
Adaptive Document Layout via Manifold Content

Charles Jacobs
Microsoft Research

cjacobs@microsoft.com

Wilmot Li
University of Washington

David H. Salesin
Microsoft Research

University of Washington

Abstract

We present and explore a simple idea for improving doc-
ument layout on arbitrary devices of different resolutions
and size. The key idea is to allow manifold representations
of content: multiple versions of anything that might appear
in a document, such as text, images, or even stylistic con-
ventions. Content is then selected and formatted dynami-
cally, on the fly, by a layout engine in order to best adapt to
a given viewing situation. We propose a user interface for
authoring and editing such manifold content, and sketch a
few interesting new algorithms that make use of it.

1. Introduction

Paper documents are—by their very nature—static af-
fairs: their physicality confines them to a single immutable
layout on a single-size sheet of paper. Electronic docu-
ments, by contrast, can and should be much more dynamic.
Most importantly, they should adapt seamlessly and attrac-
tively to the size and proportions of the display on which
they appear—be it a standard monitor, a tiny PDA screen,
or a certain format of paper.

Electronic documents today fall woefully short of this
ideal. In general, they provide an impoverished layout
in comparison with their traditional, physical counterparts.
Moreover, they provide an exceedingly limited ability to
adapt to different displays. Typically, either the width of the
text is expanded to fill the available window, creating long,
illegible lines of text, or the text area is kept fixed, which
solves the first problem but requires inconvenient scrolling
when the target display is too small. With the prolifera-
tion of new, differently sized display devices, this inability
to adapt layouts to different display sizes is becoming an
increasingly critical problem.

Why are we in this predicament? The answer is that
adaptive layout is fundamentally a hard problem, and one of
the key challenges—the one this paper addresses—involves
the close coupling between content and layout. To format
a document well for various page sizes, different content is
often necessary. For example, a multicolumn sidebar may
look fine on a widescreen display, but on a portrait display it

may have to be placed at the bottom of the page, so as not to
squeeze out the main story. On a PDA, the same “sidebar”
might have to be moved to a separate page entirely. Even
more tricky is the need for editorial changes to content to
make a given layout work. As Knuth acknowledges [9], a
computer should be able to achieve better results than a hu-
man typesetter—“unless we give this person the liberty to
change the wording in order to obtain a better fit.” Often
one is forced to make last-minute changes to figures or text
in order to, say, meet a page limit, produce better arrange-
ments of figures and text, or eliminate annoying “widows”
or “orphans.”

In this paper, we suggest a simple, new approach to adap-
tive document layout. The key idea is to allowmanifold rep-
resentations of content—i.e. multiple versions ofanything
that might appear in a document, such as text, images, even
stylistic conventions. This content is then selected and for-
matted dynamically to fit the target display device. To make
this approach practical, we need a documentrepresentation
that is flexible enough to represent manifold content (Sec-
tion 2); a contentauthoring system (Section 3) that makes
handling all of these multifarious versions natural; and fi-
nally, alayout engine that adapts and formats a document’s
manifold content automatically, on the fly (Section 4).

We are by no means the first to look at adaptive lay-
out. Much of the earliest work in document layout focused
on text formatting problems, such as how to arrange text
into lines, paragraphs and higher-level semantic structures
[6, 9, 12]. More recently, researchers have begun to fo-
cus on thepage layout problem, whereby relational gram-
mars [13], constraints [2, 3, 4, 5], or various forms of op-
timization [8] are used to arrange content and design ele-
ments onto a page based on some notion of “goodness.” In
addition, the World-Wide-Web Consortium (W3C) has re-
cently adopted several standards (most notably, the Exten-
sible Stylesheet Language (XSL) [1] and Cascading Style
Sheets (CSS) [11]) that support the decoupling of a docu-
ment’s content from its formatting rules as a way to adapt
how information is presented. Our idea of using manifold
content is largely complementary to all of these earlier ef-
forts, including our own recent work on producing adaptive
page layouts that adhere to an underlying design grid [7].

25



2 Representation

To represent manifold content, we use a tree data struc-
ture, called thedocument tree, that contains two types of
nodes: content nodes, which represent a continuous, flat
piece of document content; andOR nodes, which group
together alternate versions of content and are embedded
within content nodes where the manifold representations
can be inserted. Note that children of anOR node (which
are, themselves, content nodes) can also contain alternate
versions of content, resulting in a deeper document tree with
nestedOR nodes. In practice, we use an XML file format to
specify this document structure. More syntactic details can
be found in Li [10].

3 Authoring

Manifold content is useful only if it can be authored eas-
ily and effectively. Indeed, one reasonable objection to our
whole approach might be that it sounds like too much work
for authors to create not just one, but many possible versions
of their document. However, we argue that, with the right
authoring tools, this approach is not necessarily so onerous.
In many cases, the author is already doing this kind of work,
such as adapting a document for several different audiences
(e.g., when preparing a journal article from an earlier con-
ference paper). In this case, our approach could be used to
keep the different versions in synch, rather than maintaining
separate documents. In addition, as already mentioned, au-
thors commonly make small changes to a document in order
to fix up various formatting problems—in this case, our sys-
tem helps keep around all of the possible versions. Finally,
while manifold content may not always be worth the cost,
one can easily imagine situations in which a document—
e.g., some advertising copy—is written once for wide dis-
tribution over an electronic medium, and for which entering
different versions of content is a minimal price to pay for
the sake of a far greater visual impact.

3.1 The authoring user interface

We see two main challenges in designing an authoring
tool. The first difficulty is in finding a way to display the
full richness of the manifold content without overwhelming
the user with its potential complexity. The second challenge
is in coming up with a user interface that allows the author
to edit content and specify alternate versions easily and nat-
urally.

Our basic approach is to hide most of the document’s
structure at any given time and allow the user to interact
with what appears to be, at first glance, just a single, linear
view of the document. However, areas of manifold content
within this browser pane are indicated by a faint, dotted
line beneath that portion of the content; selecting an area of
manifold content causes all other versions of the content to

Figure 1. Screenshot of authoring user interface.

appear in a separatealternate-version pane, to the right of
the browser pane. The currently selected version of content
is indicated by yellow highlighting in both panes. To get a
better sense of the interface, see Figure 1.

The author is always free to edit any text that appears in
either pane. In addition, the author can select alternate ver-
sions of content by simply clicking on the selection in the
alternate-version pane, in which case this version becomes
highlighted and replaces the version currently appearing in
the browser pane. In this way, by focusing on the browser
pane, the author can get a good sense of how the selected
version reads, or appears, alongside the other content in
the document, without the distraction of any of its alternate
versions. The author can also create new manifold content
in the alternate-version pane (either by adding a new entry
from scratch or by copying an existing version).

We have found these operations to feel quite natural in
practice, once the user gains a little bit of familiarity with
the system. Obviously, more formal user studies are re-
quired to evaluate and hone the interface more thoroughly.

3.2 Modifying the document tree

Most editing operations in the UI are supported by
straightforward transformations of the document tree. For
example, creating a new version for an existing region of
manifold content is just a matter of adding a new child to the
correspondingOR node in the tree. To create a new region
of manifold content, a newOR node must be inserted into
the appropriate content node, replacing the selected content.
The selection is then moved beneath theOR node, becom-
ing its only child. Deleting or editing versions of content
are similarly straightforward.

The most complicated operation involves the selection of
a new region of manifold content that spans several existing
manifold content regions—and, inthe worst case, intersects
them in some arbitrary way. In our limited testing, the need
for these worst-case non-hierarchical manifold content se-
lections has not come up—although we do have an algo-
rithm to support them should the need arise. A full descrip-
tion of this procedure can be found in Li [10].

26



4 Layout engine

With the benefit of manifoldcontent, attractive text and
page layout becomes a lot easier. Given a document tree and
a rectangular display region as input, the layout algorithm
starts by traversing the tree. As it encounteres content nodes
of different specific types, it calls an appropriatelayout en-
gine to render the portion of the document represented by
the content node, passing it the rectangular region in which
to render the content.

Currently, we support two types of layout engines: a
composite-page layout engine, and asimple-page layout
algorithm. The composite-page layout engine determines
the overall structure for therectangular region it is passed.
The content node that caused this engine to be called des-
ignates a set of alternative ways of dividing up the page
into panes (specified via XSL templates). The content node
also contains a collection of named content that is to be dis-
tributed among the different panes. The composite-page en-
gine chooses among the different layout alternatives based
on the dimensions of the rectangular region it is passed and
the particular collection of content in the node. (For in-
stance, if the rectangle is tall and skinny, the panes might
be laid out vertically, whereas if it is short and wide, the
engine might choose a horizontal layout instead.) The lay-
out engines for the various pieces of named content are then
called recursively in each pane. Within a pane, the simple-
page layout engine is responsible for laying out the various
primitive elements like figures and text. The rest of this
section describes some of the more interesting aspects of
the simple-page layout algorithm in more detail.

4.1 Manifold text formatting

To format paragraphs of text, we use a modified form
of Knuth’s dynamic-programming-based line-breaking al-
gorithm [9]. The original algorithm takes as input a para-
graph of text and first determines a set of potential break
pointsB = {b1, b2, . . . , bm}. This set includes all inter-
word spaces as well as legal hyphenation positions within
words. Knuth’s algorithm uses dynamic programming to
find, in O(m) time, the set of breaksBO ⊆ B that result
in the best paragraph, as determined by some measure of
goodness. (For justified text, this measure simply considers
how well each line of text fits into the available space.)

To incorporate alternate versions, we include additional
break points inB that correspond to the various wordings
specified in eachOR node of the document tree. For eachb
in B, we determine all preceding break points that should
not appear together withb in a valid solution (i.e., all breaks
in different child subtrees of a commonOR ancestor), and
record these in theconflict list for b. During the dynamic
programming loop, we use the conflict lists to quickly dis-
card invalid lines. With these modifications, the algorithm

will find the best line-breaking solution over all choices of
content in linear time (assuming a uniform distribution of
OR nodes over the paragraph). Thus, depending on the size
and shape of the region into which the text must flow, the
system may choose different versions of content to optimize
the line-breaking quality. Note that a naive algorithm that
tries all combinations of alternate content is exponential in
the number ofOR nodes within the paragraph.

4.2 Placing manifold figures

By contrast, we use a simple, brute-force approach for
selecting among manifold (floating) figures and placing
them onto the page. Even though such an algorithm is expo-
nential in the number of figures on the page, we have so far
not encountered documents with a huge number of these (al-
though we acknowledge that such documents are certainly
possible). For each combination of figures, we compute a
score for the “goodness” of the page layout incorporating
those figures. Once all combinations have been tried, we
simply pick the best one.

Determining the “goodness” of a page involves measur-
ing distances between figures and their textual references,
and penalizing figures that do not fall on the same page as
their reference. In addition, a score is computed for the for-
matting of each line of text. Extra penalties are added for
any widows or orphans. There are also parts of the metric
that the page designer can tune according to the document’s
style—e.g. metrics that prefersmall or large figures, or fig-
ures that together consume a certain proportion of the page.

5 Results

To evaluate our system, we created a simple manifold-
content version of a real magazine article and formatted it
at different display sizes using our layout engine (Figure 2).
Note how the layout engine chooses different content to op-
timize the layout for the different displays. In particular,
differently cropped versions of the main image are automat-
ically selected to help achieve the specified style for both
portrait and landscape orientations. Similarly, the layout
engine chooses a smaller title with no teaser paragraph for
the PDA-sized display.

Figure 2. Article from TIME magazine rendered us-
ing our layout engine at different sizes. Note how
different content has been selected to optimize
page quality for the various displays.

27



(a)

Fig1

(c)

(b)

Fig1

Fig2

(d)

(e) (f)

(g) (h)

Figure 3. Fixing layout problems using manifold content. By choosing a different figure in (b), the layout
engine can eliminate the end-of-page widow in (a). Similarly, choosing a narrower figure in (d) allows “Fig
2” to appear on the same page as its textual reference. Finally, our linebreaking algorithm uses alternate
wordings in (f) and (h) to fix the poor inter-word spacing in (e) and (g), which do not have manifold content.

Figure 3 shows some other ways in which the layout en-
gine’s optimization procedure can use alternate content to
prevent typical layout problems. Figure 3(a) shows a lay-
out that contains a widow at the bottom of the second col-
umn. Since widows/orphans result in poor layout scores the
optimizer is able to eliminate this artifact by choosing an
alternate version of the second image (Figure 3(b)).

Another common layout problem occurs when a figure
gets pushed off the page on which a reference to it appears,
or vice versa. Figure 3(c) shows a layout in which the ref-
erence to “Fig 2” has been pushed off the page by the very
figure it references. With an alternate version of the second
image specified in the document, the layout engine succeeds
in reuniting the errant reference (Figure 3(d)).

Figures 3(e)–(h) show how our linebreaking algorithm
takes advantage of alternate content to produce the best pos-
sible results for justified text at different display sizes. For
comparison, we show the results obtained using a version
of the paragraph that does not contain alternate content.

6 Conclusions

While this paper contains at least one or two algorithmic
innovations, as well as several new user interface ideas, the
primary value of this paper is in its new, different and fun-
damentally very simple approach towards adaptive layout.
Although we have not, by any means, fully explored all of
the possible document layout scenarios available via this ap-
proach, our early experimental results, presented here, pro-
vide some promising indications of the approach’s potential
as a viable, versatile tool.

References

[1] S. Adler. Extensible stylesheet language, 2001.
[2] G. Badros, A. Borning, K. Marriott, and P. Stuckey. Con-

straint cascading style sheets for the web. InProceedings of
UIST 99, 1999.

[3] G. Badros, J. Nichols, and A. Borning. Scwm - an intelligent
constraint-enabled window manager. InSmart Graphics 00,
2000.

[4] A. Borning, R. Lin, and K. Marriott. Constraint-based doc-
ument layout for the web.Multimedia Systems, 8:177–189,
2000.

[5] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving
linear arithmetic constraints for user interface applications.
In Proceedings of UIST 97, pages 87–96, 1997.

[6] R. Furuta, J. Schofield, and A. Shaw. Document formatting
systems: Survey, concepts and issues.ACM Computing Sur-
veys, pages 417–472, 1982.

[7] C. Jacobs, W. Li, , E. Schrier, D. H. Salesin, and D. M. Barg-
eron. Adaptive grid-based document layout. InProceedings
of SIGGRAPH 03, 2003. (To appear).

[8] R. Johari, J. Marks, A. Partovi, and S. Shieber. Auto-
matic yellow-pages pagination and layout. Technical report,
MERL, 1996.

[9] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines.
Software – Practice and Experience, 11:1119–1184, 1981.

[10] W. Li. Adaptive multi-representation documents. Master’s
thesis, University of Washington. 2002.

[11] H. W. Lie and B. Bos. Cascading Style Sheets, Level 1,
1996.

[12] A. J. H. Peels, N. T. M. Janssen, and W. Nawijn. Document
architecture and text formatting.ACM Transactions on In-
formation Systems, 1985.

[13] L. Weitzman and K. Wittenburg. Automatic presentation of
multimedia documents using relational grammars. InPro-
ceedings of ACM Multimedia Conference, 1994.

28




