〈d′′, φex

@t
〉, with d′′ = d′ or d′′ = d′ + 2. In either case,

based on the inductive assumption and on d′′ ≥ d′ > d − 1, we get that
R, r′, t+ 1 � Ed−1

G
φex
@t
. Hence, again by the semantics of the K operator we get

that R, r, t + 1 � Kh̄E
d−1
G
φex
@t
.

It follows, based on the definition of E operator, that R, r, t + 1 � EGE
d−1
G
φex
@t
,

from which we obtain R, r, t + 1 � Ed
G
φex
@t

as required.

Since in r agent h receives the message 〈k, φex
@t
〉, it follows from the inductive

proof that R, r, t + 1 � Ek
G
φex
@t
.

We now show that R � ¬CG φ
ex
@t
. Fix r ∈ R and time t′ ≥ 0. Let r0 = r and

assume wlog that h gets the message 〈k, φex
@t
〉 from i0 in r. Based on the protocol

P̂ and on R being a representing system, there exists a run r1 ∈ R, where h
gets the same message from i0, so that (r0, t

′) ∼h (r1, t
′) (regardless of whether

or not t′ > t), but where h̄ receives the message 〈k − 1, φex
@t
〉. Using the same

justifications, there also exists a run r2 ∈ R such that (r1, t
′) ∼h̄ (r2, t

′), but where
h gets themessage 〈k − 2, φex

@t
〉 from i0.We continue to apply the same reasoning,

eventually building a sequence of runs r0, r1, ..., rk such that (r0, t
′) ∼h (r1, t

′) ∼h̄
(r2, t

′) ∼h · · · (rk, t
′) and such that in run rk some agent h′ ∈ {1, 2} gets no message

from i0. Let rk+1 be a run such thatR, rk+1, t � ¬φ
ex
@t
.Noting that (rk, t

′) ∼h′ (rk+1, t
′),

we get that it is not the case that R, r, t′ � KhKh̄KhKh̄ · · ·Kh′ φ
ex
@t
. We have shown

that ¬CG φ
ex
@t

holds for every choice of r ∈ R and t′ ≥ 0. It follows then that
R � ¬CG φ

ex
@t

�


