Liverpool Distinguished Computer Science Lecture Series
Empirical Game-Theoretic Analysis for Canonical Auction Games
28th May 2012, 16:00
Ashton Lecture Theatre
Professor Michael Wellman
University of Michigan
Abstract
Some canonical auction scenarios -- involving simultaneous markets or dynamic trading, for example -- are descriptively simple yet resist analytical game-theoretic solution. We gain traction on such problems by combining simulation, search, and machine learning with game-theoretic reasoning, in an approach we call "empirical game-theoretic analysis". EGTA studies have produced strategic insights and improved strategies for simultaneous ascending auctions and continuous double auctions, as well as the more complex domains presented by a series of Trading Agent Competition events. Our most recent investigation, of simultaneous one-shot auctions, demonstrates the utility of EGTA for suggesting and evaluating theoretical characterizations of equilibrium bidding strategies.
Biography
Michael P. Wellman is Professor of Computer Science & Engineering at the University of Michigan. He received a PhD from the Massachusetts Institute of Technology in 1988 for his work in qualitative probabilistic reasoning and decision-theoretic planning. From 1988 to 1992, Wellman conducted research in these areas at the USAF’s Wright Laboratory. For the past 19+ years, his research has focused on computational market mechanisms for distributed decision making and electronic commerce. As Chief Market Technologist for TradingDynamics, Inc. (now part of Ariba), he designed configurable auction technology for dynamic business-to-business commerce. Wellman previously served as Chair of the ACM Special Interest Group on Electronic Commerce (SIGecom), and as Executive Editor of the Journal of Artificial Intelligence Research. He is a Fellow of the Association for the Advancement of Artificial Intelligence and the Association for Computing Machinery.
Maintained by Othon Michail