
Extracting structure from HTML documents for
language visualization and analysis

Robert P. Futrelle, Andrea Elaina Grimes and Mingyan Shao
Biological Knowledge Laboratory

College of Computer and Information Science
Northeastern University

Boston, MA 02115
{futrelle,agrimes,myshao}@ccs.neu.edu

Abstract

Document analysis is shifting from document image
analysis to the analysis of electronic documents,
especially those available on the Web in HTML and PDF
formats. We are analyzing a 250M word collection of
HTML formatted papers from the American Society for
Microbiology with the ultimate goal of doing query
answering and information extraction. Each document is
converted to a sequence of token-id items by an invertible
process called Extreme Tokenization. A lexicon is
constructed with attributes including: token string, tag,
capitalized, etc. A number of structures are identified,
including section titles, figure captions, document
navigation tables and most importantly, running text
blocks. An XML descriptive structure is built using
JAXB 1.0. Sentence boundaries are discovered.
Language framework patterns are visualized in a custom
Framework Viewer to identify important patterns of
expression for further analysis. This work complements
our diagram analysis research (ICDAR03).

1. Introduction

Our group focuses on the biology literature, which is a
large and rich source of information for biology research
and medicine [1]. The goal is to discover the content of
text and diagrams in research papers to support
information extraction and concept-based queries. This
paper focuses on discovering and extracting running text
segments in HTML documents, followed by language
pattern visualization as a step towards computational
linguistic analysis. The methods use highly efficient
integer-based (UID) representations for lexical items and
text streams which support the use of relational databases
for scalability to multi-billion word textbanks. We are
developing a 250M word textbank drawn from the web-
based Highwire Press collection. The HTML structures
in the collection are consistent and not overly complex.

 There have been decades of important work in the
analysis of document images [2]. Current document
image systems can discover and label components and

extract the reading order [3, 4]. Large numbers of
documents are now available in electronic format, so that
image analysis is bypassed. These electronic documents,
and HTML in particular, still present challenges for
structural analysis and content extraction. For
information extraction from HTML, wrappers are
developed that describe the structures containing
information, e.g., headings or specific table elements.
Manually designing wrappers is infeasible for large
heterogeneous collections, so wrapper induction
procedures have been developed [5]. Entropy measures
[6] and "visually" based methods [7] have been devised
for identifying content blocks.

XML is a far more expressive means of representing
document content, so systems have been developed to
convert HTML documents to XML, adding semantics at
the same time [8]. The XDOC workbench has been
developed for such XML manipulations.

Lessons learned from a biology text mining
competition, the KDD Challenge Cup 2002, are reviewed
in [9]. An example of a specific task is extracting
synonymous gene and protein terms [10]. Still another
task is understanding captions in biomedical publications
[11], closely related to our own work on diagrams [12].

In analyzing any HTML document, one of the first
issues that must be faced is tokenization of the text
stream. Some of the standard approaches to the
tokenization for natural language, e.g., dealing with
hyphenation and other punctuation, are discussed in [13].
One of the first papers that dealt with tokenization and
parsing of marked up text was produced by our group
[14]; our current approach to these problems uses a
method we call Extreme Tokenization, discussed below.

The 250M word textbank we use is licensed from the
American Society for Microbiology (ASM) and is part of
the Highwire Press collection. There are about 50G
words in the 12M papers in the Highwire collection,
http://highwire.stanford.edu/. They are in essentially the
same format as our ASM papers, so our approach should
apply to all of them with little modification. These
textbanks are static, read-only collections. Once
published, papers are never altered. This allows us to
build large and efficient data structures to represent any

3

subset of them, in the form of Archival Token Sequences
(ATS). All other structures we build, whether permanent
or transient, reference the unchanging ATS. A technique
we call Extreme Tokenization (ET) is used to create the
ATS. ET uses a simple and universal strategy that should
not require alteration for the foreseeable future.

In the prototype studies reported here, we have
analyzed 5M words from the ASM textbank to build
XML document instances describing text and caption text
sections. Then sentences are identified, analyzed and
displayed in a custom browser, the Framework Viewer.
The objective in building and using the Viewer is to
discover the nature of the standard text frameworks that
biologists use in their papers to "package" important data
and information. Once discovered, such frameworks can
be exploited for information extraction and for answering
content-based queries.

2. Document layout. ASM HTML format

Fig. 1. Schematic screen layout of the HTML
versions of papers in the Highwire Press
collection, including the ASM textbank. The
numbers labeling the components indicate their
sequential order in the HTML source. HTML
tables are important organizing elements that we
use to discover the text and caption text sections.

The major components of a Highwire Press HTML
paper include: the title section, including author
affiliations and links to journal resources; abstract;
section titles; running text blocks; tables appearing at
regular intervals for document navigation; figures and

tables and their captions; etc. Portions of each paper are
contained in HTML tables, e.g., section titles and
figures, including their captions, and the navigation
blocks (Figure 1).

3. Extreme Tokenization. TIDs and the ATS

Each paper is converted to a sequence of tokens using
a process we call Extreme Tokenization (ET). The
process converts the HTML source text to a sequence of
integer Token IDs (TIDs) including tokens for all HTML
markup. The result is that the documents becomes a
sequence of integers, the Archival Token Sequence (ATS),
with the sequence indexed by a Sequence ID, (SID). The
rationale behind ET is that it does not make complex
decisions which might need to be altered later. An
example of ET would be the handling of the symbol for
the radionuclide, 32P, an isotope of phosphorus. 32P is so
common that it might be treated as a single token. ET is
conservative and represents it as a sequence of four
tokens: ^{, 32,}, P. Note that there is no
whitespace in 32P. White space delimiters in the HTML
source are reduced to single blanks, which are explicitly
represented as tokens in the ATS. The only character
sequences that are not split by ET are HTML tags and
entities and contiguous sequences of the alphanumeric
characters, a-zA-Z0-9. Hence the moniker, "Extreme".

One goal of the tokenization process is to allow
documents to be stored as a sequence of integer records in
relational databases, systems that have no difficulties in
scaling to billions of records.

A basic lexicon is constructed which is a pair of maps
between TIDs and strings. We also generate more
specialized lexicons that contain information such as
whether the token is an HTML tag or entity, whether a
string is capitalized, is a single capital letter, is a full stop
(".", "?"), etc. The design of these lexicons allows us to
avoid expensive character-by-character string
comparisons in sentence boundary detection, search or
display.

4. XML schema for document structure

The particular goal of the work described here is to
find the text blocks for linguistic analysis, omitting
material such as title and author information, section
titles, references, etc. To do this, we build a logical
description of the major portions of the document that we
want to include or ignore. This is constructed as an XML
document instance whose identifiers label the sections of
interest and whose leaf elements are the integer SID
values that start and end each component. This logical
description omits many structural details that are not
needed for the sentence boundary detection task. For
example, the internal structures in the Reference list at the
end of the paper are not described, but simply contained

4

in a single span which is subsequently ignored in our
language analysis.

XML Schema are used because they are more concise
and expressive than DTDs. Schema are themselves
specified in XML rather than using an independent
notation [15]. The algorithms for identifying the schema
components are manually designed, rather than
attempting to automatically induce a set of rules, a
process that could be error-prone. The ATS is then
analyzed to discover the schema components for each
paper and the corresponding in-memory Java instance of
the schema is built and then marshaled by JAXB to a file.
The in-memory schema is used directly or regenerated
later by unmarshaling the file. The Schema used has the
following components, where "+" indicates one or more
repetitions of a component:

ASMDoc: Section+

Section: Name, Start SID, (Table or Text)+, End SID

Table: Start SID, End SID

Text : Start SID, End SID, IsCaption

5. Sentence boundary detection

For further linguistic analysis, it is necessary to
discover sentence boundaries. Algorithms for doing this
are ubiquitous and generally quite successful [16]. As
with all such methods, the algorithm reduces to case
analysis through a series of rules, e.g., is a "." or "?"
followed by a blank and then a capitalized word? A
period following a single capital letter is assumed not to
be a sentence delimiter. All intervening HTML tags and
entities are ignored in the sentence analysis. Using a small
set of heuristics, sentence boundary detection accuracy of
well over 99% was obtained.

6. Visualizing word-pair Frameworks

Based on various preliminary studies, we have
determined that biology research papers contain many
language structures which are repeated often in a single
paper, in multiple papers and by various authors.
Structures that contain important information appear to be
made up of high-frequency components which we call
Frameworks with embedded low-frequency informational
elements. An example of this is given by the following
with the Framework elements underlined and the
informational elements in italics:

"The level of GTP-bound Rap-1 was measured..."

In this example sentence the framework is the split
bigram, "The level of" and "was measured", which
brackets the informational item "GTP-bound Rap-1". The
Framework Viewer we have built [17] allows us to study
the occurrence of such patterns with the Framework
elements, vertically aligned from sentence to sentence,
much as in KWIC displays (Keywords In Context).
Figure 2 shows the Framework Viewer.

7. Software implementation

All software is developed in Java 2 (1.4.1). In the
prototype, sequences and the lexicon are stored in
ArrayLists and HashMaps, respectively, and saved as
Java serialized files. For larger datasets we use Oracle 8i.
The prototype studies use a textbank of about 5M words.
All analyses use the integer SIDs and TIDs.

.

Fig. 2. A portion of a Framework Viewer window, showing the 11 instances of the Framework, "integration ...
into", the total found in the full text of 100 ASM papers (500K words) in HTML format. Note the inclusion of
low-frequency (low occurrence), highly informational elements in the framework, "PhydAB-CTB", pSEM167"
and "pBGK". Versions of the Viewer currently under development will allow more than such literal matching,
e.g., finding Frameworks based on word frequencies alone, by the category of the components (such as gene or
protein names) and part of speech. The Viewer will also allow user interaction to classify instances for further
analysis or for training for machine learning or to reveal further details about the entities or their context.

5

The XML schema are supported by JAXB [18]. JAXB
processes the schema to build the Java classes which are
in one-to-one correspondence with the schema as well as
creating an object factory to generate the appropriate Java
objects. JAXB is designed exclusively to deal with XML
Schema rather than DTDs

The Viewer is written in Java Swing with the text
display in Java 2D to allow the greatest flexibility,
interaction, etc. The scrolling text is created on demand
as scrolling proceeds, a "lazy" approach that enhances
responsiveness and space and time efficiency and allows
scaling to arbitrarily large collections.

8. Results and Discussion

The first result of our current project reported here is
the development of the Extreme Tokenization process that
leads to an archival integer-based format for the text and
lexicon. Next we developed a system to identify the
important text components of our ASM textbank and
record it in XML documents. We then were able to
delimit sentences in the body and caption text. Finally, we
developed an efficient Framework Viewer for visualizing
text patterns in the biology papers.

The systems described here are being developed
further and scaled up. They form a firm foundation for
the next steps in our major program for information
retrieval and text mining from the large collections of
biology research papers that are increasingly available in
electronic form.

Acknowledgements

Emine Yilmaz helped with this paper. Supported in
part by NSF DBI-0211047, IIS-9978004 and the
Northeastern University Institute for Complex Scientific
Software, http://www.icss.neu.edu/

References

[1] R. P. Futrelle, "BioNLP.org Natural language
processing of biology text (http://bionlp.org)," 2001.

[2] G. Nagy, "Twenty Years of Document Image Analysis
in PAMI," IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 38-62, 2000.

[3] S. Klink, A. Dengel, and T. Kieninger, "Document
Structure Analysis Based on Layout and Textual
Features," in DAS - International Conference of
Document Analysis Systems. Rio de Janeiro, Brazil, 2000,
pp. 99-111.

[4] M. Aiello, C. Monz, L. Todoran, and M. Worring,
"Dcoument Understanding for a Broad Class of
Documents," Intl J. Document Analysis and Recognition,
vol. 5, pp. 1-16, 2002.

[5] W. W. Cohen and L. S. Jensen, "A Structured
Wrapper Induction System for Extracting Information
from Semi-Structured Documents," in IJCAI 2001, 2001.

[6] S.-H. Lin and J.-M. Ho, "Discovering Informative
Content Blocks from Web Documents," in SIGKDD '02.
Edmonton, Alberta, Canada, 2002.

[7] Y. Yang and H. J. Zhang, "HTML Page Analysis
Based on Visual Cues," in ICDAR '01, 2001.

[8] S.-J. Lim and Y. -K. Ng, "A Heuristic Approach for
Converting HTML Documents to XML Documents," in
Computational Logic - CL 2000, vol. 1861, J. Lloyd, Ed.
Berlin: Springer-Verlag, 2000, pp. 1182-1196.

[9] A. S. Yeh, L. Hirschman, and A. A. Morgan,
"Evaluation of text data mining for database curation:
Lessons learned from the KDD Challenge Cup,"
Bioinformatics, vol. 19, pp. i331-i339, 2003.

[10] H. Yu and E. Agichtein, "Extracting synonymous
gene and protein terms from biological literature,"
Bioinformatics, vol. 19, pp. i340-i349, 2003.

[11] W. W. Cohen, R. Wang, and R. F. Murpy,
"Understanding Captions in Biomedical Publications," in
KDD 2003, 2003.

[12] R. P. Futrelle, M. Shao, C. Cieslik, and A. E. Grimes,
"Extraction layout analysis and classification of diagrams
in PDF documents," in ICDAR (Intl. Conf. Document
Analysis and Recognition). Edinburgh, 2003.

[13] David D. Palmer, "Tokenization and Sentence
Segmentation," in Handbook of Natural Language
Processing, R. Dale, H. Moisl, and H. Somers, Eds. New
York: Marcel Dekker, Inc., 2000, pp. 11-35.

[14] R. P. Futrelle, C. C. Dunn, D. S. Ellis, and M. J.
Pescitelli, Jr., "Preprocessing and lexicon design for
parsing technical text," in Proc. 2nd Intnl Workshop on
Parsing Technologies. Morristown, New Jersey:
Association for Computational linguistics, 1991, pp. 31-
40.

[15] E. van der Vlist, XML Schema. The W3C's Object-
Oriented Descriptions for XML. Sebastopol, CA:
O'Reilly, 2002

[16] A. Mikheev, "Periods, Capitalized Words, etc.,"
Computational Linguistics, vol. 28, pp. 289-318, 2002.

[17] A. E. Grimes and R. P. Futrelle, "Text Pattern
Visualization for analysis of biology full text and
captions," in IEEE Computer Society Bioinformatics
Conf. Palo Alto, CA: IEEE-CS Press, 2003.

[18] Sun_Microsystems, "Java TM Architecture for XML
Binding (JAXB) http://java.sun.com/xml/jaxb/," 2003.

6

