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Abstract. Efficient proof methods for proving properties specified by
means of normal modal logics are highly desirable, as such logical sys-
tems have been widely used in computer science to represent complex
situations. Resolution-based methods are often designed to deal with for-
mulae in a normal form and the efficiency of the method (also) relies on
how efficient (in the sense of producing fewer and/or shorter clauses) the
translation procedure is. We present a normal form for normal modal
logics and show how the use of simplification, for specific normal log-
ics, together with anti-prenexing and prenexing techniques help us to
produce better sets of clauses.

1 Introduction

Beliefs, knowledge, intentions, desires, and obligations of agents as well as the
behaviour of these (and possibly other) aspects over time are often used to de-
scribe complex situations in computer science. This is the case, for instance, in
the specification of distributed [3] and multi-agent systems [9]. Normal modal
logics are often chosen to model and reason about these situations. Given a log-
ical specification, an automated tool such as, for instance, a theorem prover,
can then be used for verifying properties of the system. However, in order to
model the different aspects of a complex, particular situation, it may be neces-
sary to combine different logical languages. When the combination is given by
the fusion of logical systems, that is, when the components are independently ax-
iomatisable, proofs can be obtained by combining the provers for each language.
Combining those provers may require special care such that all relevant informa-
tion is correctly handled and exchanged between the different tools. Also, this
may require the use of tools which are based on different implementations (e.g.
different input languages) or, worse, on different approaches (e.g. partially based
on translation to first-order language × partially based on the modal language,
resolution × tableau, etc), making this task harder.

We are currently investigating a uniform approach which deals with theorem
proving for a variety of propositional normal modal logics, that is, logics in which
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the schema (ϕ ⇒ ψ) ⇒ ( ϕ ⇒ ψ) (the axiom K), where is the modality
for necessity and ϕ and ψ are well-formed formulae, is valid. We are interested
in multi-modal normal logics based on the following axioms

K : (ϕ ⇒ ψ) ⇒ ( ϕ⇒ ψ)
T : ϕ ⇒ ϕ

D : ϕ ⇒ ♦ϕ

4 : ϕ ⇒ ϕ

5 : ♦ϕ⇒ ♦ϕ

B : ♦ ϕ⇒ ϕ

where ♦ is the modality for possibility. We formally introduce the weakest of
these logics, K(n), in Section 2. The proof method for each logic is resolution-
based and our approach is clausal: in order to prove that a formula, ϕ, is valid,
we first transform its negation, ¬ϕ, into a clausal normal form. Here we do not
focus on the proof method, but on the properties that a normal form for these
logics should have in order to achieve efficiency. We discuss briefly some aspects
that should be considered when designing a normal form for a family of logics.

Firstly, in the propositional case there is only one resolution rule to apply
to the set of clauses, whilst we often need several rules for dealing with modal
logics. This happens because the semantics of modal logics are relative to a
set of worlds, so we often need to perform reasoning tasks which are not local
(to the actual world). Also, if we consider multi-agents contexts, the resolution
rules must consider the different contexts (relative to each agent) in which the
reasoning applies. Separating these contexts may facilitate the reasoning task.
Thus, it should be taken into consideration when designing a normal form for
these logics.

Also, we should think of strategies that could be used to reduce the proof
search. Our work is based on that of [1], but the normal form differs slightly
(where li are literals, i.e., propositions or their negations): clauses are separated
into literal clauses (disjunctions of literals), positive modal clauses (an implica-
tion as l1 ⇒ l2), and negative modal clauses (an implication as l1 ⇒ ¬ l2).
This further separation potentially allows a better design of strategies to guide
the search for a proof when applying the resolution method. For instance, com-
plete strategies for (purely) propositional logic could be used when the parents
are literal clauses. The set of support strategy could also be used when the par-
ents are modal clauses, taking, for instance, the positive modal clauses in the
usable set and the negative modal clauses in the set of support (or vice-versa).

The new normal form is given in Section 3. Transformation into clausal form
is carried out by performing classical style rewriting, simplification, and renam-
ing [8], a technique which may avoid combinatorial explosion on the size of the
formula by replacing complex subformulae by new symbols, whose meaning are
linked to the formula that they are replacing.

Efficient translation is crucial for practical use of the resolution method. By
efficient we mean that the translation method produces fewer or shorter clauses.
In first-order logic, it has been shown [2] that the transformation of a given
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problem into anti-prenex normal form (i.e. when quantifiers are moved inwards
a formula) results in a better set of clauses. However, to the best of our knowl-
edge, there has not been a similar investigation for modal logics. We present
an algorithm for anti-prenexing in Section 4. Experimentally, anti-prenexing to-
gether with simplification, given in Section 5, followed by transformation into
the normal form performs better than both the transformation preceded by anti-
prenexing and transformation alone.

We introduce the prenex normal form in Section 6 and show how this can
also be used to reduce the nesting of modal operators after anti-prenexing. Sim-
plification for specific logics is used in both steps, anti-prenexing and prenexing.
Preliminary results show that the set of clauses is usually smaller than that
obtained by translation into the normal form alone.

Experimental results are given in Section 7. We provide concluding remarks
in Section 8.

2 The Basic Normal Logic

The basic normal modal logic that we present here is known as K(n). This is the
weakest of the normal modal systems, where only the distribution axiom (the
axiom K) holds. There is no restriction on the accessibility relation over worlds.
As the subscript in the name of the logic indicates, we consider the multi-agent
version, given by the fusion of several copies of K(1), one for each agent.

2.1 Syntax

Formulae are constructed from a denumerable set of propositional symbols, P =
{p, q, p′, q′, p1, q1, . . .}. The finite set of agents is defined as A = {1, . . . , n}. In
addition to the standard propositional connectives (¬,∨,∧,⇒), we introduce a
set of unary modal operators 1 , . . . , n , where i ϕ is read as “agent i considers
ϕ necessary”. When n = 1, we may omit the index, that is, ϕ = 1 ϕ. We
do not define the operator ♦: the fact that an “agent i considers ϕ possible” is
expressed by ¬ i ¬ϕ. The language of K(n) is defined as follows:

Definition 1. The set of well-formed formulae, WFFK(n)
:

– the propositional symbols are in WFFK(n)
;

– true and false are in WFFK(n)
;

– if ϕ and ψ are in WFFK(n)
, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ), and

i ϕ (∀i ∈ A).

The following definitions will also be used later.

Definition 2. A literal is either a proposition or its negation.

Definition 3. A modal literal is either i l or ¬ i l, where l is a literal and i
is in the set of agents, A = {1, . . . , n}.
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Definition 4. A formula χ is disjunctive if, and only if, is of the form (ϕ ⇒
ψ), (ϕ ∨ ψ) or ¬(ϕ ∧ ψ). Otherwise, χ is said to be conjunctive.

Polarity of a formula is defined as usual: if a formula is inside the scope of an
even (including zero) number of negation symbols, the formula is said to be of
positive polarity; otherwise, it is of negative polarity.

2.2 Semantics

Semantics of K(n) is given, as usual, in terms of a Kripke structure.

Definition 5. A Kripke structure M for n agents over P is a tuple M =
〈S , π,R1, . . . ,Rn〉, where S is a set of possible worlds (or states) with a distin-
guished world s0 ; the function π(s) : P → {true, false}, s ∈ S, is an interpreta-
tion that associates with each state in S a truth assignment to propositions; and
Ri is a binary relation on S.

The binary relation Ri is intended to capture the possibility relation according
to agent i. So, a pair (s, t) is in Ri if agent i considers world t possible, given
her information in world s. In K(n), the relations are any subsets of S × S.

Truth is defined in terms of the relation |=. We write (M, s) |= ϕ to express
that ϕ is true at world s in the Kripke structure M .

Definition 6. Truth of a formula is given as follows:

– (M, s) |= true

– (M, s) 6|= false

– (M, s) |= p if, and only if, π(s)(p) = true, where p ∈ P
– (M, s) |= ¬ϕ if, and only if, (M, s) 6|= ϕ

– (M, s) |= (ϕ ∧ ψ) if, and only if, (M, s) |= ϕ and (M, s) |= ψ

– (M, s) |= (ϕ ∨ ψ) if, and only if, (M, s) |= ϕ or (M, s) |= ψ

– (M, s) |= (ϕ ⇒ ψ) if, and only if, (M, s) |= ¬ϕ or (M, s) |= ψ

– (M, s) |= i ϕ if, and only if, for all t, such that (s, t) ∈ Ri, (M, t) |= ϕ.

Formulae are interpreted with respect to the distinguished world s0. Intuitively,
s0 is the world from which we start reasoning. Let M = 〈S , π,R1, . . . ,Rn〉 be a
Kripke structure. Thus, a formula ϕ is said to be satisfiable in M if (M, s0) |= ϕ;
it is said to be satisfiable if there is a model M such that (M, s0) |= ϕ; and it is
said to be valid if for all models M then (M, s0) |= ϕ.

3 A Normal Form for K(n)

Formulae in the language of K(n) can be transformed into a normal form called
Separated Normal Form for Normal Logics (SNFK). We introduce a nullary
connective start, in order to represent the world from which we start reasoning.
Formally, we have that (M, s) |= start if, and only if, s = s0. A formula in SNFK
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is represented by a conjunction of clauses, which are true at all states, that is,
they have the general form

∗

∧

i

Ai

where Ai is a clause and ∗, the universal operator is defined as:

(M, s) |= ∗ϕ if, and only if, (M, s) |= ϕ and for all s′ such that (s, s′) ∈
Ri, for some i ∈ A, (M, s′) |= ∗ϕ.

Observe that ϕ holds at the actual world s and at every world reachable from
s, where reachability is defined in the usual way. That is, let M be a model and
u and u′ be worlds in M . Then u′ is reachable from u if, and only if, either
(i) (u, u′) ∈ Ri for some agent i ∈ A; or (ii) there is a world u′′ in M such
that u′′ is reachable from u and u′ is reachable from u′′. The universal operator,
which surrounds all clauses, ensures that the translation of a formula is true at
all worlds. Clauses are in one of the following forms:

– Initial clause start ⇒
r

∨

b=1

lb

– Literal clause true ⇒
r

∨

b=1

lb

– i -clause l ⇒ mi

where l and any lb are literals and mi is a modal literal containing a i or a ¬ i

operator. In general, that is, when we do not need to specify a particular agent,
we often write modal clause to refer to a i -clause.

3.1 Transformation into Normal Form

The translation to SNFK uses the renaming technique [8], where complex sub-
formulae are replaced by new propositional symbols and the truth of these new
symbols is linked to the formulae that they replaced in all states. The translation
into SNFK of a given formula ϕ of K(n) is given by the following transformation
functions, τ0 and τ1, where x is a new propositional symbol:

τ0(ϕ) = ∗(start ⇒ x) ∧ τ1(
∗(x ⇒ ϕ))

The function τ0 is used to anchor the meaning of ϕ to the initial world, where the
formula is evaluated. The function τ1 proceeds with the translation, removing
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classical operators, by means of classical rewriting operations, and replacing
complex formulae which appear in the scope of the i operator, by means of
renaming. The next rewriting rules deal with classical operators (where A and
B are formulae, and x is the propositional symbol introduced by the function
τ0):

τ1(
∗(x ⇒ ¬¬A)) = τ1(

∗(x ⇒ A))
τ1(

∗(x ⇒ (A ∧ B))) = τ1(
∗(x ⇒ A)) ∧ τ1(

∗(x⇒ B))
τ1(

∗(x ⇒ (A ⇒ B))) = τ1(
∗(x ⇒ ¬A ∨ B))

τ1(
∗(x ⇒ ¬(A ∧ B))) = τ1(

∗(x ⇒ ¬A ∨ ¬B))
τ1(

∗(x ⇒ ¬(A ⇒ B))) = τ1(
∗(x ⇒ A)) ∧ τ1(

∗(x⇒ ¬B))
τ1(

∗(x ⇒ ¬(A ∨ B))) = τ1(
∗(x ⇒ ¬A)) ∧ τ1(

∗(x ⇒ ¬B))

We rename complex subformulae enclosed in a modal operator as follows, where
y is a new proposition and A is not a literal.

τ1(
∗(x⇒ i A)) = τ1(

∗(x ⇒ i y)) ∧ τ1(
∗(y ⇒ A))

τ1(
∗(x ⇒ ¬ i A)) = τ1(

∗(x ⇒ ¬ i ¬y)) ∧ τ1(
∗(y ⇒ ¬A))

Next we use renaming on formulae whose right-hand side has disjunction as its
main operator but may not be in the correct form (where y is a new proposition,
D is a disjunction of formulae, A is not a literal or an implication, and D′ and
D′′ are formulae):

τ1(
∗(x ⇒ D ∨ (D′ ⇒ D′′))) = τ1(

∗(x ⇒ D ∨ ¬D′ ∨D′′))
τ1(

∗(x ⇒ D ∨ A)) = τ1(
∗(x ⇒ D ∨ y)) ∧ τ1(

∗(y ⇒ A))

Finally, we rewrite formulae whose right-hand side is a disjunction of literals into
clause form, that is, as an implication. Modal clauses whose right-hand side is
a modal literal are already in the normal form, so no further transformation is
required. Note that each modal clause contains only one modal literal. So, the
different contexts belonging to different agents are already separated at the end
of the translation and we do not require further renaming as in [1].

τ1(
∗(x ⇒ D)) =

{

∗(true ⇒ ¬x ∨D) if D is a disjunction of literals
∗(x⇒ D) if D is a modal literal

As an example, the translation of 1 (a⇒ b) ⇒ ( 1 a⇒ 1 b) is given by:

τ0( 1 (a⇒ b) ⇒ ( 1 a⇒ 1 b)) = ∗(start ⇒ t1)∧
τ1(

∗(t1 ⇒ 1 (a⇒ b) ⇒ ( 1 a⇒ 1 b)))

where

τ1(
∗(t1 ⇒ 1 (a⇒ b) ⇒ ( 1 a⇒ 1 b))) =
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= τ1(
∗(t1 ⇒ ¬( 1 (a⇒ b)) ∨ ( 1 a⇒ 1 b)))

= τ1(
∗(t1 ⇒ t2 ∨ ¬ 1 a ∨ 1 b)) ∧ τ1(

∗(t2 ⇒ ¬( 1 (a⇒ b))))

= τ1(
∗(t1 ⇒ t2 ∨ t3 ∨ t4)) ∧ τ1(

∗(t2 ⇒ ¬ 1 ¬t5)) ∧ τ1(
∗(t3 ⇒ ¬ 1 a))∧

τ1(
∗(t4 ⇒ 1 b)) ∧ τ1(

∗(t5 ⇒ ¬(a⇒ b)))

= ∗(true ⇒ ¬t1 ∨ t2 ∨ t3 ∨ t4) ∧
∗(t2 ⇒ ¬ 1 ¬t5) ∧

∗(t3 ⇒ ¬ 1 a)∧
∗(t4 ⇒ 1 b) ∧ τ1(

∗(t5 ⇒ a)) ∧ τ1(
∗(t5 ⇒ ¬b)))

= ∗(true ⇒ ¬t1 ∨ t2 ∨ t3 ∨ t4) ∧
∗(t2 ⇒ ¬ 1 ¬t5) ∧

∗(t3 ⇒ ¬ 1 a)∧
∗(t4 ⇒ 1 b) ∧ ∗(true ⇒ ¬t5 ∨ a) ∧

∗(true ⇒ ¬t5 ∨ ¬b)

The translation procedure results in 7 clauses: one initial, three literal, and three
modal clauses. Note also that the new propositional symbols ti, (1 ≤ i ≤ 5), were
introduced during renaming of complex formula: either a disjunct which is not
a literal or a complex formula inside the scope of a modal operator.

3.2 Correctness of Translation

In order to prove that the translation into normal form is satisfiability preserving,
we need to prove the following lemmas. Firstly, we show that if the translated
formula is satisfiable in a model, then the original formula is also satisfiable.

Lemma 1. Let ϕ be a formula in K(n), and M be a model. If M |= τ1(
∗(x ⇒

ϕ)), then M |= ∗(x ⇒ ϕ), where x is a propositional symbol.

Proof. By induction on the structure of ϕ. In the following s is a world in M .
For the base cases, ϕ is a disjunction of literals or a modal literal. The latter is
obvious. We show that if D is a disjunction of literals and (M, s) |= τ1(

∗(x ⇒
D)), then (M, s) |= ∗(x ⇒ D). If (M, s) |= τ1(

∗(x ⇒ D)), then, by the
transformation givent by τ1, (M, s) |= ∗(true ⇒ ¬x∨D). By semantics of the
universal operator, for any world t reachable from s, we have (M, t) |= (true ⇒
¬x∨D). By propositional reasoning (M, t) |= (¬true∨¬x∨D), which simplifies
to (M, t) |= (¬x ∨ D), as ¬true cannot be satisfied. Again, by propositional
reasoning, (M, t) |= (x ⇒ D). By semantics of ∗, as t is any world reachable
from s, we have that (M, s) |= ∗(x ⇒ D).

We only prove the case where ϕ is of the form i A, where A is not a literal,
that is, if (M, s) |= τ1(

∗(x ⇒ i A)), we show that (M, s) |= ∗(x ⇒ i A).
The cases for other operators are similar. If (M, s) |= τ1(

∗(x ⇒ i A)), we
first show that (M, s) |= τ1(

∗(x ⇒ i y)) ∧ τ1(
∗(y ⇒ A)). If (M, s) |=

τ1(
∗(x ⇒ i y)), then (i) (M, s) |= ∗(x ⇒ i y) (as this is a base case). If

(M, s) |= τ1(
∗(y ⇒ A)), by induction hypothesis, (ii) (M, s) |= ∗(y ⇒ A).

Let t be a world in M , such that t = s or t is reachable from s. From (i), (ii),
the semantics of ∗, and propositional reasoning, we have (M, t) |= ((x ⇒

i y) ∧ (y ⇒ A)). Also, if (t, t′) ∈ Ri, for some t′ in M , by semantics of i ,
we have that if (M, t) |= x, then (M, t′) |= y. As t′ is also reachable from s,
from (ii), by propositional reasoning, we have (M, t′) |= A. Thus, by semantics
of necessitation, (M, t) |= (x ⇒ i A), for all t reachable from s. By semantics
of ∗, we have (M, s) |= ∗(x ⇒ i A). ut
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Lemma 2. Let ϕ be a formula in K(n), M be a model. If M |= τ0(ϕ), then
M |= ϕ.

Proof. Let s be a world in M . If (M, s) |= τ0(ϕ), we first show that (M, s) |=
∗(start ⇒ x)∧ τ1(

∗(x ⇒ ϕ)). By semantics of ∗, (M, s) |= (start ⇒ x).
Suppose that (M, s) |= start (otherwise we are done). Then by semantics of
implication, (i) (M, s) |= x. By Lemma 1, if (M, s) |= τ1(

∗(x ⇒ ϕ)), then
(M, s) |= ∗(x ⇒ ϕ). By semantics of ∗, we have (ii) (M, s) |= (x ⇒ ϕ).
From (i) and (ii), by propositional reasoning, (M, s) |= ϕ. ut

Next we show that if a formula is satisfiable, then its translation into normal
form also is satisfiable. The next lemma shows that the transformation function
τ1 preserves satisfiability.

Lemma 3. Let ∗(x ⇒ ϕ), where x is a propositional symbol. Let M =
〈S ,R1, . . . ,Rn, π〉 be a model. If M |= ∗(x ⇒ ϕ), then there is a model
M ′ such that M ′ |= τ1(

∗(x ⇒ ϕ)).

Proof. By induction on the structure of ϕ. Suppose that M |= ∗(x ⇒ ϕ),
we show how to construct a model M ′ such that M ′ |= τ1(

∗(x ⇒ ϕ)). The
application of τ1 consists of two main operations: rewriting and renaming. We
examine both operations. For the base cases, that is, if ϕ is a disjunction of
literals or a modal literal, we do not introduce new propositional symbols and
we only need propositional reasoning to show that taking M ′ = M , we have
M ′ |= τ1(

∗(x⇒ ϕ)).

Assume that ϕ is of the form A ∧ B. Then τ1(
∗(x ⇒ (A ∧ B))) is given

by τ1(
∗(x ⇒ A)) ∧ τ1(

∗(x ⇒ B)). Clearly, if M |= ( ∗(x ⇒ (A ∧ B))),
then M |= ( ∗(x ⇒ A)) and M |= ( ∗(x ⇒ B)). By induction hypothesis,
taking M ′ exactly as M , we obtain a model which satisfies the translation, that
is, M ′ |= τ1(

∗(x⇒ (A∧B))). Proofs for rewriting of other classical operators
are similar.

Now assume that ϕ is of the form i A, where A is not a literal. Then the
transformation, τ1(

∗(x ⇒ i A)), is given by ∗(x⇒ i y)∧τ1(
∗(y ⇒ A)).

Let M ′ be exactly as M , but π(s′)(y) = true for all s′ ∈ S such that (s, s′) ∈ Ri

and π(s)(x) = true. Let s be any world in M . Thus, if (M, s) |= x, because
(M, s′) |= y, for all (s, s′) ∈ Ri, then (M ′, s) |= (x ⇒ i y); if (M, s) 6|= x,
then (M ′, s) 6|= x and the implication holds at (M ′, s). By semantics of ∗,
M ′ |= ( ∗(x ⇒ i y)). For all s ∈ S , if (M ′, s) |= y then (M ′, s) |= A, because
y and A are true at the worlds which are are accessible from where x holds.
Therefore (M ′, s) |= (y ⇒ A). If (M ′, s) 6|= y, then the implication is vacuously
true. Thus, by semantics of ∗, M ′ |= ∗(y ⇒ A). By induction hypothesis,
M ′ satisfies the translation of ∗(x ⇒ i A), that is, M ′ |= ∗(x ⇒ i y) ∧
τ1(

∗(y ⇒ A)). The proofs for other cases of renaming are similar. ut

Lemma 4. Let ϕ be a formula in K(n). Let M = 〈S ,R1, . . . ,R1, π〉 be a model.
If M |= ϕ, then there is a model M ′ such that M ′ |= τ0(ϕ).
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Proof. Let s0 ∈ S , be the initial world in M . Suppose M |= ϕ. Construct
a model M ′ that is identical to M , but where M ′ |= start if, and only if,
M ′ |= x, that is π(s)(x) = true if, and only if, s = s0, for s ∈ S. Clearly,
M ′ |= ∗(start ⇒ x)∧ ∗(x ⇒ ϕ). Given this and, by Lemma 3, it is possible
to construct a new model for every application of τ1, then there is a model such
that M ′ |= ∗(start ⇒ x) ∧ τ1(

∗(x⇒ ϕ)), that is, M ′ |= τ0(ϕ). ut

Thus, a formula is satisfiable if, and only if, its translation into the normal form
is satisfiable.

Theorem 1. Let ϕ be a formula in K(n)and M a model. M |= ϕ if, and only
if, there is a models M ′ such that M ′ |= τ0(ϕ).

Proof. By Lemmas 2 and 4. ut

4 Anti-Prenexing

Anti-prenexing has been used in first-order theorem proving as a step applied
before skolemization, in order to achieve a better set of clauses [2]. Similarly to
first-order, anti-prenexing in the modal context means that all modal operators
are moved inwards the formula as far as possible, whilst preserving satisfiability.
In the weakest normal logic, K(n), that means that we can distribute the necessity
operator, , over conjunctive formulae; and the possibility operator, ¬ ¬,
over disjunctive formulae. The definition of the anti-prenex normal form is given
below.

Definition 7. A modal term is a literal or formula of the form M1 . . .Mkl,
where l is a literal and Mi, 1 ≤ i ≤ k, is j or ¬ j for some j ∈ A.

Note that aliteral l, which is not preceded by any modal operator, is also a modal
term.

Definition 8. Let ϕ and ψ be formula in WFFK(n)
. A formula χ is in Anti-

Prenex Normal Form (APNF) if, and only if,

1. χ is a modal term; or
2. χ is of the form ¬ϕ, (ϕ∧ψ), (ϕ∨ψ) or (ϕ⇒ ψ), and ϕ and ψ are in APNF;
3. χ is of the form i ϕ, ϕ is disjunctive, and/or ϕ is in APNF; or
4. χ is of the form ¬ i ϕ, ϕ is conjunctive, and/or ϕ is in APNF.

The following lemma shows that any formula can be transformed into APNF.

Lemma 5. Let ϕ be a formula in K(n) and M a model in K(n). Then there is a
formula ϕ′ in APNF such that if M |= ϕ then M |= ϕ′.

Proof. The following schemata are theorems of K(n):

1. i (ϕ ∧ ψ) ⇔ ( i ϕ ∧ i ψ)
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2. i ¬(ϕ ⇒ ψ) ⇔ ( i ϕ ∧ i ¬ψ)
3. i ¬(ϕ ∨ ψ) ⇔ ( i ¬ϕ ∧ i ¬ψ)
4. ¬ i ¬(ϕ ⇒ ψ) ⇔ ( i ϕ ⇒ ¬ i ¬ψ)
5. ¬ i ¬(ϕ ∨ ψ) ⇔ (¬ i ¬ϕ ∨ ¬ i ¬ψ)
6. ¬ i (ϕ ∧ ψ) ⇔ (¬ i ϕ ∨ ¬ i ψ)

ut

The transformation into SNFK consists of two steps: transforming the for-
mulae into anti-prenex, as defined below, and then applying the transformation
function given in Subsection 3.1. Firstly, based on the schemata presented in
Lemma 5, we define a function α(ϕ), where ϕ is a formula, which produces the
anti-prenex normal form of ϕ. The base case occurs when the formula A is al-
ready in APNF, that is, A is a modal term. In this case, α(A) = A. If the main
operator is modal, we only apply the transformation function to formula which
satisfies the equivalences in Lemma 5, that is, in the following cases:

α( i (A ∧ B)) = α( i A ∧ i B)
α( i ¬(A ⇒ B)) = α( i A ∧ i ¬B)
α( i ¬(A ∨ B)) = α( i ¬A ∧ i ¬B)

α(¬ i ¬(A ⇒ B)) = α( i A⇒ ¬ i ¬B)
α(¬ i ¬(A ∨ B)) = α(¬ i ¬A ∨ ¬ i ¬B)
α(¬ i (A ∧ B)) = α(¬ i A ∨ ¬ i B)

If we have two consecutive modal operators, the function is applied recursively,
where A is of the form j B or ¬ j B, for any j ∈ A:

α( i A) = α( i α(A))
α(¬ i A) = α(¬ i α(A))

If the main operator is a modal operator, but the formula inside its scope is not
one of the above, we apply the anti-prenexing function to this formula, that is:

α( i A) = i α(A)
α(¬ i A) = ¬ i α(A)

When the main operator is classical, the transformation function is also applied
recursively. Note that when the polarity of a subformula is negative, we rewrite
the formula in order to make this explicit.

α(¬¬A) = α(A)
α(A ⇒ B) = α(¬A) ∨ α(B)
α(A ∧ B) = α(A) ∧ α(B)
α(A ∨ B) = α(A) ∨ α(B)

α(¬(A ⇒ B)) = (α(A) ∧ α(¬B))
α(¬(A ∧ B)) = (α(¬A) ∨ α(¬B))
α(¬(A ∨ B)) = (α(¬A) ∧ α(¬B))
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The proof that this transformation is correct and satisfiability can be obtained
as in Subsection 3.2 for translation into SNFK and will not be presented here.

As an example, the APNF of i (a ∧ i (b ∧ i c)) is given by:

α( i (a ∧ i (b ∧ i c))) =

= α( i a ∧ i i (b ∧ i c))
= α( i a) ∧ α( i i (b ∧ i c))
= i a ∧ α( i α( i (b ∧ i c)))
= i a ∧ α( i α( i b ∧ i i c))
= i a ∧ α( i (α( i b) ∧ α( i i c)))
= i a ∧ α( i ( i b ∧ i i c))
= i a ∧ α( i i b ∧ i i i c)
= i a ∧ α( i i b) ∧ α( i i i c)
= i a ∧ i i b ∧ i i i c

whose transformation into the normal form is:

∗(start ⇒ x) ∧ ∗(x ⇒ i a) ∧ ∗(x ⇒ i y) ∧ ∗(y ⇒ i b)∧
∗(x ⇒ i z) ∧ ∗(z ⇒ i w) ∧ ∗(w ⇒ i c).

5 Simplification Rules

The anti-prenexing pre-processing of a formula may result in fewer or shorter
clauses. For instance, consider the formula i (a∧ b). Transformation into SNFK

results in four clauses ( ∗(start ⇒ x), ∗(x ⇒ i y), ∗(true ⇒ ¬y ∨ a),
and ∗(true ⇒ ¬y ∨ b)), whilst transformation into the normal form preceded
by anti-prenexing results in three clauses ( ∗(start ⇒ x), ∗(x ⇒ i a), and

∗(x ⇒ i b)). However, this is not always the case. Depending on the nesting
of modal operators in the original formula, the number of clauses generated
after anti-prenexing and translation into SNFK can be significantly larger than
by applying the transformation into SNFK alone. The reason is that the modal
operator that had appeared only once in the formula now has several copies
distributed over subformulae.

However, when applied together with simplification, anti-prenexing may re-
duce the number of clauses, by collapsing of nested modal operators in the
original formula. Obviously, this depends on the particular normal modal logic
we are considering. We discuss in this section the simplification rules that could
be applied together with anti-prenexing, before transformation into SNFK , in
the case of KTD45(n) and KD45(n). The first normal modal logic, also known
as S5(n) – the logic of knowledge for multiple agents – is axiomatisable by the
schemata K, T, D, 4, and 5 and the rules of inference: modus ponens (from ` ϕ
and ` (ϕ ⇒ ψ) infer ` ψ) and modal necessitation rule (from ` ϕ infer ` i ϕ).
The logics KD45(n), known as the logic of belief for multiple agents, is axioma-
tisable by the schemata K, D, 4, and 5 and the rules of inference modus ponens
and modal necessitation rule. As the schemata i i ϕ⇔ i ϕ, i ¬ i ϕ⇔ ¬ i ϕ,
¬ i ¬ i ϕ ⇔ i ϕ, ¬ i i ϕ ⇔ ¬ i ϕ are valid in KTD45(n) and in KD45(n), we
extend the anti-prenexing function in the obvious way:
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α( i i ϕ) = α( i ϕ)
α( i ¬ i ϕ) = α(¬ i ϕ)

α(¬ i ¬ i ϕ) = α( i ϕ)
α(¬ i i ϕ) = α(¬ i ϕ)

We note that we only apply this simplification when the modal operators have
the same index. Other simplification rules could also be introduced, but we chose
not to do this and, instead, preserving some of the structure of the formula. Using
these simplification rules, the anti-prenex normal form of the previous example,
i.e. i (a ∧ i (b ∧ i c)), is i a ∧ i b ∧ i c, which has the same size as the
original formula. The translation into SNFK results, however, in four clauses.
Table 1 show the three transformations for comparison.

i (a ∧ i (b ∧ i c))

SNFK AP + SNFK AP + SIMP + SNFK

i (a ∧ i (b ∧ i c)) i a ∧ i i b ∧ i i i c i a ∧ i b ∧ i c

1. start ⇒ x

2. x ⇒ i y

3. true ⇒ ¬y ∨ a

4. y ⇒ i z

5. true ⇒ ¬z ∨ b

6. z ⇒ i c

1. start ⇒ x

2. x ⇒ i a

3. x ⇒ i y

4. y ⇒ i b

5. x ⇒ i z

6. z ⇒ i w

7. w ⇒ i c

1. start ⇒ x

2. x ⇒ i a

3. x ⇒ i b

4. y ⇒ i c

Table 1. Translation (from left to right) without Anti-Prenexing, after Anti-Prenexing,
and after Anti-Prenexing and Simplification.

Note that no simplification rule could be applied to the original formula.
By moving the modal operators inwards the formula, simplification could be
applied, resulting in fewer and shorter clauses.

6 Prenexing

Similarly to first-order logic, prenexing in the modal context means to pull modal
operators as far as possible outwards the formula. It is well-known that formulae
in KTD45(1) can be transformed into a formula without nesting of modal opera-
tors (see [5], for instance). As we are interested in a more general form of prenex-
ing than that given for KTD45(1), we say that a formula is in prenex normal form
if it corresponds to the inverse of the transformation into anti-prenexing. Thus,
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the transformation is justified by the same equivalences appearing in Lemma 5.
Our definition of the prenexing function is similar to that given in Section 4 and
will not be presented here. Instead, in this section, we give the motivation for
using both techniques together with simplification for KTD45(n) and KD45(n).

When a formula ϕ is transformed into APNF, the nesting of modal operators
is made explicit and can be easily simplified. On the other hand, several copies
of a modal operator may now appear in the formula. By performing the transfor-
mation into prenex normal form, after anti-prenexing and simplification, we try
to remove such copies and make the formula shorter. We note that the order in
which the transformations are applied is important. Consider, for instance, the
formula given in previous examples, that is, i (a∧ i (b∧¬ i ¬c)). This formula
is in prenex normal form, as we cannot apply any of the equivalences given in
Lemma 5 to move the modal operators outwards the formula. However, if we
apply anti-prenexing with simplification, we obtain, as seen before, the formula

i a∧ i b∧ i c. The result of applying the prenex function is i (a∧b∧c), which is
shorter than both the original formula and the one obtained after anti-prenexing
with simplification. In this case, however, the transformation into SNFK results
in one more clause. We give below an example where the number of clauses is
smaller than that produced by the other methods without prenexing:

Formula ¬ i ¬(a ∨ ¬ i ¬(b ∨ ¬ i ¬c))
↓

Anti-Prenexing ¬ i ¬a ∨ ¬ i ¬¬ i ¬b ∨ ¬ i ¬¬ i ¬¬ i ¬c

↓

Anti-Prenexing + Simplification ¬ i ¬a ∨ ¬ i ¬b ∨ ¬ i ¬c

↓

Prenex ¬ i ¬(a ∨ b ∨ c)
↓

SNFK

1. ∗(start ⇒ x)
2. ∗(true ⇒ ¬ i ¬y)
3. ∗(true ⇒ ¬y ∨ a ∨ b ∨ c)

As a final example, consider the formula ¬ i ¬( i a ∧ i b), which is already
in APNF, as the modal operator ¬ i ¬ cannot be distributed over conjunc-
tions. Also, no simplification rule can be applied to the formula. After applying
prenexing, however, we obtain ¬ i ¬ i (a∧ b), which simplifies to i (a ∧ b). We
do not apply anti-prenexing again, which would result in a shorter translation
into SNFK , as discussed at the beginning of Section 5. Nevertheless, the resulting
formula is half the size of the original one and the set of clauses is also smaller.

7 Experimental Results

The examples given here have only the purpose of illustrating the techniques.
We cannot prove, in general, that by applying those techniques we will obtain
a better set of clauses. In order to have a measure of how anti-prenexing and
prenexing behave in comparison to translation to SNFK alone, we have per-
formed tests using formulae from [4].
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The program takes a modal formula and returns its size and number of
literals. It also returns the size and number of literals after transforming the
formula into SNFK alone, into SNFK preceded by anti-prenexing, and into SNFK

preceded by anti-prenexing with simplification. We are currently working on the
implementation of prenexing.

Table 2 shows the output from running the program over formulae from the
benchmark s4_45_p.txt, which contains problems in KT4(1) which are provable
in both KT4(1) and KTD45(1). For each problem, identified in the first column,
we present the total size of the formula (Size) and the number of different literals
(Lits). Columns 2 and 3 refer to the original formula. Columns 4 and 5 show the
result for transformation into SNFK alone. Columns 6 to 8 are related to anti-
prenexing without simplification, where the first two columns are the size of the
problem after transforming into anti-prenexing, and the other two columns are
the result of transforming into SNFK . The last four columns contain the result
for anti-prenexing together with simplification: their contents are similar to those
for anti-prenexing without simplification. The table shows that transformation
into SNFK preceded by anti-prenexing with simplification perform better than
the other two methods. Other experimental results can be found in Appendix A.

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits

1 119 3 207 27 99 3 189 27 77 3 141 19

2 313 3 531 50 257 3 479 50 213 3 383 44

3 581 3 979 87 473 3 877 87 407 3 733 77

4 923 3 1551 122 747 3 1383 150 659 3 1191 130

5 1339 3 2247 183 1079 3 1997 184 969 3 1757 186

6 1829 3 3067 256 1469 3 2719 296 1337 3 2431 264

7 2393 3 4011 387 1917 3 3549 387 1763 3 3213 349

8 3031 3 5079 489 2423 3 4487 489 2247 3 4103 438

9 3743 3 6271 544 2987 3 5533 604 2789 3 5101 555

10 4529 3 7587 664 3609 3 6687 665 3389 3 6207 667

11 5389 3 9027 797 4289 3 7949 869 4047 3 7421 809

12 6323 3 10591 1020 5027 3 9319 1020 4763 3 8743 954

13 7331 3 12279 1182 5823 3 10797 1182 5537 3 10173 1099

14 8413 3 14091 1265 6677 3 12383 1357 6369 3 11711 1280

15 9569 3 16027 1445 7589 3 14077 1446 7259 3 13357 1448

16 10799 3 18087 1638 8559 3 15879 1742 8207 3 15111 1654

17 12103 3 20271 1953 9587 3 17789 1953 9213 3 16973 1859

18 13481 3 22579 2175 10673 3 19807 2175 10277 3 18943 2060

19 14933 3 25011 2286 11817 3 21933 2410 11399 3 21021 2305

20 16459 3 27567 2526 13019 3 24167 2527 12579 3 23207 2529

21 18059 3 30247 2779 14279 3 26509 2915 13817 3 25501 2799
Table 2. Results for Transformations of Formulae in the Logic Workbench
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8 Conclusions

In this paper we have presented an algorithm for transforming any normal modal
formula into a normal form. This can be done because the transformation is based
on valid schemata of the weakest of the normal modal logics, namely K(n). Also,
we investigate how the use of anti-prenexing and prenexing can help in obtaining
a better transformation. Combined with simplification rules, these methods seem
to produce smaller clause sets for problems from some normal logics.

There is no way of defining which is the best normal form, in general. Here
we focused on the size of the transformed problem as a measure for determining
whether the transformation is good. However, we also intend to investigate other
parameters, as for instance the number of clauses and their sizes, as well as
how efficiently a real theorem-prover responds to those different transformations.
As anti-prenexing with simplification moves the modal operators inwards the
formula, those operators are usually applied to simpler formulae, indicating that
we could have less resolution steps applied to a clause set.

Simplification is an important step in the translation algorithm, but, as
discussed before, it cannot be applied to all normal modal logics. We have
shown the simplification rules for KTD45(n) and KD45(n). The equivalences

i ¬ i ϕ ⇔ ¬ i ϕ and ¬ i ¬ i ϕ ⇔ i ϕ are also valid in K45(n) and KT4(n)

(also known as S4(n)), so the formula resulting from anti-prenexing can be sim-
plified, but not at the same extent as those of KTD45(n) and KD45(n). The other
modal logics do not admit simplification rules for collapsing of nested operators.
In these cases, as our experimental results show, applying anti-prenexing does
not seem to be worthwhile. We are currently working on the complexity of the
transformation in order to determine precisely when anti-prenexing and prenex-
ing of a formula would result in a better set of clauses. That is, the techniques
shown here could be used selectively in a similar way as renaming is used [7].

We are currently working on the implementation of the prenexing algorithm.
We believe that anti-prenexing together with prenexing and simplification will
give us the best result for formulae in KTD45(n) and KD45(n). We hope that the
same combination will give us better results for the other logics.

Current work also involves the development of the resolution-based methods
for each logic. Our intention is that a uniform approach to deal with those logics
– from the designing of the normal forms up to the whole proof-method – will
facilitate the task of validity checking for combinations of those logics.
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A Experimental Results

In this appendix we show results from applying the algorithms for anti-prenexing
and simplification to some formulae from [4].

A.1 s4-45-n

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 161 2 285 32 131 2 261 32 119 2 225 26
2 412 2 707 47 332 2 639 55 308 2 567 54
3 752 2 1273 96 602 2 1141 101 566 2 1033 98
4 1181 2 1983 148 941 2 1767 148 893 2 1623 158
5 1699 2 2837 204 1349 2 2517 234 1289 2 2337 216
6 2306 2 3835 300 1826 2 3391 320 1754 2 3175 326
7 3002 2 4977 397 2372 2 4389 418 2288 2 4137 406
8 3787 2 6263 530 2987 2 5511 529 2891 2 5223 515
9 4661 2 7693 628 3671 2 6757 628 3563 2 6433 646
10 5624 2 9267 736 4424 2 8127 792 4304 2 7767 756
11 6676 2 10985 911 5246 2 9621 943 5114 2 9225 951
12 7817 2 12847 1072 6137 2 11239 1106 5993 2 10807 1083
13 9047 2 14853 1283 7097 2 12981 1282 6941 2 12513 1257
14 10366 2 17003 1433 8126 2 14847 1433 7958 2 14343 1459
15 11774 2 19297 1593 9224 2 16837 1675 9044 2 16297 1621
16 13271 2 21735 1846 10391 2 18951 1891 10199 2 18375 1901
17 14857 2 24317 2072 11627 2 21189 2119 11423 2 20577 2085
18 16532 2 27043 2361 12932 2 23551 2360 12716 2 22903 2324
19 18296 2 29913 2563 14306 2 26037 2563 14078 2 25353 2597
20 20149 2 32927 2775 15749 2 28647 2883 15509 2 27927 2811
21 22091 2 36085 3106 17261 2 31381 3164 17009 2 30625 3176

A.2 s4-45-p

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 119 3 207 27 99 3 189 27 77 3 141 19
2 313 3 531 50 257 3 479 50 213 3 383 44
3 581 3 979 87 473 3 877 87 407 3 733 77
4 923 3 1551 122 747 3 1383 150 659 3 1191 130
5 1339 3 2247 183 1079 3 1997 184 969 3 1757 186
6 1829 3 3067 256 1469 3 2719 296 1337 3 2431 264
7 2393 3 4011 387 1917 3 3549 387 1763 3 3213 349
8 3031 3 5079 489 2423 3 4487 489 2247 3 4103 438
9 3743 3 6271 544 2987 3 5533 604 2789 3 5101 555
10 4529 3 7587 664 3609 3 6687 665 3389 3 6207 667
11 5389 3 9027 797 4289 3 7949 869 4047 3 7421 809
12 6323 3 10591 1020 5027 3 9319 1020 4763 3 8743 954
13 7331 3 12279 1182 5823 3 10797 1182 5537 3 10173 1099
14 8413 3 14091 1265 6677 3 12383 1357 6369 3 11711 1280
15 9569 3 16027 1445 7589 3 14077 1446 7259 3 13357 1448
16 10799 3 18087 1638 8559 3 15879 1742 8207 3 15111 1654
17 12103 3 20271 1953 9587 3 17789 1953 9213 3 16973 1859
18 13481 3 22579 2175 10673 3 19807 2175 10277 3 18943 2060
19 14933 3 25011 2286 11817 3 21933 2410 11399 3 21021 2305
20 16459 3 27567 2526 13019 3 24167 2527 12579 3 23207 2529
21 18059 3 30247 2779 14279 3 26509 2915 13817 3 25501 2799
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A.3 s4-branch-n

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 76 5 240 27 100 5 250 32 100 5 250 32
2 124 7 375 38 164 7 444 44 164 7 444 44
3 172 9 510 48 228 9 587 55 228 9 587 67
4 220 11 645 66 292 11 781 83 292 11 781 89
5 268 13 780 79 356 13 924 106 356 13 924 106
6 316 15 915 92 420 15 1118 117 420 15 1118 124
7 364 17 1050 104 484 17 1261 139 484 17 1261 139
8 412 19 1185 118 548 19 1455 151 548 19 1455 155
9 460 21 1320 129 612 21 1598 168 612 21 1598 172
10 508 23 1455 144 676 23 1792 203 676 23 1792 203
11 556 25 1590 157 740 25 1935 204 740 25 1935 205
12 604 27 1725 170 804 27 2129 222 804 27 2129 222
13 652 29 1860 181 868 29 2272 221 868 29 2272 245
14 700 31 1995 196 932 31 2466 265 932 31 2466 283
15 748 33 2130 209 996 33 2609 296 996 33 2609 296
16 796 35 2265 222 1060 35 2803 295 1060 35 2803 314
17 844 37 2400 235 1124 37 2946 317 1124 37 2946 317
18 892 39 2535 248 1188 39 3140 329 1188 39 3140 333
19 940 41 2670 259 1252 41 3283 346 1252 41 3283 350
20 988 43 2805 274 1316 43 3477 393 1316 43 3477 393
21 1036 45 2940 287 1380 45 3620 382 1380 45 3620 383

A.4 s4-branch-p

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 80 5 253 29 104 5 257 33 104 5 257 33
2 128 7 388 38 168 7 451 49 168 7 451 53
3 176 9 523 55 232 9 594 70 232 9 594 72
4 224 11 658 68 296 11 788 85 296 11 788 89
5 272 13 793 81 360 13 931 99 360 13 931 104
6 320 15 928 92 424 15 1125 120 424 15 1125 124
7 368 17 1063 107 488 17 1268 140 488 17 1268 148
8 416 19 1198 120 552 19 1462 170 552 19 1462 170
9 464 21 1333 133 616 21 1605 176 616 21 1605 186
10 512 23 1468 146 680 23 1799 188 680 23 1799 192
11 560 25 1603 159 744 25 1942 206 744 25 1942 211
12 608 27 1738 170 808 27 2136 227 808 27 2136 231
13 656 29 1873 185 872 29 2279 260 872 29 2279 262
14 704 31 2008 198 936 31 2473 263 936 31 2473 267
15 752 33 2143 211 1000 33 2616 277 1000 33 2616 282
16 800 35 2278 222 1064 35 2810 298 1064 35 2810 302
17 848 37 2413 237 1128 37 2953 318 1128 37 2953 338
18 896 39 2548 250 1192 39 3147 360 1192 39 3147 360
19 944 41 2683 263 1256 41 3290 354 1256 41 3290 376
20 992 43 2818 276 1320 43 3484 370 1320 43 3484 374
21 1040 45 2953 289 1384 45 3627 384 1384 45 3627 389
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A.5 s4-grz-n

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 153 4 520 72 186 4 534 74 183 4 504 67
2 175 4 592 78 211 4 605 83 208 4 575 76
3 207 4 684 85 248 4 697 86 245 4 667 84
4 247 4 794 93 294 4 807 99 291 4 777 92
5 295 5 922 102 349 5 935 104 346 5 905 99
6 355 5 1100 112 413 5 1113 116 410 5 1083 115
7 423 5 1296 129 486 5 1309 132 483 5 1279 127
8 499 5 1510 143 568 5 1523 146 565 5 1493 143
9 583 5 1742 156 659 5 1755 162 656 5 1725 157
10 679 5 2024 173 759 5 2037 180 756 5 2007 175
11 783 5 2324 193 868 5 2337 200 865 5 2307 195
12 895 5 2642 213 986 5 2655 220 983 5 2625 215
13 1015 5 2978 233 1113 5 2991 240 1110 5 2961 235
14 1147 5 3364 256 1249 5 3377 264 1246 5 3347 263
15 1287 5 3768 283 1394 5 3781 284 1391 5 3751 280
16 1435 5 4190 304 1548 5 4203 315 1545 5 4173 310
17 1591 5 4630 328 1711 5 4643 340 1708 5 4613 341
18 1759 5 5120 371 1883 5 5133 373 1880 5 5103 368
19 1935 5 5628 384 2064 5 5641 398 2061 5 5611 393
20 2119 5 6154 415 2254 5 6167 425 2251 5 6137 437
21 2311 5 6698 460 2453 5 6711 462 2450 5 6681 458

A.6 s4-grz-p

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 192 5 662 89 231 5 669 89 227 5 639 83
2 213 5 728 93 256 5 734 96 252 5 704 91
3 244 5 814 100 294 5 820 104 290 5 790 98
4 283 5 918 108 342 5 924 109 338 5 894 104
5 330 6 1040 115 400 6 1046 119 396 6 1016 113
6 389 6 1212 123 464 6 1218 129 460 6 1188 124
7 456 6 1402 135 538 6 1408 136 534 6 1378 135
8 531 6 1610 146 622 6 1616 150 618 6 1586 152
9 614 6 1836 170 716 6 1842 171 712 6 1812 165
10 709 6 2112 181 816 6 2118 190 812 6 2088 184
11 812 6 2406 203 926 6 2412 204 922 6 2382 203
12 923 6 2718 215 1046 6 2724 220 1042 6 2694 219
13 1042 6 3048 238 1176 6 3054 239 1172 6 3024 235
14 1173 6 3428 265 1312 6 3434 266 1308 6 3404 261
15 1312 6 3826 279 1458 6 3832 280 1454 6 3802 276
16 1459 6 4242 304 1614 6 4248 305 1610 6 4218 301
17 1614 6 4676 329 1780 6 4682 330 1776 6 4652 326
18 1781 6 5160 358 1952 6 5166 366 1948 6 5136 361
19 1956 6 5662 390 2134 6 5668 409 2130 6 5638 403
20 2139 6 6182 420 2326 6 6188 433 2322 6 6158 434
21 2330 6 6720 463 2528 6 6726 471 2524 6 6696 465



20 Cláudia Nalon and Clare Dixon

A.7 s4-ipc-n

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 3 2 3 2 4 2 12 4 4 2 12 4
2 16 4 50 9 20 4 51 9 20 4 51 9
3 35 5 97 12 42 5 98 14 42 5 98 15
4 60 6 152 18 70 6 153 20 70 6 153 21
5 91 7 215 24 104 7 216 26 104 7 216 27
6 128 8 286 30 144 8 287 32 144 8 287 33
7 171 9 365 36 190 9 366 38 190 9 366 39
8 220 10 452 42 242 10 453 44 242 10 453 45
9 275 11 547 48 300 11 548 50 300 11 548 51
10 336 12 650 54 364 12 651 56 364 12 651 57
11 403 13 761 60 434 13 762 62 434 13 762 63
12 476 14 880 66 510 14 881 68 510 14 881 69
13 555 15 1007 72 592 15 1008 74 592 15 1008 75
14 640 16 1142 78 680 16 1143 80 680 16 1143 81
15 731 17 1285 84 774 17 1286 86 774 17 1286 87
16 828 18 1436 90 874 18 1437 92 874 18 1437 93
17 931 19 1595 96 980 19 1596 98 980 19 1596 99
18 1040 20 1762 102 1092 20 1763 104 1092 20 1763 105
19 1155 21 1937 108 1210 21 1938 110 1210 21 1938 111
20 1276 22 2120 114 1334 22 2121 116 1334 22 2121 117
21 1403 23 2311 120 1464 23 2312 122 1464 23 2312 123

A.8 s4-ipc-p

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 11 2 44 10 14 2 44 10 14 2 44 10
2 27 3 87 13 33 3 87 13 33 3 87 14
3 49 4 138 17 58 4 138 19 58 4 138 20
4 77 5 197 23 89 5 197 25 89 5 197 26
5 111 6 264 29 126 6 264 31 126 6 264 32
6 151 7 339 35 169 7 339 37 169 7 339 38
7 197 8 422 41 218 8 422 43 218 8 422 44
8 249 9 513 47 273 9 513 49 273 9 513 50
9 307 10 612 53 334 10 612 55 334 10 612 56
10 371 11 719 59 401 11 719 61 401 11 719 62
11 441 12 834 65 474 12 834 67 474 12 834 68
12 517 13 957 71 553 13 957 73 553 13 957 74
13 599 14 1088 77 638 14 1088 79 638 14 1088 80
14 687 15 1227 83 729 15 1227 85 729 15 1227 86
15 781 16 1374 89 826 16 1374 91 826 16 1374 92
16 881 17 1529 95 929 17 1529 97 929 17 1529 98
17 987 18 1692 101 1038 18 1692 103 1038 18 1692 104
18 1099 19 1863 107 1153 19 1863 109 1153 19 1863 110
19 1217 20 2042 113 1274 20 2042 115 1274 20 2042 116
20 1341 21 2229 119 1401 21 2229 121 1401 21 2229 122
21 1471 22 2424 125 1534 22 2424 127 1534 22 2424 128
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A.9 s4-md-n

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 3 2 11 5 3 2 11 5 3 2 11 5
2 15 2 42 9 15 2 42 9 12 2 36 8
3 50 2 129 21 52 2 129 21 41 2 99 16
4 121 2 318 48 140 2 324 51 103 2 222 32
5 243 2 651 96 319 2 801 122 213 2 429 59
6 431 2 1170 171 627 2 1646 262 386 2 744 100
7 700 2 1917 279 1110 2 3093 496 637 2 1191 158
8 1065 2 2934 426 1820 2 5232 867 981 2 1794 236
9 1541 2 4263 618 2815 2 8455 1412 1433 2 2577 337
10 2143 2 5946 861 4159 2 12790 2186 2008 2 3564 464
11 2886 2 8025 1161 5922 2 18835 3238 2721 2 4779 620
12 3785 2 10542 1524 8180 2 26508 4635 3587 2 6246 808
13 4855 2 13539 1956 11015 2 36661 6438 4621 2 7989 1031
14 6111 2 17058 2463 14515 2 49054 8726 5838 2 10032 1292
15 7568 2 21141 3051 18774 2 64841 11572 7253 2 12399 1594
16 9241 2 25830 3726 23892 2 83576 15067 8881 2 15114 1940
17 11145 2 31167 4494 29975 2 106763 19296 10737 2 18201 2333
18 13295 2 37194 5361 37135 2 133702 24362 12836 2 21684 2776
19 15706 2 43953 6333 45490 2 166295 30362 15193 2 25587 3272
20 18393 2 51486 7416 55164 2 203540 37411 17823 2 29934 3824
21 21371 2 59835 8616 66287 2 247785 45618 20741 2 34749 4435

A.10 s4-s5-n

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 17 3 51 13 19 3 57 14 15 3 41 11
2 101 9 357 54 123 9 363 57 114 9 341 51
3 185 15 669 96 225 15 675 99 216 15 653 93
4 269 21 981 138 327 21 987 141 318 21 965 135
5 353 27 1293 180 429 27 1299 183 420 27 1277 177
6 437 33 1605 222 531 33 1611 225 522 33 1589 219
7 521 39 1917 264 633 39 1923 267 624 39 1901 261
8 605 45 2229 306 735 45 2235 309 726 45 2213 303
9 689 51 2541 348 837 51 2547 351 828 51 2525 345
10 773 57 2853 390 939 57 2859 393 930 57 2837 387
11 857 63 3165 432 1041 63 3171 435 1032 63 3149 429
12 941 69 3477 474 1143 69 3483 477 1134 69 3461 471
13 1025 75 3789 516 1245 75 3795 519 1236 75 3773 513
14 1109 81 4101 558 1347 81 4107 561 1338 81 4085 555
15 1193 87 4413 600 1449 87 4419 603 1440 87 4397 597
16 1277 93 4725 642 1551 93 4731 645 1542 93 4709 639
17 1361 99 5037 684 1653 99 5043 687 1644 99 5021 681
18 1445 105 5349 726 1755 105 5355 729 1746 105 5333 723
19 1529 111 5661 768 1857 111 5667 771 1848 111 5645 765
20 1613 117 5973 810 1959 117 5979 813 1950 117 5957 807
21 1697 123 6285 852 2061 123 6291 855 2052 123 6269 849



22 Cláudia Nalon and Clare Dixon

A.11 s4-s5-p

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 36 4 121 21 46 4 133 25 34 4 105 18
2 90 7 343 46 109 7 355 50 97 7 327 43
3 144 10 559 70 172 10 571 74 160 10 543 67
4 198 13 775 94 235 13 787 98 223 13 759 91
5 252 16 991 118 298 16 1003 122 286 16 975 115
6 306 19 1207 142 361 19 1219 146 349 19 1191 139
7 360 22 1423 166 424 22 1435 170 412 22 1407 163
8 414 25 1639 190 487 25 1651 194 475 25 1623 187
9 468 28 1855 214 550 28 1867 218 538 28 1839 211
10 522 31 2071 238 613 31 2083 242 601 31 2055 235
11 576 34 2287 262 676 34 2299 266 664 34 2271 259
12 630 37 2503 286 739 37 2515 290 727 37 2487 283
13 684 40 2719 310 802 40 2731 314 790 40 2703 307
14 738 43 2935 334 865 43 2947 338 853 43 2919 331
15 792 46 3151 358 928 46 3163 362 916 46 3135 355
16 846 49 3367 382 991 49 3379 386 979 49 3351 379
17 900 52 3583 406 1054 52 3595 410 1042 52 3567 403
18 954 55 3799 430 1117 55 3811 434 1105 55 3783 427
19 1008 58 4015 454 1180 58 4027 458 1168 58 3999 451
20 1062 61 4231 478 1243 61 4243 482 1231 61 4215 475
21 1116 64 4447 502 1306 64 4459 506 1294 64 4431 499

A.12 s4-t4p-n

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 148 4 347 50 150 4 376 58 118 4 269 37
2 300 4 719 98 312 4 862 132 242 4 565 73
3 452 4 1091 146 490 4 1428 222 366 4 861 109
4 604 4 1463 194 684 4 2074 328 490 4 1157 145
5 756 4 1835 242 894 4 2800 450 614 4 1453 181
6 908 4 2207 290 1120 4 3606 588 738 4 1749 217
7 1060 4 2579 338 1362 4 4492 742 862 4 2045 253
8 1212 4 2951 386 1620 4 5458 912 986 4 2341 289
9 1364 4 3323 434 1894 4 6504 1098 1110 4 2637 325
10 1516 4 3695 482 2184 4 7630 1300 1234 4 2933 361
11 1668 4 4067 530 2490 4 8836 1518 1358 4 3229 397
12 1820 4 4439 578 2812 4 10122 1752 1482 4 3525 433
13 1972 4 4811 626 3150 4 11488 2002 1606 4 3821 469
14 2124 4 5183 674 3504 4 12934 2268 1730 4 4117 505
15 2276 4 5555 722 3874 4 14460 2550 1854 4 4413 541
16 2428 4 5927 770 4260 4 16066 2848 1978 4 4709 577
17 2580 4 6299 818 4662 4 17752 3162 2102 4 5005 613
18 2732 4 6671 866 5080 4 19518 3492 2226 4 5301 649
19 2884 4 7043 914 5514 4 21364 3838 2350 4 5597 685
20 3036 4 7415 962 5964 4 23290 4200 2474 4 5893 721
21 3188 4 7787 1010 6430 4 25296 4578 2598 4 6189 757
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A.13 s4-t4p-p

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 93 4 219 36 89 4 221 37 68 4 161 26
2 169 4 405 60 166 4 434 68 130 4 309 44
3 245 4 591 84 245 4 667 103 192 4 457 62
4 321 4 777 108 328 4 920 142 254 4 605 80
5 397 4 963 132 415 4 1193 185 316 4 753 98
6 473 4 1149 156 506 4 1486 232 378 4 901 116
7 549 4 1335 180 601 4 1799 283 440 4 1049 134
8 625 4 1521 204 700 4 2132 338 502 4 1197 152
9 701 4 1707 228 803 4 2485 397 564 4 1345 170
10 777 4 1893 252 910 4 2858 460 626 4 1493 188
11 853 4 2079 276 1021 4 3251 527 688 4 1641 206
12 929 4 2265 300 1136 4 3664 598 750 4 1789 224
13 1005 4 2451 324 1255 4 4097 673 812 4 1937 242
14 1081 4 2637 348 1378 4 4550 752 874 4 2085 260
15 1157 4 2823 372 1505 4 5023 835 936 4 2233 278
16 1233 4 3009 396 1636 4 5516 922 998 4 2381 296
17 1309 4 3195 420 1771 4 6029 1013 1060 4 2529 314
18 1385 4 3381 444 1910 4 6562 1108 1122 4 2677 332
19 1461 4 3567 468 2053 4 7115 1207 1184 4 2825 350
20 1537 4 3753 492 2200 4 7688 1310 1246 4 2973 368
21 1613 4 3939 516 2351 4 8281 1417 1308 4 3121 386


