
Information-seeking agent dialogs with permissions and
arguments

Sylvie Doutre
Université Toulouse 1 – IRIT

Manufacture des Tabacs
21 allées de Brienne

31042 Toulouse cedex France
doutre@irit.fr

Peter McBurney, Michael Wooldridge,
and William Barden

Department of Computer Science
University of Liverpool
Liverpool L69 7ZF UK

{p.j.mcburney,m.j.wooldridge,cs3wb}@csc.liv.ac.uk

ABSTRACT
Many distributed information systems require agents to have appro-
priate authorization to obtain access to information. For some ap-
plications, such as those in medicine, authorization may be granted
in exceptional cases even to agents without the necessary permis-
sions, provided they can provide an appropriate justification for
having access. We may consider these agent interactions to be
information-seeking dialogs with the agent seeking the information
and the agent controlling access to it engaged in argument together
over data access. We present a denotational semantics for such
dialogs, drawing on Tuple Centers (programmable Tuple Spaces).
We illustrate our approach with an example in medicine, and de-
scribe an implementation we have created using TuCSoN.

ACM CATEGORIES AND SUBJECT DESCRIPTORS:
I.2.11 [Artificial Intelligence] Distributed Artificial Intelligence:

Coherence and co-ordination; Languages and Structures; Multia-
gent systems.
GENERAL TERMS: Design, Languages, Theory.
KEYWORDS: Argumentation, Agent Communications Languages,
Information-seeking dialogs, Semantics, Tuple Spaces.

1. INTRODUCTION
Consider a common medical situation where an emergency-room

doctor requires access to the records of a newly-arrived, but uncon-
scious patient, perhaps the victim of a traffic accident. Because the
doctor is not the patient’s usual medical practitioner, the doctor will
require permission to access the patient’s records from the relevant
medical organization. Because the patient is unconscious, he or
she cannot give this permission. The emergency-room doctor will
need to persuade the patient’s own doctor or medical center person-
nel that access should, exceptionally, be granted. It is possible to
view this interaction between emergency-room doctor and the pa-
tient’s own doctor as an information-seeking dialog, where access
to the information requires appropriate permissions, and where ar-
guments may be presented and considered to change the current

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS2006, 8–12 May 2006, Hakodate, Japan.
Copyright 2006 ACM 1-58113-480-0/02/0007 ...$5.00.

level of these permissions. As services move online, we can imag-
ine this interaction taking place between software agents acting for
human principals, rather than between the principals themselves.
To enable this electronic interaction, we present a formal syntax
and semantics for such information-seeking dialogs involving per-
missions and arguments, and report on an implementation.

First, however, we make some general remarks regarding agent
interaction protocols and their semantics. Agent researchers and
developers have devoted considerable attention recently to the de-
sign and study of protocols for agent communication using dialog
games taken from philosophy, e.g., [13]. Much of this attention has
focused on the syntax of protocols, with perhaps less attention paid
to their semantics. There are several different functions that a se-
mantics for an agent communications language or dialog protocol
may be required to serve:

• To provide a shared understanding to participants in a com-
municative interaction of the meaning of individual utter-
ances, of sequences of utterances, and of dialogues.

• To provide a shared understanding to designers of agent pro-
tocols and to the designers (who may be different) of agents
using those protocols of the meaning of individual utterances,
of sequences of utterances, and of dialogues.

• To provide a means by which the properties of languages
and protocols may be studied formally and with rigor, either
alone or in comparison with other languages or protocols.

• To provide a means by which languages and protocols may
be readily implemented.

In this paper, our focus is on semantics for agent protocols which
meet this last objective. Drawing on research in programming lan-
guage semantics, Rogier van Eijk [8] identified three generic types
of semantics of agent communications languages. An axiomatic
semantics defines each locution of a communications language or
protocol in terms of the pre-conditions which must exist before
the locution can be uttered, and possibly also the post-conditions
which apply following its utterance, in a STRIPS-like fashion. For
example, the semantic language, SL, for the locutions of the FIPA
Agent Communications Language, is an axiomatic semantics of the
speech acts of the language, defined in terms of the beliefs, desires
and intentions of participating agents [9]. Similarly, the semantics
defined for many dialog game protocols for agent interaction, e.g.,
[15], are also axiomatic semantics.

A second type of semantics, an operational semantics, consid-
ers the dialog locutions as instructions which operate successively

on the states of some abstract machine. Here, the semantics defines
the locutions in terms of the transitions they effect on the states
of this machine. Operational semantics have recently been defined
for some agent dialog protocols, e.g., [14]. Third, in denotational
semantics, each element of the language syntax is assigned a rela-
tionship to an abstract mathematical entity, its denotation. Perhaps
the first example of a denotational semantics for a dialog protocol
was the possible-worlds semantics for question-response interac-
tions defined by Charles Hamblin in 1957 [11]. Although possible-
worlds and other denotational semantics have a long subsequent
history in mathematical linguistics, only recently have denotational
semantics been defined for agent dialog protocols. For instance,
[16] presents a category-theoretic semantics for a broad class of de-
liberation dialog protocols, and uses this semantics to prove prop-
erties of dialogs conducted under these protocols.

Of these different types of semantics, axiomatic semantics would
seem to be of most value to software engineers tasked with build-
ing a system to allow multi-agent communications. However, if the
pre-conditions and post-conditions of an axiomatic semantics are
defined in terms of the private mental states of the agents commu-
nicating, then problems of semantic verifiability arise [23]. Since
these mental states are inherently private, there can be no way in
general to verify their properties. Insofar as the agent’s internal
states are assumed part of the larger virtual machine, as in [14], the
same problem arises with an operational semantics.

For this reason, we are driven to consider denotational semantics
for agent communications protocols. However, the translation of
dialog utterances and protocols into abstract mathematical entities,
such as the collections of categories of [16], may not necessarily
assist a software developer in implementing the protocol. Accord-
ingly, we propose a denotational semantics for an agent interaction
protocol which translates utterances under the protocol into com-
mands in a version of the Linda distributed computing language,
and into actions on associated tuple spaces. Because of their adop-
tion by SUN (under the name Javaspaces)1 and by IBM (under the
name T-Spaces)2, tuple spaces are a popular technology for imple-
mentation of distributed computing applications. In the next sec-
tion, we introduce tuple space theory, and present our ideas regard-
ing their use as a semantics for agent dialog protocols.

To illustrate the application of these ideas, we present, in Section
3, an extended example of a multi-agent dialog in a medico-legal
domain. The example is that of the opening paragraph of this paper,
of an Information-seeking dialog between two agents, where the re-
questing agent may need to provide the responding agent with an
argument or justification in order to obtain access to the informa-
tion or objects requested. Without the argument component, such
dialogs may be viewed as consisting of Ask and Tell locutions, with
the additional requirement that the responding agent may only utter
Tell if the requesting agent has permission to receive the requested
information or object. The protocol for Information-seeking di-
alogs which we present enables not only these Ask and Tell locu-
tions, but also allows the participants to justify their requests or re-
sponses through argument. The requesting agent may present these
arguments with the intention of changing the level of authorization
it has to specific information; the responding agent may present ar-
guments to explain its decisions to Tell or not to Tell the requested
information. Section 3 presents our protocol for such interactions,
along with its denotational semantics.

Section 4 reports on an implementation of this protocol under-
taken using TuCSoN, a software platform for tuple centres, and the

1See: http://java.sun.com/developer/products/jini/.
2See: http://www.alphaworks.ibm.com/tech/tspaces/.

associated programming language, ReSpecT. The paper ends with
a discussion of related and future work in Section 5.

2. DIALOG SYSTEMS
In this section, we will first recall the general architecture of

an agent dialog system, and summarize relevant aspects of Tuple
Space theory. We then show how a version of tuple spaces may be
understood as a denotational semantics for dialog systems.

2.1 Dialog systems
The common elements of dialog systems are: a dialog goal; a

set of participants who may have their own dialog goals, knowl-
edge base, mental states, and reasoning capabilities; a topic lan-
guage; a context built on the topic language, which contains the
knowledge that is presupposed and must be respected during a di-
alogue; a communication language defining the set of dialogues,
and whose syntax contains the locutions which can be uttered in a
dialogue; a protocol (the heart of the dialog system) which spec-
ifies the utterances permitted at each point in a dialogue; a set of
effect rules, specifying the effects of utterances on the participants’
commitments and possibly also, on their knowledge base; a set of
outcome rules defining the outcome of a dialogue. A set of public
commitments may also be associated to each participant as indi-
cated in [13].

A typology of human dialogs was articulated by Walton and
Krabbe [22], based upon the overall goal of the dialogue, the par-
ticipants’ individual dialog goals, and the information they have
at the commencement of the dialog (the topic language and the
context). For example, Information-seeking dialogues are those
where one participant seeks the answer to some question(s) from
another participant, who is believed by the first to know the an-
swer(s). Persuasion dialogues involve one participant seeking to
persuade another participant to endorse a statement he or she does
not currently endorse. Dialogue-game protocols, some using ar-
gumentation, for these types of dialog have been proposed, e.g.,
[13]. But we know of no protocols for secure information-seeking
in which argumentation-based persuasion is enabled.

2.2 Tuple spaces
David Gelernter’s theory of tuple spaces [10, 3] was proposed as

a model of communication between distributed computational enti-
ties. Linda is the associated programming language. The essential
idea is that computational agents connected together may create
named object stores, called tuples, which persist, even beyond the
lifetimes of their creators, until explicitly deleted. In their Javas-
paces manifestation, tuples may contain data, data structures, pro-
grams, objects or devices. They are stored in tuple-spaces, which
are blackboard-like shared data stores, and are normally accessed
by other agents by associative pattern matching. The use of shared
stores means that communication between multiple agents can be
spatially and temporally decoupled. There are three basic opera-
tions on tuple spaces:

out with which an agent creates a tuple with the specified contents
and name in a shared space accessible to all agents in the
system.

rd with which an agent makes a copy of the contents of the speci-
fied tuple from the shared space to some private store.

in with which an agent makes a copy of the contents of the spec-
ified tuple from the shared space to some private store, and
then deletes it from the shared space.

Tuple spaces are public-write, public-read spaces: any entity in the
system may create a new tuple, and any entity may delete an exist-
ing one. A refinement of Linda, Law-Governed Linda (LGL) [18],
established an administrative layer which authorizes all attempts to
execute out, in and rd commands according to pre-defined se-
curity and privacy policies. This administrative layer (the Law of
the model) also describes the effect of the invocation of these oper-
ations on the model.

More precisely, an LGL model is a 5-tuple < C,P, CS,L, E >

where: C is a tuple space; P is a set of processes that interact with
each other via C; CS is a set of control states, one being associated
with each process; L is the global law of the system, which governs
the interactions of the various processes in P with the tuple space
C, and thus, with each other; E is a mechanism that enforces the
law.

The law L prescribes the consequences required of events, such
as the invocation of an out, rd of in operation, that occur at the
boundary between a process (called the home process of the event)
and the tuple space. These effects have the form of a sequence
of operations which must be carried out in response to the event.
The effects may concern the tuple space or the control state of a
process. An example of an event is an out(t) operation invoked
by a process p: a first effect may be to actually store the tuple t in
the tuple space, and a second one may be to update the control state
of p.

The control state of a process is a bag of terms (called attributes)
which have the form f(arguments), where f is a literal sym-
bol and its zero or more arguments are terms. An attribute that
is present in each control state is self(i), where i is a unique
identifier of the process. Two operations on control states are +a,
which adds the term a to the control state of the home object, and
-a which removes from the control state of the home object the
term a.

The law is global, in the sense that all processes have to obey
the same law. However, the application of the law for a given event
might depend on the control state of the process in which the event
happened. The law is enforced by means of the distributed enforce-
ment mechanism E , which usually, in LGL, consists in associating
a local controller with every process in the system. This local con-
troller deals with the application of the law according to the con-
trol state of the process it governs, and maintains this control state.
For instance, an out(t) operation might be possible only if the
control state contains a special attribute which authorizes this oper-
ation. The combination of a process and its controller is referred to
as an object.

LGL may be seen as a special case of a more general artifact, a
Tuple Center [19]. This is a tuple space that is able to react to spe-
cific events, such as the insertion or deletion of a tuple by particular
processes, and so is dynamic, not static. A logic-based language for
programming tuple centers, called ReSpecT, has been developed [6]
and combined with a software platform for creating tuple centers,
called TuCSoN [5]. The expressive power of LGL and ReSpecT
are essentially the same [19], with the primary difference being the
location of tuple center behavioral rules. As described above, the
LGL controllers are typically stored locally, within communicat-
ing processes, while under ReSpecT, control rules are vested in the
tuple center. In Section 4, we report an implementation of the pro-
tocol presented in Section 3 using the TuCSoN platform.

2.3 LGL as a semantics for dialog systems
We have recalled the general syntax of dialog systems in Sec-

tion 2.1. We are now going to show how LGL can be used as a
denotational semantics for these systems, by associating elements

of an LGL 5-tuple < C,P, CS,L, E > to the elements of the dia-
log system. Note that the dialog goal and the outcome rules have
no associated elements in LGL.

Participants
To each participant is associated an object (i.e. a process of P
and its controller from E) and a control state of CS. The control
state may contain attributes related to the knowledge base of the
participant.

Topic language
The elements of the topic language are associated elements of LGL.

Context
The dialog takes place in the tuple space C.

Communication language
To each locution is associated a tuple. An utterance of a locution
then calls one or more events which may effect the tuple space
and/or the control state of the home object associated to the par-
ticipant making the utterance.

Protocol
Rules of L are associated with the rules of the dialog protocol.

Effect rules
With each effect rule of the dialog system is associated one or more
operations on the knowledge base of the participants.

3. SECURE INFO-SEEK DIALOGUE
We present the syntax and an LGL semantics for a dialog system

for an information-seeking dialogue, involving permissions and ar-
guments. We illustrate this dialog system on an example of a multi-
agent dialog in a medico-legal domain, extending the emergency-
room situation described in Section 1.

3.1 Motivating example
Our example involves dialogs between agents in different legal

jurisdictions. The agents are representatives of principals who are
legal entities, namely the medical practice in the home-country of
a travelling patient and the medical practice treating the patient in
a foreign country where he has fallen ill. Either agent (and indeed,
either principal) may claim to be acting in the best interests of the
patient. The provision of information by an agent is constrained
by the patient’s prior instructions, the practices and preferences of
the agent’s legal principal, and the laws of the country in which
the principal resides. An agent seeking information then requires
permission to access the information, and an agent that would not
have the permission to access some information would have to per-
suade the agent having control of the the information to give it this
permission.

Robert is a British businessman visiting Brussels for a meeting.
During his visit he becomes ill and is taken unconscious into hos-
pital. The staff of the hospital suspect Robert has had a heart attack
and seek to prescribe appropriate drugs for his condition. Unfor-
tunately the safe choice of drugs depends upon various factors, in-
cluding prior medical conditions that Robert might have and other
drugs he may be taking. The hospital’s agent is given the goal of
finding out the required information about Robert, from the agent
representing his London doctor.

Agent of Brussels Hospital: I would like to dialog with the agent
of Robert’s British doctor.

Agent of Robert’s London Doctor: Yes, I agree to dialog with
you.

Brussels agent: I request Robert’s health record.

London agent: I can provide you with non-sensitive information
(Robert’s history of diabetes) but, because Robert has only
given his British doctor limited consent to pass on his per-
sonal information, I cannot provide you sensitive information
(Robert’s psychiatric history).

Brussels agent: The missing information could possibly include
information that could affect the treatment of Robert’s heart
failure. I request the sensitive information, Robert’s life may
be at stake!

London agent: I cannot divulge the sensitive information, because
British law prohibits passing on information without the con-
sent of the provider of the information.

Brussels agent: EC law takes precedence over British law when it
would be in the interests of the owner to divulge the infor-
mation. You should allow me to access the sensitive infor-
mation.

London agent: Only Robert could decide what would be in his
interests.

Brussels agent: Robert’s doctor owes a duty of care to Robert and,
should he die, the doctor might be sued by his family, or the
Brussels hospital, or both.

London agent: I yield to this argument. You can access the sensi-
tive information. I will provide it to you.

Brussels agent: Thank you.

3.2 Protocol syntax
This is the syntax of a dialog system for information-seeking

which requires permission to access the information. In this sys-
tem, an argument must be provided by an agent to justify it having
permission to access some information. If access to information for
agent x is refused by an agent y, then agent x may try to persuade
agent y that it should be allowed permission. This persuasion is
made using arguments. If agent y yields to agent x’s arguments,
then y provides x the information requested.

Participants
There are two participants, a Client (requesting information), and
a Server (controlling access to some information, which it may or
may not provide).

Dialog goal
The Client may have one or two of the following goals prior to the
start of the interaction: (a) To engage in a communicative interac-
tion with the Server; (b) To obtain from the Server all the informa-
tion it needs, using persuasion if necessary. The Server may have
one or two of the following goals prior to the start of the interac-
tion: (a) To engage in a communicative interaction with the Client;
(b) To provide information to the Client according to the laws he is
subject to and to the level of access permission the Client has.

Context
Client and Server may have disjoint knowledge bases. The knowl-
edge base of the Server includes information about the the access
permissions which each Client has, which may differ by the infor-
mation concerned. One task of the Client may be to convince the
Server to add some permissions to his knowledge base.

Topic language
We assume the information requested is represented by lower case
Greek letters (φ, ψ...). This information may be any of: a data
record (e.g., one patient’s record); a database (e.g., records of many
patients); an executable program (e.g., an algorithm for determin-
ing the appropriate dosage of a particular treatment); the output
of an executed program (e.g., the appropriate dosage of a partic-
ular treatment); or even the protocol for another dialog (e.g., the
client may first request the Server to enter into a second dialogue,
which requires authorization to engage in). The actual content cor-
responding to information φ is denoted by < content φ >. A
participant is represented by a lower case Roman letter (x, y, ...).
The permission a participant x has to access the content of infor-
mation φ is denoted by perm(x, φ). An argument is denoted by
upper case Roman letters (A, B, ...). We leave the structure and the
origin of the arguments unspecified.

Communication language
The minimum locutions needed for a dialog between Client and
Server are:

OpenDialogue(x,y) Participant x indicates to participant y that it
wants to enter into a dialog with y.

Ask(x,y,φ) Client x asks Server y to provide it with some infor-
mation φ.

Tell(x,y,φ) Server x tells Client y that it can provide y with infor-
mation φ.

DontTell(x,y,φ) Server x indicates to Client y that it cannot pro-
vide y with information φ.

Provide(x,y,< content φ >) Server x provides Client y the ac-
tual content of information φ.

Argue(perm(y, φ), mode, A) A participant gives an argument A
about the permission that a participant y has to access infor-
mation φ: this permission may be true, false, or to be added.
This is indicated by mode, which has the value:

• YES, if A indicates that participant y has the permis-
sion to access φ.

• NO, if A indicates that participant y does not have the
permission to access φ.

• ADD(x), if A indicates that Server x should add to his
permission base that participant y has the permission to
access φ.

Accept(x,A,perm(y, φ)) Server x says that he believes that argu-
ment A referring to permission perm(y, φ) is acceptable.

EndDialogue(x,y) Participant x indicates to participant y that it
wants to leave the dialogue.

Protocol
The protocol will specify which locutions may be uttered at differ-
ent points in a dialogue, and so define the rules governing the use
of the locutions given above. One such protocol would comprise
the following eleven rules:

R1: A participant x may initiate a new dialog with a participant
y by uttering OpenDialogue(x,y). The dialog commences
when the other participant also utters this locution.

R2: A participant xmay put an end to a dialog engaged with a par-
ticipant y at any time, by uttering EndDialogue(x,y). Upon
such an utterance, the dialog between x and y terminates.

R3: Client xmay utter Ask(x,y,φ) at any time after the commence-
ment of a dialog between x and y.

R4: Server x may utter Tell(x,y,φ) at any time after the com-
mencement of a dialog between x and y, but only if the per-
mission perm(y, φ) is in x’s knowledge base.

R5: Server xmust utter Provide(x,y,< content φ >) if Tell(x,y,φ)
has been previously uttered.

R6: Server x utters Argue(perm(y, φ), YES, A), where A is an
argument justifying that y has the permission to access φ, if
and only if x has previously uttered Tell(x,y,φ).

R7: Server xmay utter DontTell(x,y,φ) at any time after the com-
mencement of a dialog between x and y, only if the permis-
sion perm(y, φ) is not in x’s knowledge base.

R8: If Server x has uttered DontTell(x,y,φ), then Argue(perm(y, φ),
NO, A) must be uttered (A is an argument indicating that y
does not have the permission to access φ).

R9: Client y may only utter Argue(perm(y, φ), ADD(x), A) (A
is an argument supporting the fact that y should have the
permission to access φ) if Server x has previously uttered
Argue(perm(y, φ), NO, B) (B is an argument justifying
why y does not have the permission to access φ).

R10: Argue(perm(y, φ), NO, A) (A is an argument justifying
why y does not have the permission to access φ) may be
uttered if Argue(perm(y, φ), ADD(x), B) (B is an argu-
ment supporting the fact that y should have the permission to
access φ) has been previously uttered.

R11: Server xmay utter the locution Accept(x,A,perm(y, φ)) only
if Argue(perm(y, φ), ADD(x), A) has been previously ut-
tered.

Effect rules
An effect rule concerns the knowledge base of a Server: if Server
x has uttered Accept(x,A,perm(y, φ)), then perm(y, φ) is added
to the knowledge base of x.

Outcome rules
Dialogs under this protocol may terminate or may not. In the lat-
ter case, neither participant leaves the dialogue, for example if they
argue indefinitely. Termination occurs whenever one participant
leaves the dialogue. Whether termination is considered successful
or not depends on the goals of the respective participants, which
may be different. From the perspective of the Client, successful ter-
mination of the dialog would occur if, prior to termination, the in-
formation requested by the Client has been provided by the Server.

From the perspective of the Server, successful termination would
occur if, prior to termination, the Client has received only that in-
formation from the Server for which it has the appropriate permis-
sions.

3.3 LGL semantics
We give an LGL semantics to the dialog system described in the

previous section.

Participants
One object is associated to the Client, another to the Server. The
control state of the server contains attributes related to the permis-
sions the Client has to access information. These attributes are of
the form perm(x,φ) where x is the identifier of the process asso-
ciated to the Client, and φ is an information the Client can access.

Context
The dialog takes place mediated through a tuple space. This tuple
space is partitioned into three families of subspaces: the requests-
answers space (subspace ra), dedicated to the information requests
and answers; the argumentation space (subspace arg), dedicated
to the arguments about permissions; and the contents space (sub-
space co), dedicated to information contents. One set of three sub-
spaces is dedicated to each Client-Server pair. This division of the
tuple space enables different participants to have differential access
to the utterances in the dialogue. For instance, a government au-
thority regulating medical practices could be given access to the
requests and responses made by a Client-Server pair, and to the
arguments justifying responses, without also having access to the
actual contents of the information by the Server. The confidential
exchange of the information itself may thus be secured.

Communication language
To each locution is associated a tuple. The first field of the tuple
is the subspace in which the utterance of the locution is relevant
(denoted by the term sp(x), where x is either ra, or arg, or
co). Among the other fields of the tuple may be the term fr(x)
(resp. to(x)), which denotes that the locution is made by (resp. is
directed to) the participant whose associated process has identifier
x. The other fields of the tuple are close to the meaning of the
locution to which they refer, so we leave their meaning implicit.
Following each locution, we now state the associated tuple:

OpenDialogue(x,y)
[sp(ra),fr(x),to(y),open]

Ask(x,y,φ)
[sp(ra),fr(x),to(y),ask(phi)]

Tell(x,y,φ)
[sp(ra),fr(x),to(y),tell(phi)]

DontTell(x,y,φ)
[sp(ra),fr(x),to(y),notell(phi)]

EndDialogue(x,y)
[sp(ra),fr(x),to(y),end]

Argue(perm(y, φ), mode, A)
[sp(arg),perm(y,phi),mode,a]

Accept(x,A,perm(y, φ))
[sp(arg),perm(y,phi),accept(x,a)]

Provide(x,y,< content φ >)
[sp(co),fr(x),to(y),content(phi)]

When a participant makes an utterance, a tuple corresponding
to the locution uttered is inserted in the tuple space, and if the
utterance is directed to a particular participant, then at least this

participant reads the utterance. Note that when Provide(x,y,<
contentφ > is uttered, then the participant y reads and then deletes
the corresponding tuple of the tuple space (y makes an in opera-
tion). Note also that when Tell(x,y,φ) is uttered by a participant
x, then if x had previously uttered DontTell(x,y,φ), x deletes the
tuples corresponding to this last utterance before inserting the tu-
ple corresponding to Tell(x,y,φ); this ensures that contradictory
messages are not kept in the requests-answers space. Finally, the
utterance Accept(x,A,perm(y, φ)) has the effect of inserting the
permission perm(y,φ) into the control state of the participant x
which has uttered it. Following each utterance, we now state its
associated effects:

OpenDialogue(x,y)
Creates 3 subspaces dedicated to (x,y)
x: out([sp(ra),fr(x),to(y),open])
y: rd([sp(ra),fr(x),to(y),open])
Ask(x,y,φ)
x: out([sp(ra),fr(x),to(y),ask(phi)])
y: rd([sp(ra),fr(x),to(y),ask(phi)])
Tell(x,y,φ)
x: in([sp(ra),fr(x),to(y),notell(phi)])
x: out([sp(ra),fr(x),to(y),tell(phi)])
y: rd([sp(ra),fr(x),to(y),tell(phi)])
DontTell(x,y,φ)
x: out([sp(ra),fr(x),to(y),notell(phi)])
y: rd([sp(ra),fr(x),to(y),notell(phi)])
Argue(perm(y, φ), mode, A)
x: out([sp(arg),perm(y,phi),mode,a])
y: rd([sp(arg),perm(y,phi),mode,a])
Accept(x,A,perm(y, φ))
x: out([sp(arg),perm(y,phi),accept(x,a)])
x: +perm(y,phi)
y: rd([sp(arg),perm(y,phi),accept(x,a)])
Provide(x,y,< content φ >)
x: out([sp(co),fr(x),to(y),content(phi)])
y: in([sp(co),fr(x),to(y),content(phi)])
EndDialogue(x,y)
x: out([sp(ra),fr(x),to(y),end])
y: rd([sp(ra),fr(x),to(y),end])

Protocol
The law contains the rules of the dialog protocol.

Effect rules
The effect rule of the protocol has been integrated in the effects on
the tuple space of the utterance Accept.

3.4 Illustration
We now present the example dialog of Section 3.1 in terms of the

dialog protocol syntax of Section 3.2 and its associated semantics
given in Section 3.3.

The London agent is the Server (denoted by L in utterances, by
l in Linda commands), the Brussels agent is the Client (denoted
by B in utterances, by b in Linda commands). The Brussels agent
requests a piece of information (denoted by info in utterances, by
i in Linda commands) concerning the health of the patient Robert.
This piece of information is a data record containing a sensitive part
and a non-sensitive part; the non-sensitive part of the information
is denoted by info.nonsens in utterances, by i.ns in Linda com-
mands, its sensitive part is denoted by info.sens in utterances, by
i.se in Linda commands. The control state of the London agent

contains the permission that the Brussels agent has to access the
non-sensitive part of the information (perm(b,i.ns)).

We rewrite the example in order to highlight the utterances (in
bold font) and their effect on the tuple space (in Courier font). The
agent who makes an utterance or operation is indicated just before
the utterance or operation. The rule according to which the utter-
ance is legal appears into bold brackets.

Brussels agent:
I would like to dialog with the the agent of Robert’s London Doctor.
B: OpenDialogue(B, L) (R1)
Creates 3 subspaces dedicated to (b,h)
b: out([sp(ra),fr(b),to(h),open])
h: rd([sp(ra),fr(b),to(h),open])

London agent
Yes, I accept to dialog with you.
L: OpenDialogue(L,B) (R1)
h: out([sp(ra),fr(h),to(b),open])
b: rd([sp(ra),fr(h),to(b),open])

Brussels agent
I request Robert’s health record.
B: Ask(B,L,info) (R3)
b: out([sp(ra),fr(b),to(h),ask(i)])
h: rd([sp(ra),fr(b),to(h),ask(i)])

London agent
I can provide you non-sensitive information because you are al-
lowed to access it (argument a1), but, because Robert has only
given to his London doctor limited consent to passing on his per-
sonal information (argument a2), I cannot provide you sensitive
information.
L: Tell(L,B,info.nonsens) (R4)
h: out([sp(ra),fr(h),to(b),tell(i.ns)])
b: rd([sp(ra),fr(h),to(b),tell(i.ns)])
L: Argue(perm(B,info.nonsens), YES, a1) (R6)
h: out([sp(arg),perm(b,i.ns),yes,a1])
b: rd([sp(arg),perm(b,i.ns),yes,a1])
L: Provide(L,B,<content info.nonsens>) (R5)
h: out([sp(co),fr(x),to(y),content(i.ns)])
b: in([sp(co),fr(x),to(y),content(i.ns)])
L: DontTell(L,B,info.sens) (R7)
h: out([sp(ra),fr(h),to(b),notell(i.se)])
b: rd([sp(ra),fr(h),to(b),notell(i.se)])
L: Argue(perm(B,info.sens), NO, a2) (R8)
h: out([sp(arg),perm(b,i.se),no,a2])
b: rd([sp(arg),perm(b,i.se),no,a2])

Brussels agent
The missing information could possibly include information that
could affect the treatment of Robert’s heart failure. I request the
sensitive information, Robert’s life may be at stake (argument a3)!
B: Ask(B,L,info.sens) (R3)
b: out([sp(ra),fr(b),to(h),ask(i.se)])
h: rd([sp(ra),fr(b),to(h),ask(i.se)])
B: Argue(perm(B,info.sens), ADD(L), a3) (R9)
b: out([sp(arg),perm(b,i.se),add(h),a3])
h: rd([sp(arg),perm(b,i.se),add(h),a3])

London agent
I cannot divulge the sensitive information, because British law pro-
hibits passing on information without the owner’s consent (argu-

ment a4).
L: DontTell(L,B,info.sens) (R7)
h: out([sp(ra),fr(h),to(b),notell(i.se)])
b: rd([sp(ra),fr(h),to(b),notell(i.se)])
L: Argue(perm(B,info.sens), NO, a4) (R8)
h: out([sp(arg),perm(b,i.se),no,a4])
b: rd([sp(arg),perm(b,i.se),no,a4])

Brussels agent
EC law takes precedence over member state law when it would be
in the interests of the owner to divulge the information (argument
a5). You should allow me to access the sensitive information.
B: Argue(perm(B,info.sens), ADD(L), a5) (R9)
b: out([sp(arg),perm(b,i.se),add(h),a5])
h: rd([sp(arg),perm(b,i.se),add(h),a5])

London agent
Only Robert could decide what would be in his interests (argument
a6).
L: Argue(perm(B,info.sens), NO, a6) (R10)
h: out([sp(arg),perm(b,i.se),no,a6])
b: rd([sp(arg),perm(b,i.se),no,a6])

Brussels agent
Robert’s doctor owes a duty of care to Robert and, should he die,
the doctor might be sued by his family, or the Brussels hospital, or
both (argument a7).
B: Argue(perm(B), ADD(L), a7) (R9)
b: out([sp(arg),perm(b,i.se),add(h),a7])
h: rd([sp(arg),perm(b,i.se),add(h),a7])

London agent
I yield to this argument. Now you can access the sensitive informa-
tion (argument a8), I provide it to you.
L: Accept(L,a7,perm(B,info.sens)) (R11)
x: out([sp(arg),perm(b,i.se),accept(h,a7)])
x: +perm(b,i.se)
y: rd([sp(arg),perm(b,i.se),accept(h,a7)])
L: Tell(L,B,info.sens) (R4)
h: in([sp(ra),fr(h),to(b),notell(i.se)])
h: out([sp(ra),fr(h),to(b),tell(i.se)])
b: rd([sp(ra),fr(h),to(b),tell(i.se)])
L: Argue(perm(B,info.sens), YES, a8) (R6)
h: out([sp(arg),perm(b,i.se),yes,a8])
b: rd([sp(arg),perm(b,i.se),yes,a8])
L: Provide(L,B,<content info.sens>) (R5)
h: out([sp(co),fr(h),to(b),content(i.se)])
b: in([sp(co),fr(h),to(b),content(i.se)])

Brussels agent
Thank you.
B: EndDialogue(B,L) (R2)
b: out([sp(ra),fr(b),to(h),end])
h: rd([sp(ra),fr(b),to(h),end])

The dialog then terminates.

4. IMPLEMENTATION
In Section 1, we stated that our primary objective was the de-

velopment of a semantics for these Information-seeking dialogs
which facilitated implementation of the protocol. In order to assess

whether the protocol and semantics of Section 3 met this objective,
we undertook an implementation. For this purpose we used the
TuCSoN software platform for tuple center applications [5], devel-
oped at the Alma Mater Studiorum – Università di Bologna, in Ce-
sena, Italy.3 As mentioned in Section 2.2, the associated program-
ming language, ReSpecT, is equivalent to LGL in expressive power.
Because the implementation was not intended for production use,
only the protocol itself (and the supporting tuple space semantic
framework) was implemented, and we did not create agents capable
of interacting via the protocol. The selection of legally-possible lo-
cutions at each step in a dialog and the creation of content for these
locutions, was left to human participants. The implementation was
undertaken on a standard desktop PC running linux, with simula-
tion of the client (requesting access to some information) and server
(controlling access to that information) enabled through TuCSoN.

The key outcome of this exercise was how readily the pro-
tocol was successfully implemented.4 Our prior experience with
developing a multi-agent co-ordination application using TuCSoN
meant that no learning of the platform was required. The ease of
implementation compares very favorably with another recent expe-
rience of implementation of dialog protocols. Atkinson and col-
leagues [1] implemented a persuasion dialog protocol in Java from
an axiomatic semantics and required significantly more effort. This
could have been due to the greater complexity of Atkinson’s Per-
suasion protocol compared with our Information-seeking protocol,
and/or it may have been due to the absence of a tuple spaces archi-
tecture and associated platform in her implementation. Atkinson
also reported that her implementation led to the identification of
gaps and errors in the specification of the protocol, something we
did not experience.

One issue that did arise in the implementation concerned the
partitioned nature of the tuple space. The semantic framework de-
scribed in Section 3.3 partitions the tuple space for a dialog into
three subspaces for each client-server pair, with potentially differ-
ential access for different clients to these subspaces. During the
implementation, it was found that the current version of TuCSoN
does not permit a space to be partitoned in this way explicitly, and
so we developed a virtual, on-the-fly, partitioning of the tuple cen-
ter. This was achieved through the use of client identifiers in the
names of output tuples created in response to successful requests
for information. In this way, clients without the appropriate identi-
fier would not be able to read the particular tuples, thus maintaining
information security.

5. RELATED WORK AND CONCLUSIONS
As mentioned, Hamblin presented a possible-worlds seman-

tics for question-response interactions in [11], and his subsequent
publications on this topic, especially [12], have been influential in
linguistics. Within computer science, de Boer and colleagues [4]
present operational and failure semantics for agent dialogs involv-
ing ask and tell locutions, where these utterances are understood as
exchanging constraints on variable values, rather than simply vari-
able values themselves. The failure semantics uses failure sets, de-
fined in terms of information irrelevant to the question or answer of
an agent, to provide a semantic account of deadlock behaviors in a
request-response interaction. This work does not consider permis-
sions explicitly, nor arguments over the permissions. In contrast,
Bench-Capon [2] provides an axiomatic semantics for requests and
responses with permissions, but does not consider argument.

3Available from: http://lia.deis.unibo.it/research/tucson/
4The implementation is available from:
www.csc.liv.ac.uk/research/techreports/techreports.html

Several authors have considered or utilized tuple space mod-
els as semantic frameworks for agent dialog protocols. For exam-
ple, McGinnis and colleagues [17] briefly mention an implementa-
tion of an agent protocol using Linda. McBurney and Parsons [15]
compare unpartitioned tuple space models to partitioned commit-
ment stores as semantic frameworks for negotiation dialogs. In the
most extensive treatment, Vasconcelos and colleagues [20] created
a simulation platform for multi-agent electronic institutions using
a tuple spaces architecture, with agents communicating with one
another via the shared tuple space. The rules of the e-institution
and any communications protocols are enforced by specific admin-
istrative agents, the effect of which is similar to LGL. Although the
e-institution approach is quite general, the example studied is a ne-
gotiation, not an information-seeking dialog. In addition, the tuple
space is not partitioned.

Our contribution in this paper is a novel semantics for information-
seeking agent communications protocols involving permissions and
arguments, in which utterances under the protocol are translated
into commands in Law-Governed Linda and, through them, into
actions on certain associated tuple spaces. Although created with a
specific protocol in mind, the semantics could readily be applied
to other agent protocols. Translation of agent dialog utterances
into the commands of a programming language may be seen as
merely mapping one syntax into another. However, the LGL pro-
gramming language commands are understood in terms of their ef-
fects on actual shared memory stores (tuple spaces), and so this
translation may be viewed as a semantic mapping — from agent
utterances under a dialog protocol to actions in the real world of
memory stores. As mentioned in the Introduction, we believe that
the popularity and simplicity of tuple space and tuple center mod-
els, such as Javaspaces and TuCSoN, means that our approach to
semantics will facilitate implementation of agent dialog protocols;
our own implementation has demonstrated the ease with which a
protocol may be implemented. The semantic framework we have
presented here therefore provides a connecting bridge between the
formal specification of a protocol, usually involving an axiomatic
semantics, and its software implementation. In future work, we in-
tend to consider the connections with recent research abstracting
from tuple centers to co-ordination artifacts in general [21].5

6. REFERENCES
[1] K. Atkinson, T. Bench-Capon, and P. McBurney.

Implementation of a dialogue game for persuasion over
action. Technical Report ULCS-04-005, Department of
Computer Science, University of Liverpool, UK, 2004.

[2] T. J. M. Bench-Capon. Specifying the interaction between
information sources. In G. Quirchmayr et al., editors, DEXA
1998, LNCS 1460, pages 425–434, Berlin, 1998. Springer.

[3] N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32(4):444–458, 1989.

[4] F. S. de Boer, R. M. van Eijk, W. van der Hoek, and J.-J. C.
Meyer. A fully abstract model for the exchange of
information in multi-agent systems. Theoretical Computer
Science, 290(3):1753–1773, 2003.

[5] DEIS. TuCSoN Guide: TuCSoN Version 1.4.0. DEIS, Alma
Mater Studiorum – Università di Bologna, Italy, revision 003
edition, 2002. Last changes 16.12.2004.

[6] E. Denti, A. Natali, and A. Omicini. On the expressive power
of a language for programming coordination media. In 1998

5The first three authors are grateful for financial support received from the EC, through
project ASPIC (IST-FP6-002307). We are also grateful to technical assistance received
from the TuCSoN team at the Alma Mater Studiorum – Università di Bologna. A
preliminary version of this work was presented in [7].

ACM Symposium on Applied Computing (SAC’98), pages
169–177, Atlanta, GA, USA, 1998. ACM.

[7] S. Doutre, P. McBurney, and M. Wooldridge. Law-governed
linda as a semantics for agent interaction protocols. In
F. Dignum et al., editors, Proc. AAMAS 2005, pages
1257–1258, New York, USA, 2005. ACM Press.

[8] R. Eijk. Programming Languages for Agent
Communications. PhD thesis, Department of Computer
Science, Utrecht University, The Netherlands, 2000.

[9] FIPA. Communicative Act Library Specification. Standard
SC00037J, Foundation for Intelligent Physical Agents, 2002.

[10] D. Gelernter. Generative communication in Linda. ACM
Trans. Programming Lang. & Systems, 7(1):80–112, 1985.

[11] C. L. Hamblin. Language and the Theory of Information.
Ph.D. thesis, University of London, UK, 1957.

[12] C. L. Hamblin. Questions in Montague English. Foundations
of Language, 10:41–53, 1973.

[13] N. Maudet and B. Chaib-draa. Commitment-based and
dialogue-game-based protocols: new trends in agent
communications languages. Knowledge Engineering Review,
17(2):157–179, 2002.

[14] P. McBurney, R. Eijk, S. Parsons, and L. Amgoud. A
dialogue-game protocol for agent purchase negotiations. J.
Auton. Agents & Multi-Agent Systems, 7(3):235–273, 2003.

[15] P. McBurney and S. Parsons. Posit spaces: a performative
theory of e-commerce. In J. S. Rosenschein et al., editors,
AAMAS 2003, pages 624–631, New York, 2003. ACM Press.

[16] P. McBurney and S. Parsons. A denotational semantics for
deliberation dialogues. In N. R. Jennings et al., editors,
AAMAS 2004, pages 86–93, New York, 2004. ACM Press.

[17] J. P. McGinnis, D. Robertson, and C. Walton. Using
distributed protocols as an implementation of dialogue
games. In M. d’Inverno et al., editors, EUMAS 2003, 2003.

[18] N. H. Minsky and J. Leichter. Law-governed Linda as a
coordination model. In P. Ciancarini et al., editors,
Object-based Models and Languages for Concurrent
Systems, LNCS 924, pages 125–146. Springer, Berlin, 1995.

[19] A. Omicini and E. Denti. From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294, 2001.

[20] W. Vasconcelos, D. Robertson, C. Sierra, M. Esteva,
J. Sabater, and M. Wooldridge. Rapid prototyping of large
multi-agent systems through logic programming. Annals of
Mathematics and AI, 41(2–4):135–169, 2004.

[21] M. Viroli and A. Ricci. Instructions-based semantics of
agent-mediated interaction. In N. R. Jennings et al., editors,
AAMAS 2004, pages 102–109, New York, 2004. ACM Press.

[22] D. N. Walton and E. C. W. Krabbe. Commitment in
Dialogue: Basic Concepts of Interpersonal Reasoning.
SUNY Press, Albany, NY, USA, 1995.

[23] M. J. Wooldridge. Semantic issues in the verification of
agent communication languages. J. Auton. Agents and
Multi-Agent Systems, 3(1):9–31, 2000.

