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Preface

This volume contains the proceedings of FTP’07, the sixth workshop on First-
Order Theorem Proving, held September 12 and 13, 2007, in Liverpool, England
(UK). As for the previous events of this series, the focus of this workshop is
on �rst-order theorem proving as a core theme of Automated Deduction, and
its aim is to provide a forum for presentation of recent work and discussion of
research in progress. The workshop was co-located with the sixth International
Symposium on Frontiers of Combining Systems (FroCoS’07), held September
10-12, 2007 also in Liverpool. On September 12, 2007, there was also a joint
session with Viorica Sofronie-Stokkermans as (joint) invited speaker.

These proceedings contain seven regular papers and the abstract of three
\presentation-only" papers (i.e. papers submitted or accepted for publication
elsewhere), each of which was reviewed by three referees. The regular papers
present and discuss various topics related to �rst-order theorem proving such
as a calculus for clauses admitting existential quanti�ers (called geometric res-
olution), a reasoning system based on Manna and Waldinger’s tableaux to be
used in education, theorem proving for functional programming, simpli�cation of
complex proof obligations obtained from program veri�cation, automated proofs
of a modularity result for the termination of term rewriting systems, inductive
theorem proving in the context of term rewriting systems modulo some equa-
tional theories. The three \presentation-only" papers selected by the program
committee present simulation results for propositional modal logic calculi by
�rst-order resolution, discuss the support that can be provided by �rst-order
resolution for theorem proving in the monodic fragment of �rst-order temporal
logic, and introduce a calculus for an extension of temporal logic. For these, only
abstracts have been included in the proceedings.

I welcomed three invited lectures: one by Viorica Sofronie-Stokkermans on
\Hierarchical and Modular Reasoning in Complex Theories: The Case of Local
Theory Extensions" (joint with FroCoS’07), one by Martin Giese on \Aspects
of First-order Reasoning in the KeY system", and one by Bernd Fischer on
\Applying FTPs in Formal Software Safety Certi�cation.". Short abstracts of
all talks are included in this volume.

I would like to thank the members of the program committee and one external
referee for their care and time in reviewing the submitted papers. I would also
like to thank the members of the local organisation committee. In particular, I
express my gratitude to the local organisation committee chair, Ullrich Hustadt,
for his help and support in all phases of the workshop.

Finally, I gratefully acknowledge the �nancial support provided by EPSRC
grant EP/F014058/1 to this workshop.

Silvio Ranise
LORIA and INRIA-Lorraine

Nancy, August 2007
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Hierarchical and Modular Reasoning in Complex

Theories: The Case of Local Theory Extensions

Viorica Sofronie-Stokkermans

Max-Planck-Institut f�ur Informatik, Campus E1 4, D-66123 Saarbr�ucken, Germany
sofronie@mpi-inf.mpg.de

Abstract

Many problems in computer science can be reduced to proving the satis�ability
of conjunctions of literals w.r.t. a background theory. This can be a concrete
theory (e.g. the theory of real or rational numbers), the extension of a theory with
additional functions (free, monotone, or recursively de�ned) or a combination of
theories. It is therefore very important to have e�cient procedures for checking
the satis�ability of conjunctions of ground literals in such theories.

We give an overview of results on hierarchical and modular reasoning in
complex theories (cf. e.g. [1,2,3,4]). We show that for a special type of extensions
of a base theory, which we call local, hierarchical reasoning is possible (i.e. proof
tasks in the extension can be hierarchically reduced to proof tasks w.r.t. the
base theory). Many theories important for computer science or mathematics
fall into this class (examples are theories of data structures, theories of free
or monotone functions, functions occurring in mathematical analysis, but also
complex extensions, in which various types of functions or data structures are
taken into account at the same time). We show how local theory extensions can
be identi�ed and under which conditions locality is preserved when combining
theories, and we investigate possibilities of e�cient reasoning in local theory
extensions and combinations. We also present several examples of application
domains where local theory extensions occur in a natural way. We show, in
particular, that various phenomena analyzed in the veri�cation literature can be
explained in a uni�ed way using the notion of locality.

References

1. S. Jacobs, V. Sofronie-Stokkermans. Applications of hierarchical reasoning in the
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174(8):39{54, 2007.

2. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In 20th
International Conference on Automated Deduction (CADE-20), LNAI 3632, pages
219{234, 2005. Springer.

3. V. Sofronie-Stokkermans. Interpolation in local theory extensions. In Proc. of
the International Joint Conference on Automated Reasoning (IJCAR 2006), LNAI
4130, pages 235{250. Springer, 2006.
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Aspects of First-order Reasoning in the

KeY System

Martin Giese

Research Institute for Symbolic Computation, Johannes Kepler University
Altenbergerstr. 69, A-4040 Linz, Austria
martin.giese@risc.uni-linz.ac.at

Abstract

The deductive program veri�cation system developed as part of the KeY project
[4,3,1] is based on a sequent calculus for a certain dynamic logic, which is spe-
cially tailored to the veri�cation of Java-Card programs. The sequent calculus
symbolically executes programs, until proof obligations in �rst-order logic are
obtained. To simplify reasoning about objects of a Java program, the �rst-order
logic of KeY has strongly typed terms and subtyping [7]. In the context of pro-
gram veri�cation, it is desirable to have an integrated interactive and automated
theorem prover [5], and moreover, an automated proof procedure that does not
require backtracking [6]. Theory-speci�c reasoning in KeY is done by enhanc-
ing the prover with theory-speci�c rules, known as taclets [2], which can easily
be formulated in a special rule language. Alternatively, KeY may call various
external SMT solvers to handle common datatypes.
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Applying First-Order Theorem Provers in

Formal Software Safety Certi�cation

Bernd Fischer

School of Electronics and Computer Science, University of Southampton
Southampton SO17 1BJ, United Kingdom

b.fischer@ecs.soton.ac.uk

Abstract

Formal software safety certi�cation approaches like proof-carrying code use Hoare-
style techniques to prove that programs satisfy a variety of safety properties.
The properties range from simple language-speci�c properties like initialization-
before-use or array-bounds safety to more complex domain-speci�c properties
as for example frame safety, which is speci�c to the navigation domain. All of
these properties are simpler than full functional correctness, so that the emerging
proof obligations are simpler as well, and come within reach of the capabilities
of current fully automated �rst-order theorem provers.

In this talk, I will describe our approach to safety certi�cation of automat-
ically generated code, where we exploit its idiomatic structure to construct the
annotations (e.g., loop invariants) necessary for fully automatic proofs. The an-
notations can be constructed during the code generation process, by embedding
annotation templates into the code templates, or during a completely separate
post-generation inference phase, where aspect-oriented techniques are used to
annotate the crucial code fragments. We have implemented both techniques and
integrated them into our AutoBayes and AutoFilter program generation sys-
tems; in ongoing work, we apply the inference technique to code generated from
Matlab-models. Here I will focus on our experience in integrating �rst-order
theorem provers as \o�-the-shelf" components into such systems. I will outline
the requirements this application puts on the provers and present the results we
achieved with di�erent provers.

Joint work with Ewen Denney and Johann Schumann, RIACS/NASA Ames
Research Center.
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Inductive Proof Search Modulo

Fabrice Nahon1, Claude Kirchner2, H�el�ene Kirchner2

1 LORIA?

2 INRIA & LORIA
Nancy, France

Abstract. We present an original narrowing-based proof search method
for inductive theorems in equational rewrite theories given by a rewrite
system R and a set E of equalities. It has the speci�city to be grounded
on deduction modulo and to rely on narrowing to provide both induction
variables and instantiation schemas. Whenever the equational rewrite
system (R; E) has good properties of termination, su�cient complete-
ness, and when E is constructor and variable preserving, narrowing at
de�ned-innermost positions leads to consider only uni�ers which are con-
structor substitutions. This is especially interesting for associative and
associative-commutative theories for which the general proof search sys-
tem is re�ned. The method is shown to be sound and refutationaly com-
plete.
Keywords: Deduction modulo, Noetherian induction, equational rewrit-
ing, equational narrowing.

Introduction

Proof by induction is a main reasoning principle and is of prime interest in infor-
matics. Typically in hardware and software veri�cation problems, when dealing
with security protocols or safety properties of embedded systems, reasoning on
complex data structures with in�nite data or states makes a prominent use of
induction.

Three main approaches have been developed for mechanizing inductive
proofs: (i) explicit induction, used in proof assistants like Nqthm-ACL2 [KM96],
Coq[BC04], Isabelle[NPW02] or Inka [AHMS99], (ii) implicit induction by
rewriting used in automated theorem provers like RRL [KZ95] or Spike [BKR92]
and that should not be confused with the third one, (iii) induction by consis-
tency, as clearly emphasized in [Com01, section 1.3] where the interested reader
can also �nd all the relevant references on that last approach. As a bridge be-
tween the two �rst trends, a proof search mechanism for such inductive proofs
has been explored in [DKKN03,Dep02,KKN07] relying on the deduction modulo
approach [DHK03]. Although already quite expressive, the latter approach is
designed for theories expressed as rewrite rules and is thus limited by the fact
that axioms like commutativity cannot be oriented as a rule without loosing
termination of the underlying rewrite system.

? UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP



Inductive Proof Search Modulo 5

The solution consists then of using equational rewriting (also called rewrit-
ing modulo) as pioneered by [PS81] and [JK86] and to extend the proof search
method developed in [DKKN03] in order to perform induction in theories con-
taining such non orientable axioms. This extension should also be compared
to implicit induction techniques used for induction modulo associativity and
commutativity as done in [BBR96] and [Aot06] who generalises [Red90]. The
following example is helpful to make this comparison and show how our method
is essentially di�erent from the previous ones. Assume that we want to prove

{ Sorts: nat;
{ constructors: 0 : ! nat s : nat ! nat
{ de�ned functions: + : nat� nat ! nat � : nat� nat ! nat
{ rules:

x+ 0 ! x x � 0 ! 0 exp(x; 0) ! s(0)
x+ s(y) ! s(x+ y) x � s(y) ! x � y + x exp(x; s(y)) ! x � exp(x; y)

Fig. 1. Simple arithmetic

the proposition 8x; y; n exp(x � y; n) � exp(x; n) � exp(y; n), where + and �
are also assumed to be associative and commutative (AC). The method de-
veloped in [Ber97] is based on induction schemes. More precisely, it computes
a subset of variables of the goal, the induction variables, and a set of terms,
the test set. The induction variables are replaced by elements of the test set,
and such replacements produce new conjectures which are simpli�ed by rewrite
rules of the speci�cation and smaller instances of the original conjecture (the
induction hypothesis). The proof is completed when all newly generated con-
jectures are simpli�ed into known or trivial inductive theorems. Algorithms are
provided to compute induction variables and test sets. In the example above,
the induction variables are x, y, and n, and the test set is f0; s(x)g. Therefore,
a test instance is exp(s(x0) � s(y0); s(n0)) � exp(s(x0); s(n0)) � exp(s(y0); s(n0)).
However, this last equality can be reduced by rules of the speci�cation into
s(x0) � s(y0) � exp(s(x0 + y0 + x0 � y0); n0) � exp(s(x0); n0) � exp(s(y0); n0), which
cannot be simpli�ed by the induction hypothesis, and the proof attempt may
fail. One can avoid this di�culty if the set of induction variables is restricted.
That is why [Ber97] have de�ned an heuristic in order to select good induction
variables relying on observations of the Nqthm-ACL2 system. Using this strategy
in the example above, only the variable n is instantiated and the proof search
succeeds. However, the method does not remain refutationaly complete under
such an heuristic.

In our approach, the induction step is performed by narrowing at de�ned-
innermost positions, when the theory is axiomatized by a su�ciently complete
and terminating equational rewrite system. More precisely, it su�ces to per-
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form the narrowing step at only one de�ned-innermost position. In the situation
above, these de�ned innermost positions are 1:1, 2:1 and 2:2. Now, since � is
commutative, the goal remains equivalent by permuting the variables x and y,
therefore two possibilities remain: narrowing at the de�ned-innermost position
1:1 where the symbol � occurs, or 2:1 where the symbol exp occurs. Considering
the latter better, since it further creates more reductions, we choose to narrow at
the position 2:1. After normalization, we obtain the trivial subgoal s(0) � s(0)
and x � y � exp(x � y; n) � x � y � exp(x; n) � exp(y; n) which can be reduced by
the induction hypothesis.

It is important to emphasize that the latter strategy for selecting one de�ned-
innermost position to perform the narrowing step remains refutationaly com-
plete, whenever the speci�cation has good properties: more precisely, this is the
case when, given a rewrite system R and a set E of equalities, the rewrite re-
lation R; E of Peterson and Stickel [PS81,JK86] is terminating and su�ciently
complete modulo E, and when E is constructor preserving. Furthermore, under
those conditions, narrowing at de�ned-innermost positions leads to consider only
uni�ers which are constructor substitutions. Hence, serious di�culties, related
to the size of complete sets of uni�ers, can be avoided. For instance, it becomes
possible to perform induction modulo non �nitary theories like associativity.

The paper is structured as follows. Section 1 recalls basic results about rewrit-
ing and narrowing, and introduces the concepts of constructor preserving theo-
ries, de�ned-innermost positions and complete sets of constructor uni�ers that
are used in the following. In Section 2, we explain how deduction modulo man-
ages the Noetherian induction principle and we present the proof search sys-
tem for inductive proofs modulo a general theory E, which is proved sound
and refutationaly complete. Section 3 deals with the special case of associative-
commutative theories or associative theories. The proof system of Section 2 is
instantiated in these cases with more operational proof steps.

1 Basic ingredients

For the main notations and classical results on term rewriting, we refer for in-
stance to [BN98] or [KK99].

We assume given a many sorted signature (S; �) (or simply �, for short)
where S is a set of sorts and � is a set of function symbols, each symbol f
given with a rank f : S1 � : : : � Sn ! S, where S1; : : : ; Sn; S 2 S and n is
the arity of f . We assume moreover that the signature � comes in two parts,
S = C [ D, where C is a set of constructor symbols, and D is a set of de�ned
symbols. A constructor term is a term built only with constructor symbols. Let
X be a family of sorted variables. The set of well-sorted terms over � (resp.
well-sorted constructor terms) with variables in X will be denoted by T (�;X )
(resp. T (C;X )). The subset of T (�;X ) (resp. T (C;X )) of variable-free terms,
or ground terms, is denoted T (�) (resp. T (C)). A term t 2 T (�;X ) is identi�ed
as usual to a function from its set of positions (strings of positive integers)
Dom(t) to symbols of � and X . We note " the empty string (root position).
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The subterm of t at position ! is denoted by tj!. The result of replacing tj! with
s at position ! in t is denoted by t[s]!. This notation is also used to indicate
that s is a subterm of t and, in this case, the position ! may be omitted. Var(t)
denotes the set of (free) variables of the term t and jVar(t)j its cardinality.

We de�ne
����!
Var(t) as the vector of variables assumed linearly ordered by their

name. These notations are extended to equalities t1 � t2 seen as terms with top
symbol � of arity 2, as well as to rewrite rules. A substitution is a �nite mapping
fx1 ! t1; : : : ; xn ! tng where x1; : : : ; xn 2 X and t1; : : : ; tn 2 T (�;X ). We use
post�x notation for substitutions application and composition. The domain of
a substitution � is the set Dom(�) = fx 2 X j x� 6= xg, the set of variables
introduced by � is the set Ran(�) =

S

x2Dom(�)

Var(x�), and the image of � is the

set Im(�) = ft 2 T (�;X ) j 9x 2 Dom(�); t = x�g. A substitution � is ground
whenever Im(�) � T (�), and is constructor whenever Im(�) � T (C;X ). Given
two terms s and t, a uni�er of s and t is a substitution � such that s� = t�, and
a most general uni�er of s and t (mgu(s; t) for short) is a uni�er � such that,
for any uni�er � of s and t, there exists a substitution � such that � = �� on
the variables of s and t.
Given a relation! on T (�;X ),

+
! and

�
! denote the transitive and the reexive

transitive closure of! respectively. A normal form of t, denoted t #, is such that
t

�
! t # and t # cannot be reduced by the relation !. The normalized form � #

of a substitution � is de�ned by x(� #) = (x�) # for all x 2 Dom(�). An equality
is an expression of the form e1 � e2, where e1 and e2 are two terms of the same
sort. Given a set E of equalities, =E denotes the congruence generated by E.
We always understand equalities in a symmetric way, i.e. we make no di�erence
between e1 � e2 and e2 � e1.
Given two terms s and t, an E-uni�er of s and t is a substitution � such that
s� =E t�, and a complete set of E-uni�ers of s and t (CSUE(s; t) for short) is a
set of E-uni�ers of s and t satisfying: for any E-uni�er � of s and t, there exists
a substitution � such that � =E ��[Var(s) [ Var(t)], i.e. �(x) =E ��(x) for all
x 2 Var(s) [ Var(t).

De�nition 1.1. A set E of equalities is regular i� for any equality e1 � e2 2 E,
Var(e1) = Var(e2). A set E of equalities is constructor preserving whenever E
is regular, and, for any equality e1 � e2 2 E, e1 2 T (C;X )) e2 2 T (C;X ).

As a consequence of this de�nition, a set E of equalities is constructor preserving
i� two terms cannot be E-equivalent whenever one of them is constructor and
the other is not. Typically, if + 2 D and 0 2 C, 0 + x = x (as well as all
non-constructor headed collapse axioms) is not constructor preserving (since
0 + 0 = 0) but associativity or commutativity of + are.

1.1 Equational rewriting and narrowing

We recall some basic notions introduced in [JK86]. A rewrite rule is an ordered
pair of terms l ! r such that Var(r) � Var(l) and l is not a variable. A
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conditional rewrite rule c) l! r moreover satis�es Var(c) � Var(l). A rewrite
system R is a set of rewrite rules. An equational rewrite system is given by a
set of rewrite rules R and a set of equalities E. Let !R=E (R=E for short)
be the relation =E � !

R
� =E which simulates the relation induced by R in

E-equivalence classes.

De�nition 1.2. An equational rewrite system (R; E) is terminating modulo E
i� the relation R=E is Noetherian, i.e. there is no in�nite sequence of the form
t0 =E t00 !

R
t1 : : : tn =E t0n !

R
tn+1 ! : : :. It is ground terminating modulo E if

it is terminating modulo E over the set of ground terms.

Given an equational rewrite system (R; E), the rewriting modulo E relation
!R;E (R; E for short) and the narrowing modulo E relation ;R;E are de�ned
as follows:

De�nition 1.3. Given two terms s; t 2 T (�;X ), s rewrites modulo E to t,
denoted s !R;E t, whenever there exist a rewrite rule l ! r 2 R, a position
! 2 Dom(t), and a substitution �, such that sj! =E l� and t = s[r�]!. In this
case, s is said R; E-reducible. In addition, for a conditional rule c ) l ! r, c�
must evaluate to true when applying the rule. Also, s narrows modulo E into
t, denoted s ;R;E t, whenever there exist a rewrite rule l ! r 2 R, a position
! 2 Dom(t), and a substitution �, such that sj!� =E l� and t = (s[r]!)�.

Since !R�!R;E�!R=E , termination of R=E implies termination of !R and
!R;E . Su�cient completeness is a fundamental property which states that it is
always possible to rewrite any ground non-constructor term into a constructor
one:

De�nition 1.4. A relation ! is su�ciently complete modulo E when, for any
s 2 T (�), there exists t 2 T (C), such that s

�
! t. The equational rewrite system

(R; E) is su�ciently complete modulo E if the relation !R;E is.

For ground terminating and su�ciently complete modulo E rewrite systems,
it is possible to specify particular positions in terms where reductions must apply,
and where case analysis by rewriting can usefully be done.

De�nition 1.5. For any t 2 T (�;X ), a position ! in t is called de�ned-
innermost, and we denote ! 2 DI(t), if t(!) 2 D and t(!0) 2 C [ X whenever
! < !0.

For instance, considering the Peano’s integers de�ned in the simple arithmetic
example of Fig. 1, in s((0 + 0) + s(0 + s(x))), the positions 1:1 and 1:2:1 are
de�ned-innermost but 1 is not.
The following proposition states that de�ned-innermost positions are ground
R; E-reducible under appropriate assumptions:

Proposition 1.1. Assume that (R; E) is su�ciently complete modulo E and
that E is constructor preserving. Then, for any term t, for any ground R; E-
normalized substitution �, and for any ! 2 DI(t), t� is R; E-reducible at the
position !.
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1.2 Constructor E-uni�ers

A main di�erence between previous narrowing or superposition-based ap-
proaches and the one proposed in this paper, is that the uni�cation used here
to perform narrowing is quite restricted. For instance, when reasoning modulo
associativity, instead considering potentialy in�nite sets of uni�ers, we can safely
restrict to �nitely many ones.

For a given set E of equalities, constructor E-uni�ers are a key to tame the
proof search system IndNarrowModE presented below. Complete sets of construc-
tor E-uni�ers are generating sets of constructor uni�ers:

De�nition 1.6. Let s; t 2 T (�;X ), a substitution � is a constructor E-uni�er
of s and t if s� =E t� and Im(�) � T (C;X ). Given two terms s; t 2 T (�;X ),
CSUCE(s; t) is a complete set of constructor E-uni�ers of s and t, if:

Correctness: every � of CSUCE(s; t) is a constructor E-uni�er of s and t;

Completeness: for any constructor E-uni�er of s and t, there exist � 2
CSUCE(s; t) and a substitution �, such that � =E �� [Var(s) [ Var(t)];

Domain: for any � 2 CSUCE(s; t), Ran(�) \ Dom(�) = ;.

If E is constructor preserving and satisfy syntactic conditions detailled
in [Nah07], the subset of all constructor elements of CSUE(s; t) is a complete
set of constructor E-uni�ers of s and t. This is in particular the case when con-
sidering AC of A theories involving only de�ned symbols. More precisely, when
E is an AC theory involving only de�ned symbols, if s and t are terms and ! is
a de�ned-innermost position in s, then CSUCE(sj!; t) is CSUCF (sj!; t), where
F denotes the subset of commutativity axioms of E. In other words, in this case
AC constructor uni�cation reduces to C constructor uni�cation. Similarly if E
is an associative theory involving only de�ned symbols, although CSUE(sj!; t)
may be in�nite, CSUCE(sj!; t) is CSUC;(sj!; t) which of course simpli�es con-
siderably the induced proof space.

To conclude this section, the following proposition shows that, whenever
E is constructor preserving and (R; E) is su�ciently complete modulo E, the
narrowing step at de�ned-innermost positions is performed with constructor
substitutions:

Proposition 1.2. Assume that (R; E) is su�ciently complete modulo E and
that E is constructor preserving. Then, for all t1; : : : ; tn 2 T (C;X ), for any f 2
D, for any ground R; E-irreducible instantiation � of f(t1; : : : ; tn), and for any
set V such that Dom(�) � V , there exist a rewrite rule l ! r 2 R, a substitution
� 2 CSUCE(f(t1; : : : ; tn); l) and a substitution � such that: �� =E � [V ].

Thanks to these settings, we now present an inductive proof search system,
relying on a main induction rule that uses narrowing to choose both the induction
variables and the instantiation schema.
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2 A proof search system for induction modulo

The proof search system IndNarrowModE for inductive proofs introduced in this
section is based on (restricted) narrowing and rewriting. The main rule, called
Induce, performs the induction step. Its intuition is the following: in order
to apply the induction hypothesis, one should decrease the size of the goal by
rewriting it using a noetherian rewrite system. Whenever the goal does not
rewrite, it should be �rst instantiated to be then rewritten, i.e. it should be
narrowed. By expressing this in the sequent calculus modulo, we provide an
explicit and constructive bridge between the rewrite-based implicit and explicit
approaches of induction.

2.1 The proof search system IndNarrowModE

Let < be a Noetherian order on a set � , i.e. such that there is no in�nite sequence
of elements of the form a0 > a1 > : : : > an > : : : . The Noetherian induction
principle states that a proposition P holds for any element x of � if P holds for
all b in � with b < x. Formally, if 8x x 2 � ^ (8b b 2 � ^ b < x) P (b))) P (x);
then P holds for all x in � . Hence, if we write Noeth(<; �) to state that < is
a Noetherian relation over � , and NoethInd(P;<; �) the proposition above, the
Noetherian induction principle is the right-hand side of the following implication:

NI : 8 < 8� [Noeth(<; �)) 8P (NoethInd(P;<; �)) 8xP (x))]

To emphasize the order condition b < x, and since b is universally quanti�ed, we
rename b into x. From now on, we instantiate � by the set of ground terms T (�),
P by an equality predicate � and < by the proper part of a quasi ordering 6

de�ned on the set of terms T (�;X ). The induction hypothesis becomes therefore
8x(x < x ) s(x) � t(x)), with x any variable of s � t. It is also possible
to de�ne an induction hypothesis with respect to all variables of s � t. Let
�!x 2 X n denote the vector of variables of s � t. In order to compare n-tuples
of terms, we use the standard extension on the Cartesian product 6n of 6:
8�!u ;�!v 2 T (�;X )n �!u 6n

�!v , (8i 1 � i � n ) ui 6 vi). In which case the
induction hypothesis becomes:

REind(s � t; <n; T (�)n) : (�!x 2 T (�)n ^�!x <n
�!x )) s(�!x ) � t(�!x )

and �!x is therefore the vector of free variables of REind(s � t; <n; T (�)n).
In order to simplify the notations, and when no confusion can occur, we denote
it simply REind(s � t; <). The following notation, where � is any substitution,
will also be used:

REind(s � t; <)� : (�!x 2 T (�)n ^ �!x <n
�!x �)) s(�!x ) � t(�!x )

There is no space here to detail how an inductive proof (that requires at least
second-order logic) can be formalized in HOL��[DHK01]. This is in particular
detailled in [Dep02] whose main idea relies on deduction modulo [DHK03], where
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the computational and deduction parts of a proof, as well as their interactions,
are identi�ed as such. In �rst-order logic, for example based on the sequent cal-
culus, a congruence on propositions models computation and often consists of a
conuent term rewrite system, rewriting terms to terms and atomic propositions
to propositions. For instance, modulo such a congruence �, the right rule for the
conjunction in sequent calculus modulo is written:

� ‘� A;� � ‘� B;�

� ‘� D;�
if D � A ^B.

In order to provide the notational support for expressing our proof search
methodology, this is further re�ned by writing the sequents �1j�2 ‘RE1jRE2

Q,
where �1 is the deductive part of the user de�nitions, RE1 is their computational
part; �2 is the deductive part for other statements, RE2 is their computational
part; Q is an equational goal. The distinction between �1;RE1 and �2;RE2 is
needed because only RE1 will be used for narrowing. For simplicity, we assume
that RE1 contains only unconditional rules or equalities, and we assume from
now on, that �1 contains a constructor preserving theory E, such that (RE1; E)
is terminating and su�ciently complete modulo E. �2 is initialized with the
proposition NI de�ned above, with the theory of equality Th� satis�ed by the
binary relation �, and, if the goal and the rules in RE2 contain n free variables,
with the proposition Noeth(<n; T (�)n), and may contain other lemmas. RE2

will receive the induction hypotheses provided by application of the proof search
rules, so RE2 may contain conditional equalities.

Example 2.1. Assume that RE1 contains the rules of simple arithmetic given in
Figure 1. RE1 is terminating and su�ciently complete modulo associativity and
commutativity of the � and + operators (denoted AC(+; �)). Let �1 = AC(+; �),
�2 = Th� [ fNI; Noeth(<4; T (�)4)g, and Q = (x1 + x2 + x3) � x4 � x1 � x4 +
x2 � x4 + x3 � x4. Then, we can consider the goal �1j�2 ‘RE1j; Q:

The proof search rules are presented in Figure 2.

Sequents are gathered in a multiset structure modeled with the � operator
that is an AC operator on sequents with 3 as neutral element.

The rule Induce performs the induction step. It uses narrowing to choose
both the induction variable(s) and the instantiation schema. Narrowing is applied
only at de�ned innermost positions DI(Q0) of a goal Q0 E-equivalent to the
current goal Q. Indeed Q0 may be Q itself, and this will be the case for the
derived inference systems where E is A or AC.

The other rules are doing the following: Trivial eliminates a trivial equation,
Rewrite (1 or 2) rewrites using a rule, an equation, or a smaller instance of
a previous goal. Rewrite is duplicated because of the �1;RE1 and �2;RE2

distinction.

This inference rule set is generic and prepares to more operational versions
tailored for AC and A-theories.
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Induce �1j�2 ‘RE1jRE2
Q �

�
l ! r 2 RE1

�0 2 CSUCE(Q0
j!0 ; l)

�1j�2 ‘RE1jRE2�0[fREind(Q;<)�0g (Q0[r]!0)�0

if Q0 =E Q and !0 2 DI(Q0)

Rewrite1 �1j�2 ‘RE1jRE2
Q � �1j�2 ‘RE1jRE2

Q0

if Q!RE1=E Q0

Rewrite2 �1j�2 ‘RE1jRE2
Q � �1j�2 ‘RE1jRE2

Q0

if Q!RE2=E Q0

Trivial �1j�2 ‘RE1jRE2
t � t0 � 3

if t =E t0

Refutation �1j�2 ‘RE1jRE2
Q � Refutation

when no other rules can be applied

Fig. 2. The proof search system IndNarrowModE

2.2 Properties of IndNarrowModE

From now on, let us assume that (R; E) is terminating and su�ciently complete
modulo E, and that E is constructor preserving.

Soundness: Proving soundness amounts showing that for each rule of the proof
search system IndNarrowModE of the form S � S0, if S0 is derivable in the
sequent calculus modulo, then one can also build a proof of S. The main delicate
point is to prove this result for the Induce rule, as stated in the next theorem.

Theorem 2.1. If the sequent �1j�2;
�!x�0 2 T (�)n�0 ‘RE1jRE2�0[fREind(Q)�0g

(Q0[r]!0)�0 is derivable in the sequent calculus modulo, where:

1. Q =E Q0 and !0 2 DI(Q0);
2. l! r 2 RE1 and �0 2 CSUCE(Q0

j!0 ; l);
3. RE2�

0 is the rewrite system obtained by the replacement of each free variable
x of any rewrite rule in RE2 by a corresponding x�0;

4. �!x�0 2 X n�0 is the vector of free variables of RE2�
0 [ fQ�0g;

then, one can build a proof in the sequent calculus modulo of �;�!x 2
T (�)n ‘RE1jRE2

Q where �!x 2 X n denotes the vector of free variables of
RE2 [ fQg.

Refutational correctness: Proving refutational correctness amounts showing
that for each rule of the proof search system IndNarrowModE of the form S � S0,
if S is derivable in the sequent calculus modulo, then one can also build a proof
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of S0. Again the main delicate point is for the Induce rule, and is stated as
follows.

Theorem 2.2. If the sequent �1j�2;
�!x 2 T (�)n ‘RE1jRE2

Q where �!x 2 X n is
the vector of free variables of RE2 [ fQg, admits a proof in the sequent calculus
modulo, then one can build a proof of:

�1j�2;
�!x�0 2 T (�)n�0 ‘RE1jRE2�0[fREind(Q;<)�0g (Q0[r]!0)�0

where Q0 =E Q, l ! r 2 RE1, !0 2 DI(Q0), �0 2 CSUCE(Q0
j!0 ; l), and �!x�0 2

X n�0 is the vector of free variables of RE2�
0 [ fQ�0g.

Refutational completeness: Proving refutational completeness is achieved
thanks to the Refutation rule which applies when no other rule of IndNarrow
can be applied.

Theorem 2.3. If �1j�2 ‘RE1jRE2
Q

�

� Refutation then the sequent �1j�2;
�!x 2

T (�)n ‘RE1jRE2
Q has no proof in the sequent calculus modulo.

3 Induction modulo AC and A

The general IndNarrowModE proof search system is indeed working directly on
equivalence classes modulo E, a situation not directly implementable for most
theories E. To focus on more operational proof search systems where instead
of working with !R=E , we use the operational rewrite relation !R;E , we focus
in this section on the case of associative-commutative or associative theories.
We introduce two proof search systems IndNarrowModAC and IndNarrowModA
as special instances of IndNarrowModE with speci�c improvements and illustrat-
ing examples. Soundness and refutational correctness and completeness of these
systems will be consequences of the properties of IndNarrowModE.

3.1 More about attened terms

In associative and associative-commutative theories, equivalence classes of terms
are often represented by attened terms. We refer for the basic de�nitions and
results about positions and subterms to [Mar93]. Intuitively attening a term
amounts to recursively replace f(f(s; t); u) or f(s; f(t; u)) by f(s; t; u) if f is
an associative symbol. This is the key point bridging the proof search systems
IndNarrowModAC and IndNarrowModA on the one hand, and IndNarrowModE on
the other hand.

From now on, we assume that some function symbols in a subset V of �
may have an unbounded arity. Let A(V) = ff(fxy)z � fx(fyz) j f 2 Vg and
AC(V) = A(V) [ ffxy � fyx j f 2 Vg. In the following, we assume that
all symbols in V are de�ned symbols, that constructor symbols do not have
unbounded arities, and that + and � denote symbols with unbounded arity.
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[Mar93] de�nes a transformation which associates to each position in a given
term t a position in the attening t of t, also called the attening of this position.
However, a position in t is not always the attening of some position in t, and
this led us to introduce the following de�nition:

De�nition 3.1. For a attened term s, a position ! 2 Dom(s) is attened if
there exist i; k 2 N, and a word !0, s.t. ! = !0:i or ! = !0:fi; i+ 1; : : : ; i+ kg.

The above attened positions are precisely the attening of positions [Nah07]. To
de�ne a rewrite relation on the set of attened terms, the notion of replacement
has to be generalized:

De�nition 3.2. Given two attened terms s = fs1 : : : sn, t, and a position
! 2 s, the replacement by t in s at the position ! is inductively de�ned by:

{ s[t]" = t

{ If ! 2 f1; : : : ; ng

� Case 1: there exist i; k 2 N, such that ! = fi; i+ 1; : : : ; i+ kg.

s[t]! = fs1 : : : si�1 t si+k+1 : : : sn

� Case 2: otherwise, let fi1; : : : ; ikg = f1; : : : ; ng � !.

s[t]! = fsi1 : : : sik
t.

{ s[t]i:!i
= fs1 : : : si[!i  t] : : : sn.

Now, we introduce a rewrite relation on the set of attened terms as follows:

De�nition 3.3. Given a rewrite system R, we de�ne the relation !R on the
set of attened terms by s !R t whenever there exist a rule c ) l ! r 2 R, a
attened position ! 2 Dom(s) and a substitution � such that:

{ sj! = l�, t = s[r�]!
{ and the condition c� is true.

If �p denotes the classical equivalence induced on the set of attened terms by
permutation of the arguments of symbols in V, we consider the extension R= �p

of R on the set of �p-equivalences. As previously, in order to perform induction
by narrowing at de�ned-innermost positions, we must de�ne such positions for
attened terms:

De�nition 3.4. For any s 2 T (�;X ), and for any ! 2 Dom(s), the position !
is called de�ned-innermost whenever there exist f 2 � and terms s1; : : : ; sn 2
T (C;X ), such that sj! = fs1 : : : sn, and moreover n = 2 if f 2 V .

Intuitively, the position ! in s is de�ned-innermost when sj! coincides with its
attened form.
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InduceAC �1j�2 ‘RE1jRE2
Q �

�
l ! r 2 RE1

� 2 CSUCAC(Qj!; l)

�1j�2 ‘RE1jRE2�[fREind(Q;<)�g (Q[r]!)�

if ! 2 DI(Q)

Rewrite1AC �1j�2 ‘RE1jRE2
Q � �1j�2 ‘RE1jRE2

Q0

if Q!RE1=�p
Q0

Rewrite2AC �1j�2 ‘RE1jRE2
Q � �1j�2 ‘RE1jRE2

Q0

if Q!RE2=�p
Q0

TrivialAC �1j�2 ‘RE1jRE2
t � t0 � 3

if t �p t0

RefutationAC �1j�2 ‘RE1jRE2
Q � Refutation

when no other rules can be applied

Fig. 3. The proof search system IndNarrowModAC

InduceA �1j�2 ‘RE1jRE2
Q �

�
l ! r 2 RE1

� 2 CSUCA(Qj!; l)

�1j�2 ‘RE1jRE2�[fREind(Q;<)�g (Q[r]!)�

if ! 2 DI(Q) and ! attened.

Rewrite1A �1j�2 ‘RE1jRE2
Q � �1j�2 ‘RE1jRE2

Q0

if Q!RE1
Q0

Rewrite2A �1j�2 ‘RE1jRE2
Q � �1j�2 ‘RE1jRE2

Q0

if Q!RE2
Q0

TrivialA �1j�2 ‘RE1jRE2
t � t0 � 3

if t 6= t0

RefutationA �1j�2 ‘RE1jRE2
Q � Refutation

when no other rules can be applied

Fig. 4. The proof search system IndNarrowModA

3.2 The proof search systems IndNarrowModAC and IndNarrowModA

The speci�c proof search systems IndNarrowModAC and IndNarrowModA are re-
spectively given in Figure 3 and Figure 4.
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Soundness, refutational correctness and completeness of IndNarrowModAC
and IndNarrowModA are consequences of the following proposition that states
a correspondence between a deduction on a goal Q using IndNarrowModE and
a deduction on the corresponding attened goal using IndNarrowModAC or Ind-
NarrowModA.

Theorem 3.1. Let E = AC(V) (resp.E = A(V)).

1. If �1j�2 ‘RE1jRE2
Q �IndNarrowModE �1j�2 ‘RE1jRE0

2
R, then

�1j�2 ‘RE1jRE2
Q �IndNarrowModAC �1j�2 ‘RE1jRE0

2
R. (resp.

�1j�2 ‘RE1jRE2
Q �IndNarrowModA �1j�2 ‘RE1jRE0

2
R ).

2. If �1j�2 ‘RE1jRE2
Q �IndNarrowModAC �1j�2 ‘RE1jRE0

2
R (resp.

�1j�2 ‘RE1jRE2
Q �IndNarrowModA �1j�2 ‘RE1jRE0

2
R), there exists R0 such

that R0 =AC R (resp. R0 =A R), and �1j�2 ‘RE1jRE2
Q �IndNarrowModE

�1j�2 ‘RE1jRE0
2
R0

3.3 Two simple examples

In order to get a better intuition on the way these sets of rules are working, let
us look at two examples. In the following, we always refer to the speci�cation
and the set of rewrite rules given in Figure 1. The �rst example of proof uses
AC properties of + and � induction modulo AC, and the second one uses the
same rules but just associativity of these two symbols.

An AC�example: In the context of Example 2.1, let us consider the following
sequent: �1j�2 ‘RE1j; Q and �rst apply the rule InduceAC. The innermost
positions in Q are 1:1:f1; 2g, 1:1:f1; 3g, 1:1:f2; 3g, 2:1, 2:2 and 2:3. Since the
goal remains equivalent by permutation of the variables x1, x2 and x3, only
two possibilities remain: narrowing at a position where the symbol + occurs, or
where the symbol � occurs. Since the last choice creates more reductions than
the �rst one, we arbitrarily choose to narrow at the position 2:1 of the goal.
Therefore, we must compute the set CSUCAC(x1 � x4; l) for any rewrite rule
l ! r of RE1. This restricts to rules such that l(") = �, and we obtain:

l CSUCAC(x1 � x4; l)

x � 0
�1 = fx1 ! y1; x! y1; x4 ! 0g
�2 = fx1 ! 0; x! y4; x4 ! y4g

x � s(y)
�3 = fx1 ! y1; x! y1; y ! y4; x4 ! s(y4)g
�4 = fx1 ! s(y1); x! y4; y ! y1; x4 ! y4g

After normalization, this leads us to prove the four sequents:

�1j�2 ‘RE1jREind(Q)�1
0 � 0

�1j�2 ‘RE1jREind(Q)�2
(x2 + x3) � y4 � x2 � y4 + x3 � y4

�1j�2 ‘RE1jREind(Q)�3

(y1 + x2 + x3) � y4 + y1 + x2 + x3

� y1 � y4 + y1 + x2 � y4 + x2 + x3 � y4 + x3

�1j�2 ‘RE1jREind(Q)�4
(y1 + x2 + x3) � y4 + y4 � y1 � y4 + y4 + x2 � y4 + x3 � y4
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Trivial gets rid of the �rst one. Since (y1; x2; x3; y4) <4 (y1; x2; x3; s(y4)),
Rewrite2 can be applied on the third one, and since (y1; x2; x3; y4) <4

(s(y1); x2; x3; y4), Rewrite2 can be applied on the fourth one. Hence we get:

�1j�2 ‘RE1jREind(Q)�2
(x2 + x3) � y4 � x2 � y4 + x3 � y4

�1j�2 ‘RE1jREind(Q)�3

y1 � y4 + x2 � y4 + x3 � y4 + y1 + x2 + x3

� y1 � y4 + y1 + x2 � y4 + x2 + x3 � y4 + x3

�1j�2 ‘RE1jREind(Q)�4

y1 � y4 + x2 � y4 + x3 � y4 + y4
� y1 � y4 + y4 + x2 � y4 + x3 � y4

Trivial gets rid of the two last subgoals. The application of Induce to the �rst
one at position 2:1 generates four subgoals. Trivial gets rid of the two �rst ones,
the application of Rewrite2 to the last ones creates two new subgoals which are
trivial and we are done.

An A-example: Assume thatRE1 contains the rules of simple arithmetic given
in Figure 1. RE1 is terminating and su�ciently complete modulo associativity
of the � and + operators (denoted A(+; �)) Let us prove that distributivity of �
over + is an inductive theorem.
Let �1 = A(+; �), �2 = Th�[fNI; Noeth(<3; T (�)3)g, andQ = x1�(x2+x3) �
x1 � x2 + x1 � x3. Let us start from the sequent: �1j�2 ‘RE1j; Q.
We can apply InduceA at the innermost positions 1:2, 2:1 and 2:2 in Q and
Theorem 2.1 ensures that each of these choices is correct. Since narrowing at
position 2:1 creates less further reductions than the ones at positions 1:2 or 2:2,
we choose to narrow at the position 2:2 of the goal. Thus, we need to compute
CSUCA(x1 �x3; l) for any rewrite rule l! r of RE1. This restricts to rules such
that l(") = �, and we obtain:

l CSUCA(x1 � x3; l)
x � 0 �1 = fx1 ! y1; x! y1; x3 ! 0g
x � s(y) �2 = fx1 ! y1; x! y1; y ! y3; x3 ! s(y3)g

After normalization, we obtain the subgoals:

�1j�2 ‘RE1jREind(Q)�1
y1 � x2 � y1 � x2

�1j�2 ‘RE1jREind(Q)�2
y1 � (x2 + y3) + y1 � y1 � x2 + y1 � y3 + y1

Trivial gets rid of the �rst subgoal. Since (y1; x2; y3) <3 (y1; x2; s(y3)),
Rewrite2A can be applied on the second one. Hence, we get:

�1j�2 ‘RE1jREind(Q)�2
y1 � x2 + y1 � y3 + y1 � y1 � x2 + y1 � y3 + y1

and Trivial gets rid of this last subgoal.
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4 Conclusion

We have extended the inductive proof search method based on narrowing to the
case where theories contain non-orientable axioms. The main inference rule is
based on a restricted application of narrowing at de�ned-innermost positions and
with a restricted notion of equational uni�ers based only on constructors. This
general approach is proved correct and refutationaly complete. We then applied
it to the speci�c case of rewriting modulo AC or A axioms and show on two
examples how the method safely restricts the proof search space. This provides
a signi�cant improvement on the current inductive proof search approaches.

An interesting side result of our approach is the introduction of a new kind
of E-uni�ers that we called constructor E-uni�ers. In the case of associative and
associative commutative theories E, they have the nice property to considerably
reduce the number of uni�ers to be considered in a complete set of uni�ers that
may be huge or even in�nite in these theories. A natural and challenging question
is to build a uni�cation theory for these speci�c uni�ers.

First motivated by the wish to provide a bridge between explicit and implicit
induction, our approach achieves this goal through a speci�c instance of the se-
quent calculus modulo [DHK01] that clari�es the respective roles and uses of the
noetherian induction principle and of equational rewriting. As a consequence, we
plan to have an automated construction of such proofs into the sequent calculus
for insertion into proof assistants like lemurid� which is based on superdeduc-
tion [BHK07]. Such proof assistants will therefore rely on an implementation of
our inference systems, a task that still remains to be done.
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Abstract. We have previously shown how the distillation program trans-
formation algorithm can be used to prove inductive theorems in which
there is no explicit quanti�cation, and all variables are assumed to be
implicitly universally quanti�ed. These techniques were implemented in
the theorem prover Poit��n. In this paper, we show how Poit��n can be ex-
tended to prove inductive theorems which contain explicit universal and
existential quanti�ers. This extension has also been implemented and
added to Poit��n; we give the results of applying the resulting theorem
prover to a number of example conjectures.

1 Introduction

A wide range of inductive theorem proving systems have been developed (for
example, NQTHM [4], CLAM [7], INKA [2], RRL [15]), but these tend to con-
centrate mainly on universal quanti�cation. The inclusion of existential quanti�-
cation is very problematic and greatly complicates the theorem proving process.
The usual approach to proving existential inductive conjectures is to try to con-
structively �nd witnesses and prove that they satisfy the respective inductive
property. However, the �nding of such witnesses often requires the use of higher-
order uni�cation, which is in general undecidable. In this paper, we present an
alternative approach to proving existential conjectures which performs a pure
existence proof without the need to construct existential witnesses.

In previous work [11], we have presented the distillation program transfor-
mation algorithm, which was originally devised with the goal of eliminating in-
termediate data structures from functional programs. The distillation algorithm
was largely inuenced by Turchin’s supercompilation [21], but improves greatly
upon it. For example, supercompilation can only produce a linear speedup in pro-
grams, while distillation can produce a superlinear speedup. Turchin has shown
how supercompilation can be used in inductive theorem proving [20], which also
inuenced our work on showing how the distillation algorithm can be used in
inductive theorem proving in our theorem prover Poit��n [10].

Our previous work on Poit��n did not include any explicit quanti�cation; all
free variables within the input conjecture were assumed to be implicitly univer-
sally quanti�ed. In this paper, we show how Poit��n can be extended to prove
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inductive theorems which contain explicit universal and existential quanti�ers.
This extension has also been implemented and added to Poit��n. We apply the re-
sulting theorem prover to a number of example conjectures, the results of which
are very promising.

The remainder of this paper is organised as follows. In Section 2, we give a
brief overview of the distillation algorithm. In Section 3, we de�ne rules to show
how the Poit��n theorem prover can be extended to handle explicit quanti�cation
and give examples of the application of these rules. In Section 4, we give the
results of applying our extended version of Poit��n to a number of inductive
conjectures. In Section 5, we consider related work, and Section 6 concludes.

2 Distillation

In this section, we de�ne the language used throughout this paper and we give a
brief overview of the distillation algorithm. Due to space constraints, we cannot
give much detail of the algorithm here; full details can be found in [11].

De�nition 1 (Language). The language used throughout this paper is a simple

higher-order functional language as shown in Fig. 1. 2

prog ::= e0 where f1 = e1 ; : : : ; fn = en ; program
e ::= v variable

j c e1 ::: en constructor application
j �v:e lambda abstraction
j f function variable
j e0 e1 application
j case e0 of p1 ) e1 j ::: j pk ) ek case expression
j let v = e0 in e1 let expression
j letrec f = e0 in e1 letrec expression

p ::= c v1 : : : vn pattern

Fig. 1. Language

Programs in the language consist of an expression to evaluate and a set of func-
tion de�nitions. The intended operational semantics of the language is normal
order reduction. It is assumed that the language is typed using the Hindley-
Milner polymorphic typing system (so erroneous terms such as (c e1 : : : en) e

and case (�v:e) of p1 ) e1 j � � � j pk ) ek cannot occur). The variables in the
patterns of case expressions and the arguments of �-abstractions are bound;
all other variables are free. We use the notation e[e1=v1 : : : en=vn] to represent
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the simultaneous substitution of the sub-expressions e1; : : : ; en for the free oc-
currences of variables v1; : : : ; vn, respectively, within e. We require that each
function has exactly one de�nition and that all variables within a de�nition are
bound. The propositional operators (and , or , implies, etc.) are implemented as
functions in this language.

Each constructor has a �xed arity; for example Nil has arity 0 and Cons has
arity 2. Within the expression case e0 of p1 ) e1 j � � � j pk ) ek , e0 is called
the selector, and e1 : : : ek are called the branches. The patterns in case expres-
sions may not be nested. Methods to transform case expressions with nested
patterns to ones without nested patterns are described in [1,23]. No variables
may appear more than once within a pattern. We assume that the patterns in a
case expression are non-overlapping and exhaustive.

Distillation is a powerful program transformation technique to remove in-
termediate data structures from higher-order functional programs and is sig-
ni�cantly more powerful than the supercompilation algorithm [21]. This extra
power is obtained through the use of a stronger form of matching prior to fold-
ing. In supercompilation, matching is performed on at terms only; functions
are considered to match only if they have the same name. In the distillation
algorithm, matching is also performed on recursive terms, so di�erent functions
are considered to match if their corresponding recursive de�nitions also match.

The transformation rules in distillation are of the form T [[e]] � � where e
is the expression to be transformed, � is the set of previously encountered ex-
pressions and � is the set of function de�nitions. These rules essentially perform
normal-order reduction. Folding is performed when an expression is encountered
which is an instance of a previously encountered expression, and generalization

is performed to ensure termination of the transformation process. This general-
ization is performed when an expression is encountered which is an embedding

of a previously encountered expression. The form of embedding which we use to
guide this generalization is the homeomorphic embedding relation which was de-
rived from results by Higman [12] and Kruskal [18] and was de�ned within term
rewriting systems [8] for detecting the possible divergence of the term rewriting
process.

De�nition 2 (Distilled Form). The expressions resulting from the distillation

of a boolean expression are in the distilled form dt as de�ned in Fig. 2. 2

In addition, all of the functions within a distilled expression are terminating, as
all possibly non-terminating functions are replaced by ? during distillation.

In order to use the distillation algorithm within our inductive theorem prover
Poit��n, we apply distillation to the input conjecture. The result of this transfor-
mation will be in distilled form. Inductive proof rules are then applied to this
expression to try and prove it. The output from these proof rules will be ei-
ther True indicating that the conjecture is true, or else ? which provides no
information.
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dt := v
j True
j False
j ?
j case v of p1 ) dt01 j : : : j pk ) dt0k
j letrec f = �v1 : : : vn:dt in f v0

1 : : : v
0
n

j f e1 : : : en

Fig. 2. Distilled Form of Boolean Expressions

3 Explicit Quanti�cation in Poit��n

In this section, we show how the theorem prover Poit��n can be extended to handle
explicit quanti�cation. We add quanti�ers of the form ALL v:e and EX v:e to
our language and, later in this section, we de�ne sets of rules A for handling
universal quanti�ers and E for handling existential quanti�ers. A proof of the
soundness of these rules can be found in a longer version of this paper [14].
The transformation rules T for distillation are extended to be able to handle
quanti�ers as shown in Fig. 3.

T [[ALL v1 : : : vn:e]] � � = A[[e0]] fg fv1 : : : vng (T 1)
where
e0 = T [[e]] fg �

T [[EX v1 : : : vn:e]] � � = E [[e0]] fg fv1 : : : vng (T 2)
where
e0 = T [[e]] fg �

Fig. 3. Distillation Rules for Quanti�ers

Rule (T 1) handles universally quanti�ed expressions. Within a universally quan-
ti�ed expression ALL v1 : : : vn:e, the subterm e (within which the variables
v1 : : : vn are therefore free) is �rst of all transformed using the rules T for distil-
lation. The proof rules de�ned by A are then applied to the resulting expression.
In a similar way, existential quanti�cation is handled by application of the rule
(T 2). Within an existentially quanti�ed expression EX v1 : : : vn:e, the subterm
e is �rst of all transformed using the rules T for distillation. The proof rules
de�ned by E are then applied to the resulting expression.
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If there are a number of nested quanti�ers within the conjecture to be proved,
then the proof rules will be applied to the innermost quanti�ed term �rst. These
inner quanti�ed terms may contain free variables, which will be bound by another
quanti�er in some outer scope. The term resulting from the application of these
proof rules may therefore also contain free variables if these were present in
the original term. We therefore construct a hierarchy of transformations which
correspond to metasystem transitions [22,9].

3.1 Proving Universally Quanti�ed Conjectures.

The rules for proving a universally quanti�ed conjecture e are de�ned by A[[e]] � �
as shown in Fig. 4, where the parameter � is the set of previously encountered
function calls and � is the set of universally quanti�ed variables.

A[[v]] � � = ?, if v 2 �
= v, otherwise

(A1)

A[[True]] � � = True (A2)

A[[False]] � � = ? (A3)

A[[?]] � � = ? (A4)

A[[case v of p1 : e1 j : : : j pn : en]] � � (A5)
= (A[[e1]] � (� [ fv11 : : : v1k1g)) ^ : : : ^ (A[[en]] � (� [ fvn1 : : : vnkng)),

if v 2 �
= case v of p1 : (A[[e1]] � �) j : : : j pn : (A[[en]] � �), otherwise
where
pi = ci vi1 : : : viki

A[[letrec f = �v1 : : : vn:e0 in f v1 : : : vn]] � � (A6)
= A[[e0]] (� [ ff v1 : : : vng) �, if fv1 : : : vng � �
= letrec f = �v0

1 : : : v
0
k:(A[[e0]] (� [ ff v1 : : : vng) �) in f v0

1 : : : v
0
k,

otherwise
where
v0
1 : : : v

0
k = fv1 : : : vng n �

A[[f e1 : : : en]] � � (A7)
= True, if fv1 : : : vng � �
= (f v0

1 : : : v
0
k)[e1=v1 : : : en=vn], otherwise

where
(f v1 : : : vn) 2 �
v0
1 : : : v

0
k = fv1 : : : vng n �

Fig. 4. Proof Rules for Universal Quanti�cation
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Note that these rules will only be applied to terms which are in distilled form.
Using these rules, the universally quanti�ed variables contained within � are
eliminated, and a simpli�ed expression de�ned over the remaining free variables
is obtained. If there are no free variables, then the input conjecture is either
reduced to True indicating that it is true, or else ? which provides no informa-
tion. In rule (A1), if a universally quanti�ed variable is encountered, then since
it must be a Boolean, the value ? is returned as the variable cannot always be
True. If a free variable is encountered, then it is left unchanged. In rule (A2),
if the value True is encountered, then the value True is returned. In rules (A3)
and (A4), if the values False or ? are encountered, then the value ? is returned.
In rule (A5), if we encounter a case expression, then since this expression will
be in distilled form, the redex must be a variable. If this variable is free, then
it remains in the resulting term, and the proof rules are further applied to the
branches of the case expression. If the selector variable is universally quanti�ed,
then a case split is performed in which we prove the current term separately for
each of the possible values of the selector, and then return the conjunction of
the resulting values. The di�erent possible values of the selector are simply the
patterns within the case expression. In rule (A6), if we encounter a letrec func-
tion de�nition and all the parameters in the initial application of this function
are universally quanti�ed, then this function application is a potential inductive
hypothesis. Since at least one of these parameters must be decreasing, this pa-
rameter can be used as the induction variable. If we subsequently encounter a
recursive call of this function in rule (A7), then we have re-encountered this in-
ductive hypothesis, so the value True is returned. If a function de�nition contains
free variables, then the function is re-de�ned over these free variables.

Example 1. Consider the following conjecture:

ALL xs ys:eqnum (length (append xs ys)) (plus (length xs) (length ys))
where
eqnum = �x:�y:case x of

Zero ) case y of
Zero ) True

j Succ y 0 ) False

j Succ x 0 ) case y of
Zero ) False

j Succ y 0 ) eqnum x 0 y 0

length = �xs:case xs of
Nil ) Zero
j Cons x xs 0 ) Succ (length xs 0)

append = �xs:�ys:case xs of
Nil ) ys

j Cons x xs 0 ) Cons x (append xs 0 ys)
plus = �x:�y:case x of

Zero ) y

j Succ x 0 ) Succ (plus x 0 y)
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This conjecture states that the length of appending two lists is equal to the sum
of their individual lengths. The result of distilling this term is as follows:

letrec
f0 = �xs:case xs of

Nil ) case ys of
Nil ) True

Cons y ys 0 )
letrec
f1 = �y:�ys0:case ys 0 of

Nil ) True

j Cons y 0 ys 00 ) f1 y 0 ys 00

in f1 y ys 0

j Cons x xs 0 ) f0 xs 0

in f0 xs

The proof of this term proceeds as shown in Figs 5 and 6.

A[[f0 xs]] fg fxs; ysg
= (by A6)
A[[ case xs of

Nil ) case ys of
Nil ) True
Cons y ys 0 )

letrec
f1 = �y:�ys0: case ys 0 of

Nil ) True
j Cons y 0 ys 00 ) f1 y 0 ys 00

in f1 y ys 0

j Cons x xs 0 ) f0 xs 0]] ff0 xsg fxs; ysg
= (by A5)
(A[[ case ys of

Nil ) True
j Cons y ys 0 ) letrec f1 = �y:�ys0: case ys 0 of

Nil ) True
j Cons y 0 ys 00 ) f1 y 0 ys 00

in f1 y ys 0]] ff0 xsg fxs; ysg)
^ (A[[f0 xs 0]] ff0 xsg fxs; ys; x; xs0g)
= (by A5)
(A[[True]] ff0 xsg fxs; ysg)
^ (A[[ letrec f1 = �y:�ys0: case ys 0 of

Nil ) True
j Cons y 0 ys 00 ) f1 y 0 ys 00

in f1 y ys 0]] ff0 xsg fxs; ys; y; ys0g) ^ (A[[f0 xs 0]] ff0 xsg fxs; ys; x; xs0g)

Fig. 5. Universal Proof



Extending Poit��n to Handle Explicit Quanti�cation 27

= (by A2)
True ^ (A[[ letrec f1 = �y:�ys0: case ys 0 of

Nil ) True
j Cons y 0 ys 00 ) f1 y 0 ys 00

in f1 y ys 0]] ff0 xsg fxs; ys; y; ys0g)
^ (A[[f0 xs 0]] ff0 xsg fxs; ys; x; xs0g)

= (by A6)
True ^ (A[[ case ys 0 of

Nil ) True
j Cons y 0 ys 00 ) f1 y 0 ys 00]] ff0 xs; f1 y ys 0g fxs; ys; y; ys0g)

^ (A[[f0 xs 0]] ff0 xsg fxs; ys; x; xs0g)
= (by A5)
True ^ (A[[True]] ff0 xs ; f1 y ys 0g fxs; ys; y; ys0g)

^ (A[[f1 y 0 ys 00]] ff0 xs; f1 y ys 0g fxs; ys; y; ys0; y0; ys00g)
^ (A[[f0 xs 0]] ff0 xsg fxs; ys; x; xs0g)

= (by A2)
True ^ True ^ (A[[f1 y 0 ys 00]] ff0 xs; f1 y ys 0g fxs; ys; y; ys0; y0; ys00g)

^ (A[[f0 xs 0]] ff0 xsg fxs; ys; x; xs0g)
= (by A7)
True ^ True ^ True ^ (A[[f0 xs 0]] ff0 xsg fxs; ys; x; xs0g)
= (by A7)
True ^ True ^ True ^ True
= True

Fig. 6. Universal Proof (continued)

3.2 Proving Existentially Quanti�ed Conjectures.

The rules for proving an existentially quanti�ed conjecture e are de�ned by
E [[e]] � � as shown in Fig. 7, where the parameter � is the set of previously
encountered function calls and � is the set of existentially quanti�ed variables.
Using these rules, the existentially quanti�ed variables contained within � are
eliminated, and a simpli�ed expression over the remaining free variables is ob-
tained. The rules are similar to those for universal quanti�cation, with the only
di�erences being in rules (E1), (E5), (E6) and (E7). In rule (E1), if an existen-
tially quanti�ed variable is encountered, then since it must be a Boolean, the
value True is returned as the value of the variable can be True. In rule (E5), if
the selector in a case expression is an existentially quanti�ed variable, then we
also perform a case split and prove the current term separately for each of the
possible values of the selector, but in this instance we return the disjunction of
the resulting values. In rules (E6) and (E7), function applications are no longer
possible inductive hypotheses as they contain existential variables. However, if
all of the parameters in a function application are existentially quanti�ed then
the value ? is returned as we know that the search space of these existential
variables has been exhausted.
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E [[v]] � � = True, if v 2 �
= v otherwise

(E1)

E [[True]] � � = True (E2)

E [[False]] � � = ? (E3)

E [[?]] � � = ? (E4)

E [[case v of p1 : e1 j : : : j pn : en]] � � (E5)
= (E [[e1]] (� [ fv11 : : : v1k1g)) _ : : : _ (E [[en]] � (� [ fvn1 : : : vnkng)),

if v 2 �
= case v of p1 : (E [[e1]] � �) j : : : j pn : (E [[en]] � �), otherwise
where
pi = ci vi1 : : : viki

E [[letrec f = �v1 : : : vn:e0 in f v1 : : : vn]] � � (E6)
= E [[e0]] (� [ ff v1 : : : vng) �, if fv1 : : : vng � �
= letrec f = �v1 : : : vk:(E [[e0]] (� [ ff v1 : : : vng) �) in f v1 : : : vk,

otherwise
where
v1 : : : vk = fv1 : : : vng n �

E [[f e1 : : : en]] � � (E7)
= ?, if fv1 : : : vng � �
= (f v0

1 : : : v
0
k)[e1=v1 : : : en=vn], otherwise

where
(f v1 : : : vn) 2 �
v0
1 : : : v

0
k = fv1 : : : vng n �

Fig. 7. Proof Rules for Existential Quanti�cation

Example 2. Consider the following conjecture:

ALL x:EX y:i� (even x ) (eqnum (double y) x )
where
i� = �x:�y:case x of

True ) y

j False ) case y of
True ) False

j False ) True

even = �x:case x of
Zero ) True

j Succ x 0 ) case x 0 of
Zero ) False

j Succ x 00 ) even x 00
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eqnum = �x:�y:case x of
Zero ) case y of

Zero ) True

j Succ y 0 ) False

j Succ x 0 ) case y of
Zero ) False

j Succ y 0 ) eqnum x 0 y 0

double = �x:case x of
Zero ) Zero
j Succ x 0 ) Succ (Succ (double x 0))

This conjecture states that for all values of x, there exists a y such that if x
is even, then y is exactly half of x. The result of distilling this term is as follows:

letrec f1 = �x:�y:case x of
Zero ) case y of

Zero ) True

j Succ y 0 ) False

j Succ x 0 ) case x 0 of
Zero ) case y of

Zero ) True

j Succ y 0 ) True

j Succ x 00 ) f1 x 00 y

in f1 x y

As the innermost quanti�er in the original conjecture is an existential quanti�er,
existential proof rules are applied �rst to this term as shown in Figs 8 and 9.

E [[ letrec f1 = �x:�y: case x of
Zero ) case y of

Zero ) True
j Succ y 0 ) False

j Succ x 0 ) case x 0 of
Zero ) case y of

Zero ) True
j Succ y 0 ) True

j Succ x 00 ) f1 x 00 y
in f1 x y ]] fg fyg

Fig. 8. Example Proof

As the outermost quanti�er in the original conjecture is a universal quanti�er,
universal proof rules are then applied to the resulting term as shown in Fig. 10.
The result of applying these rules is the value True, so the original conjecture
has been proved.



30 H. Kabir and G.W. Hamilton

= (by E6)
letrec f1 = �x:E [[ case x of

Zero ) case y of
Zero ) True

j Succ y 0 ) False
j Succ x 0 ) case x 0 of

Zero ) case y of
Zero ) True

j Succ y 0 ) True
j Succ x 00 ) f1 x 00 y ]] ff1 x yg fyg

in f1 x
= (by E5, E5)
letrec
f1 = �x: case x of

Zero ) E [[ case y of
Zero ) True

j Succ y 0 ) False]] ff1 x yg fyg
j Succ x 0 ) case x 0 of

Zero ) E [[ case y of
Zero ) True

j Succ y 0 ) True]] ff1 x yg fyg
j Succ x 00 ) E [[f1 x 00 y ]] ff1 x yg fyg

in f1 x
= (by E5, E5)
letrec f1 = �x: case x of

Zero ) (E [[True]] ff1 x yg fyg)
_ (E [[False]] ff1 x yg fyg)

j Succ x 0 ) case x 0 of
Zero ) (E [[True]] ff1 x yg fyg)

_ (E [[True]] ff1 x yg fyg)
j Succ x 00 ) E [[f1 x 00 y ]] ff1 x yg fyg

in f1 x
= (by E2, E3, E2, E2, E7)
letrec f1 = �x: case x of

Zero ) True
j Succ x 0 ) case x 0 of

Zero ) True
j Succ x 00 ) f1 x 00

in f1 x

Fig. 9. Example Proof (continued)

4 Results

Some results of applying Poit��n to a range of conjectures are shown in Table 1.
The times given in this table are for an average of 10 runs on an Intel Pentium
4 PC with 2.40 GHz and 512 MB RAM. As can be seen, these times are all
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A[[ letrec f1 = �x: case x of
Zero ) True

j Succ x 0 ) case x 0 of
Zero ) True

j Succ x 00 ) f1 x 00

in f1 x ]] fg fxg
= (by A6)
A[[ case x of

Zero ) True
j Succ x 0 ) case x 0 of

Zero ) True
j Succ x 00 ) f1 x 00]] ff1 xg fxg

= (by A5, A5)
(A[[True]] ff1 xg fxg) ^ (A[[True]] ff1 xg fx; x0g)

^ (A[[f1 x 00]] ff1 xg fx; x0; x00g)
= (by A2, A2, A7)
True ^ True ^ True
= True

Fig. 10. Example Proof (continued)

very low, so the results are encouraging. All the conjectures were proved by
performing only generalization without using any intermediate lemmas, whereas
some other inductive theorem provers require both lemmas and generalizations
to prove these theorems. Some of the conjectures listed in Fig. 1 were proved by
SPIKE [3] using a divergence critic [24], NQTHM [4,5], CLAM [7] using rippling,
and Periwinkle [16] by proposing lemmas or performing generalizations.

5 Related Work

The distillation algorithm and the Poit��n theorem prover were largely inspired
by Turchin’s work on supercompilation [21], and its use in theorem proving [20].
Over-generalization occurs a lot more frequently when using supercompilation
as opposed to distillation, thus greatly limiting its power. In order to show that
the term resulting from supercompilation terminates, Turchin requires that all
functions are total, so the onus is on the user to show that this really is the case.
In Poit��n, the termination of the term resulting from distillation is determined
automatically. Turchin’s use of metasystem transitions in theorem proving is
analagous to the hierarchy of transformations which we use in Poit��n.

A number of di�erent approaches have been developed to identify potentially
failing proof attempts, and to apply appropriate techniques to allow the proof to
go through. Rippling is a powerful technique developed at the University of Ed-
inburgh for proving theorems involving explicit induction [6]. In the step case of
an inductive proof, the induction conclusion typically di�ers from the induction
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No. Conjecture Time
(in Seconds)

1. ALL x.ALL y:eqnum (plus x y) (plus y x) 0.0094
2. ALL x:eqnum (plus x (Succ x)) (Succ (plus x x)) 0.0016
3. ALL x.ALL y:ALL z:eqnum (plus (plus x y) z ) (plus x (plus y z )) 0.0032
4. ALL x:eqnum (plus (plus x x) x) (plus x (plus x x)) 0.0046
5. ALL x:eqnum (gcd x x) x 0.0016
6. ALL x.ALL y:eqnum (sub (plus x y) x) y 0.0016
7. ALL x.odd (plus (Succ x) x) 0.0015
8. ALL x.ALL y:eqnum (plus x (Succ y)) (Succ (plus x y)) 0.0015
9. ALL x:even (plus x x) 0.0016
10. ALL x:even (doublea x Zero) 0.0016
11. ALL x:ALL y:((even x) ^ (even y)) ) (even (plus x y)) 0.0078
12. ALL x:(eqbool (even x) (True)) ) (eqbool (odd x) (False)) 0.0015
13. ALL x:EX y:(even x) , (eqnum (double y) x) 0.0077
14. ALL x:EX y:(even x) , (eqnum (mult y (Succ (Succ Zero))) x) 0.0016
15. ALL x:ALL y:EX z:(less x y) ) (eqnum (plus x z ) y) 0.0032
16. ALL x:EX y:(eqnum x Zero)_(eqnum x (Succ y)) 0.0031
17. ALL x:EX y:eqnum y (plus x (Succ Zero)) 0.0032
18. ALL x:ALL y:EX z:(leq y x) ) (eqnum (plus z y) x) 0.0046
19. ALL x:EX y:(eqnum (double y) x) _ (eqnum (Succ (double y)) x) 0.0015
20. ALL x:ALL y:EX z:(eqnum (plus x z ) y) _ (eqnum (sub x z ) y) 0.022
21. ALL xs:ALL ys:eqnum (length (append xs ys)) (length (append ys xs)) 0.0109
22. ALL xs.ALL ys:eqnum (length (append xs ys)) (plus (length xs) (length ys)) 0.0016
23. ALL xs.ALL ys:ALL zs:eqlist (append xs (append ys zs))

(append (append xs ys) zs) 0.0063
24. ALL xs:ALL ys:(even (length (append xs ys))) $

(even (length (append ys xs))) 0.0548
Table 1. Some Conjectures Proved by Poit��n

hypothesis. Rippling uses annotations to mark these di�erences and applies an-
notated rewrite rules to remove them. In the case where no rewrite rules can be
applied, the proof becomes blocked. In this case, proof critics [13] can be applied.
Various critics for explicit induction have been developed that speculate missing
lemmas, perform generalizations, etc. There are signi�cant di�erences between
the rippling approach, and the approach described here. Firstly, rippling works
in an explicit induction setting, as opposed to the implicit approach described
here. Secondly, in rippling, the di�erence matching is performed statically on the
rewrite rules (although a dynamic version of rippling has also been developed
[19]). In distillation, this di�erence matching is dynamically performed on each
term as it is encountered during rewriting. Thirdly, rippling often requires the
use of additional lemmas to allow the proof to go through. This may therefore
require a reasonable amount of search, and possible user guidance. In Poit��n, no
additional lemmas are required, thus reducing the amount of search required,
and allowing proofs to be performed fully automatically.
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The notion of rippling has been extended to be able to deal with existentially
quanti�ed variables and synthesis in the work on middle-out reasoning [16]. This
approach requires trying to construct existential witnesses and prove that they
satisfy the required property. However, the �nding of such witnesses usually
requires the use of higher-order uni�cation, which is in general undecidable. In
the approach presented here we perform a pure existence proof without the need
to construct existential witnesses.

In [17], rippling is combined with matrix-based constructive theorem proving.
This approach is used to generate inductive speci�cation proofs and for automat-
ing the synthesis of recursive programs. This approach does have the advantage
that it guarantees that the synthesized program is correct, so this does not need
to be veri�ed afterwards. However, like the other approaches described here, it
does require a high degree of user interaction, which is not the case for Poit��n.

6 Conclusions

In this paper, we have shown how the Poit��n theorem prover can be extended to
prove inductive theorems which contain explicit universal and existential quan-
ti�cation. We argue that the Poit��n theorem prover greatly extends the range
of theorems which can be proved fully automatically without the need for in-
termediate lemmas. Poit��n is also fully deterministic and only needs to search
through a subset of previously encountered expressions, rather than through a
large collection of rules and axioms. We therefore argue that Poit��n is likely to
be more e�cient than other theorem provers which have a relatively large search
space and require backtracking.

We have implemented the described extension to the Poit��n theorem prover,
and shown some of the results obtained by applying it to a range of inductive
conjectures. Although the results are encouraging, there are still a number of
fairly straightforward conjectures which cannot currently be proved by Poit��n;
we are currently working on these. There are a number of possible directions
for further work. Firstly, the implementation of Poit��n must be improved as
mentioned above, and run on a wider range of test cases. This would allow a more
thorough examination of the range of theorems which can be proved by Poit��n,
and a more detailed comparison with other theorem provers. Secondly, Poit��n
cannot currently extract programs from existential proofs. Work is currently
under way to try to achieve this. This would then allow us to construct programs
from their speci�cations.
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Abstract

This paper explores the use of resolution as a meta-framework for developing
di�erent deduction calculi for modal dynamic logics. Dynamic modal logics are
PDL-like extended modal logics which are closely related to description logics.
We show how tableau systems, modal resolution systems and Rasiowa-Sikorski
systems, which are dual tableau systems, can be developed and studied by using
standard principles and methods of �rst-order theorem proving. The approach is
based on the translation of modal logic reasoning problems to �rst-order clausal
form and using a suitable re�nement of resolution to construct and mimic deriva-
tions of the desired proof method. The inference rules of the calculus can then
be read o� from the clausal form used. We show how this approach can be used
to generate new proof calculi for logics that have not been considered in the lit-
erature before and prove soundness, completeness and decidability results. This
slightly unusual approach allows us to gain new insight and results for familiar
and less familiar logics and di�erent proof methods, and compare them in a
common framework.

Published in Advances in Modal Logic, Volume 6, College Publications, London,
1{16 (2006).
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Abstract. We present very short mechanised proofs of Bachmair and
Dershowitz’s termination theorem in di�erent variants of Kleene alge-
bras. Through our experiments we also discover three novel re�nement
laws for nested in�nite loops. Finally, we introduce novel divergence mod-
ules in which full automation could be achieved. These structures seem
very promising for automated reasoning about in�nite behaviours in pro-
grams and discrete dynamical systems.

1 Introduction

In 1986, in a fundamental study of commutation, transformation and termination
properties of rewrite systems [4], Bachmair and Dershowitz proved the following,
by now classical theorem: Termination of the union of two rewrite systems can
be separated into termination of the individual systems if one rewrite systems
quasicommutes over the other. In this context, rewrite systems are considered as
abstract reduction systems which are essentially sets of binary relations. Quasi-
commutation models a quite general way of rearranging rewrite sequences that
subsumes a number of interesting cases. The termination theorem yields a pow-
erful tool for analysing termination of rewrite systems. It also provides a very
general transformation and re�nement law for programs, reactive and concurrent
systems. The proof sketch contained in the original paper informally analyses
in�nite rewrite sequences.

Motivated by applications in concurrency control, Ernie Cohen posed this
termination theorem as a challenge for variants of Kleene algebras at a Dagstuhl
Seminar in 2001 [7], conjecturing that it cannot be proved in this setting, and
he repeated this challenge at a DIMACS workshop [8].

Nevertheless, a proof in a variant of Kleene algebra was published in 2006 [19],
but it is rather indirect and tedious. This is interesting, since statements of sim-
ilar complexity could recently be proved fully automatically [14,15]. So, sharp-
ening Cohen’s challenge, can Bachmair and Dershowitz’s termination theorem
be proved automatically in variants of Kleene algebras?

This paper shows that this is indeed the case. But since the previous proof
requires a series of lemmas and a direct proof from the axioms of Kleene al-
gebras does not succeed1, new ways must be explored. We therefore perform

1 In all experiments, we used a Toshiba Tecra laptop under Linux with an Intel Pen-
tium 1:73GHz processor with 6:5MB memory available.
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proof experiments with the automated theorem prover SPASS [3] to \learn" the
hypotheses needed for the proofs, by (manually) discarding computationally ex-
pensive axioms and by adding potentially useful lemmas in a rather random way.
Hypothesis sets that are too weak can often be detected by a counterexample
checker, e.g. Mace4 [2].

In the case of Bachmair and Dershowitz’s termination theorem, a seemingly
unrelated special unfold law for nested loops that has previously been automat-
ically proved and used in the context of action system re�nement is the key to
success. With this law added to the set of hypotheses, SPASS returns a proof
in less than 5min. Retranslating this resolution proof into equational reasoning
yields a fully formal proof of the termination theorem in essentially one line.

Moreover, a closer inspection of the equational proof reveals a novel re�ne-
ment law for nested in�nite loops, to which the termination theorem is a trivial
corollary. This result is immediately applicable to concurrency control and action
system re�nement [5]. Since Kleene algebras are very abstract, the result holds
in a variety of models relevant for programs and transition systems, including
relations, traces, paths and languages.

Using this structural information, the automated proofs can easily be re-
played in other variants of Kleene algebras to obtain termination and loop re-
�nement theorems also in these settings.

The �rst variant|von Wright’s demonic re�nement algebras [21]|are appro-
priate for predicate transformer semantics of re�nement, but not for relational
models. The results obtained are comparable to the previous ones.

The second variant is based on the Kleene modules studied by Lei� [18] and
by �Ezik and Kuich [12]. We add a Park-style divergence operator that either
models in�nite iteration in the context of !-regular languages or, in the context
of discrete dynamical systems, that part of a state space from which in�nite
behaviour may arise. With these novel divergence modules, the proof of the loop
re�nement theorem can even be fully automated without any axiom restrictions
and additional hypotheses in SPASS, i.e, without the loop unfold law mentioned.

The results obtained not only further con�rm that variants of Kleene alge-
bras in combination with o� the shelf automated theorem provers are very useful
as light-weight formal methods with heavy-weight automation for analysing pro-
grams and reactive systems. They also provide new structural insights related to
Bachmair and Dershowitz’s termination theorem, to action system re�nement,
to !-regular languages and to discrete dynamical systems.

To make our experiment accessible and reproducible, all theory input �les,
all axiom restrictions, all additional hypotheses and all SPASS outputs are docu-
mented in an extended version [20]. Inputs will also be made available in TPTP-
format at a web-site [1]. Since we are mainly interested in robust results for
a formal methods context, we abstain from tuning the prover, avoid extreme
running times and do not use extremely powerful hardware. In particular cases,
stronger results can certainly be obtained by experts in theorem proving.
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2 Kleene Algebras and Omega Algebras

Omega algebras provide an abstract axiomatisation of the objects and opera-
tions needed for specifying and proving Bachmair and Dershowitz’s termination
theorem. Relation algebras could be used as well, but omega algebras possess
fewer operations and simpler axioms, which is bene�cial for automated deduc-
tion. Omega algebras are simple extension of Kleene algebras that have recently
emerged as foundational structures in computing.

An idempotent semiring is a structure (S;+; �; 0; 1) such that (S;+; 0) is a
commutative monoid with idempotent addition, (S; �; 1) is a monoid, multiplica-
tion distributes over addition from the left and right and 0 is a left and right zero
of multiplication. Let S be a semiring. For all x; y; z 2 S, the semiring axioms
are

x+ (y + z) = (x+ y) + z;

x+ y = y + x;

x+ 0 = x;

x(yz) = (xy)z;

1x = x;

x1 = x;

x(y + z) = xy + xz;

(x+ y)z = xz + yc;

0x = 0;

x0 = 0:

As usual in algebra, we stipulate that multiplication binds more strongly
than addition, and we omit the multiplication symbol. The relation � de�ned
by x � y , x+ y = x for all elements x; y is a partial order. Every idempotent
semiring is therefore also a semilattice (S;�) with addition as join and the
following splitting law holds, which is very useful for automated deduction.

x � z ^ y � z , x+ y � z: (1)

A Kleene algebra [17] is an idempotent semiring K extended by the star
operation (or �nite iteration operation) � : K ! K that satis�es, for all x; y; z 2
K, the star unfold and star induction axioms

1 + xx� � x�; 1 + x�x � x�

z + xy � y ) x�z � y; z + yx � y ) zx� � y:

An omega algebra [6] is a Kleene algebra K extended by the omega operation
(or in�nite iteration operation) ! : K ! K that satis�es, for all x; y; z 2 K the
omega unfold and omega coinduction axiom

xx! = x!; y � z + xy ) y � x! + x�z:
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Kleene algebras have originally been conceived as algebras of regular events, i.e.,
to model the operations of addition (or union), multiplication (or concatenation)
and star as they arise in language theory.

Kleene algebras also model actions (of a transition system). The constants
0 and 1 model the abortive and the ine�ective action. Addition models non-
deterministic choice of actions; it therefore has to be idempotent. Multiplication
models the composition of actions. The star models the �nite iteration of actions.
The �rst star unfold axiom, e.g., says that a �nite iteration x� is either ine�ective,
whence 1, or it continues after one single x-action. By the �rst star induction
law, x� is the least element with that property. The omega models the strictly
in�nite iteration of actions. The omega unfold axiom says that pre�xing actions
x does not change an in�nite iteration x!. The omega coinduction axiom implies
that x! is the greatest element with that property; it also links �nite and in�nite
iteration with respect to some \terminal action" z.

By the star and omega axioms, �nite and in�nite iteration is expressed within
�rst-order logic with Park-style rules as least and greatest pre�xed points (which
are also least and greatest �xed points). Operationally, the induction axioms
serve as star elimination rules at left-hand sides of equations, the coinduction
axioms serve as omega elimination rules at their right-hand sides.

Encodings of omega algebras for theorem proving can be found in the research
report [20] and at the web-site [1]. It follows from the de�nition of partial order on
Kleene algebras that equational as well as order-based encodings can be used.
Experience shows that the order-based encoding, although � is treated as an
ordinary predicate symbol for which no specialised inference rules are available,
usually yields better results with more complex theorems. We therefore base all
our arguments on the order-based encoding.

Some further facts are important for our considerations. First, the unfold
axioms can be strengthened to the identities, 1 + xx� = x�, 1 + x�x = x� and
x! = xx! Second, all operations are isotone with respect to the ordering �, i.e.,

x � y ) x+ z � y + z

and likewise for multiplication, star and omega. These properties are also used
in the encoding of Kleene algebras for theorem proving.

3 Kleene Algebras and Abstract Reduction Systems

Kleene algebras have a rich model class that includes languages, sets of paths in
a graph and sets of program traces. In the present context, however, relational
models are our main interest.

So let R = 2A�A denote the set of all binary relations over some set A. For
all r; s 2 R, let r + s = r [ s, i.e., set union and let r � s = f(a; b)j9c:(a; c) 2
r ^ (c; b) 2 sg), i.e., the relational product of r and s. Let 0 = ; be the empty
relation and let 1 = f(a; a)ja 2 Ag be the unit relation. Finally, let r� =

S

i�0 r
i,

where r0 = 1 and ri+1 = r � ri. It is easy to see that r� models the reexive
transitive closure of r. The following theorem is well-known and easy to verify.
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Theorem 3.1. (R;+; �; 0; 1; �) is a Kleene algebra.

It is often called the full relation Kleene algebra over A. Obviously, R is its
maximal element. It follows from basic results of universal algebra that every
subalgebra of the full relation Kleene algebra is again a Kleene algebra. See, e.g.,
[10] for a discussion.

Now each full relation Kleene algebra is complete and, by the Knaster-Tarski
theorem, the greatest �xed point of the function �y:z+xy exists and is equal to
x! + x�z.

Theorem 3.2. (R;+; �; 0; 1; �; !) is an omega algebra.

Note, however, that x! is not necessarily equal to an iteration
T

i�0 x
i �R, since

this would presuppose distributivity of multiplication over arbitrary in�ma. Nev-
ertheless, x! =

T

i�0 x
i �R holds whenever A is �nite. Finally, the following result

has been shown (cf. [13] for details).

Proposition 3.3. In every (full) relation semiring, r! = 0 if and only if there
are no in�nitely ascending r-chains, that is, if and only if r terminates.

The analysis of Bachmair and Dershowitz’s termination theorem is entirely
based on abstract reduction systems, i.e., it disregards the subterm property
which is present in concrete term rewrite systems. Formally, an abstract re-
duction system is a family ri of binary relations on some set A. Every abstract
reduction system can therefore be embedded into the full relation omega algebra
on A.

Corollary 3.4. Let R be an abstract reduction system. Then (R;+; �; 0; 1; �; !),
with the operations de�ned as before, is a relation omega algebra.

Corollary 3.4 and Proposition 3.3 yield the general justi�cation that termination
properties of abstract reduction systems can be analysed in terms of omega
algebras.

4 First Proof

Based on the general results from Section 3, we can now abstract the notions of
quasicommutation and termination, and the statement of the separation theorem
in omega algebra.

We assume that rewrite systems x and y are elements of some omega alge-
bra. This is reasonable, since rewrite systems|more precisely abstract reduction
systems|are relations, and since relations under union, composition, reexive
transitive closure and in�nite iteration together with the empty relation and the
unit relation form an omega algebra.

For specifying Bachmair and Dershowitz’s termination theorem, two notions
are essential. Let x and y be elements of some omega algebra. Then

{ x quasicommutes over y if yx � x(x+ y)�;
{ x terminates if x! = 0.
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Termination as absence of in�nite x-chains has been used by Bachmair and
Dershowitz. The termination theorem can now be rephrased as follows.

Theorem 4.1. Let x and y be elements of some omega algebra and let x quasi-
commute over y.

(x+ y)! = 0, x! + y! = 0:

It is well known that the right-to-left direction does not require quasicommu-
tation. It can be proved with SPASS in less than 0:13s. The SPASS output of
this and all other proofs together with detailed information about restrictions on
the axiom set and additional hypotheses used can be found in the technical re-
port [20]. The information provided in the report will allow readers to replay all
proofs. In this particular case, no restrictions on the axiom set and no additional
hypotheses are needed.

A proof of the left-to-right direction of Theorem 4.1 in a full sweep is impos-
sible with the hardware available. Experimenting with di�erent hypothesis sets,
as mentioned in the introduction, we can �nd a proof from a restricted axiom
set and with additional hypotheses in about 4min. The key to success is the law

(x+ y)! = y! + y�x(x+ y)!; (2)

which has previously been automatically veri�ed and used in the context of
program re�nement [14].

An equational proof can be reconstructed from the resolution proofs. For its
presentation, the following property is worth mentioning.

yx � x(x+ y)� , y�x � x(x+ y)�: (3)

The right-to-left direction can be proved in 0:33s without any restrictions. The
right-to-left direction took about 27s from a reduced axiom set and an addition
hypothesis.

The equational proof of Theorem 4.1 is then a one-liner:

Proof. (of Theorem 4.1)

(x+ y)! = y! + y�x(x+ y)! � y! + x(x+ y)�(x+ y)! = y! + x(x+ y)!:

The �rst step is by Equation (2); the second step by quasicommutation and
Equation (3); the third step uses the identity x�x! = x!. Then

(x+ y)! � x! + x�y! (4)

follows by omega coinduction. Now (x+y)! = 0 immediately follows from x! = 0
and y! = 0.

The converse direction follows|without quasicommutation|from x � x+y,
y � x+ y, isotonicity of omega and the fact that z!z! = z! . ut

This results, obtained from experimenting with SPASS, is certainly surpris-
ing. It is much simpler and much more direct than the previous proof in [19] and
its circumstantial mechanisation with Prover9 in [14]. However, from the puristic
point of view, it is still not satisfactory since it relies on axiom restrictions and
an additional lemma.
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5 A Novel Loop Re�nement Law

A closer look at the equational proof of Theorem 4.1 reveals Equation (4)|a
re�nement law for in�nite loops in the presence of quasicommutation|which is
interesting in its own right and of which the termination theorem turns out to
be just a special case.

Theorem 5.1. Let x and y be elements of some omega algebra and let x quasi-
commute over y. Then

(x+ y)! = x! + x�y!: (5)

Proof. For (x + y)! � x! + x�y! replay the proof of Theorem 4.1 to equation
(4). This direction depends on quasicommutation.

The converse direction follows from x � x+y, y � x+y, isotonicity of omega,
x�x! = x! and the fact that z!z! = z! . ut

The left-to-right direction could be proved in 13s from a restricted axiom set
and with additional hypotheses. The right-to-left direction could be proved in
13min35s without any restrictions.

Intuitively, Equation (5) says that a strictly in�nite repetition of actions
x or y chosen non-deterministically can be separated into the non-derministic
execution of a strictly in�nite repetition of x-actions or a �nite (possibly empty)
repetition of x-actions followed by a strictly in�nite repetition of y-actions.

The assumption of quasicommutation is quite general; it is implied by other
notions of commutation like ba � a+b�, where a+ = aa�, ba � ab or ba = ab. All
these conditions model meaningful properties of systems: inequalities typically
model preference or priority properties whereas equations model independence
properties.

Theorem 4.1 now follows from Theorem 5.1 by setting x! = 0 = y!. The
proof with SPASS takes 0:04s without any restrictions or additional hypotheses.

6 Demonic Re�nement Algebras

We now provide an alternative proof of a variant of the above loop re�nement
theorem and of Bachmair and Dershowitz’s termination theorem in another vari-
ant of Kleene algebra called demonic re�nement algebra [21]. Formally, these are
structures (K;1) such that K is a Kleene algebra without the right zero axiom
and the operation 1 of strong iteration is axiomatised by the strong unfold, the
strong coinduction and the isolation axiom

x1 = 1 + xx1; y � z + xy ) y � x1z; x1 = x� + x10

for all x; y; z 2 K. The converse strong unfold law, 1 + x1x = x1, follows from
the axioms and strong iteration is isotone with respect to the ordering.

The particular axioms of demonic re�nement algebra can easily be moti-
vated from the predicate transformer model of re�nement with in�nite iteration,
cf. [21]. It has been shown in Back and von Wright’s re�nement calculus [5] that
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x1 = x! + x�. The same proof trivially holds in demonic re�nement algebra.
Therefore, strong iteration comprises �nite and strictly in�nite iteration. It is
also immediately obvious that demonic re�nement algebras do not capture the
relational semantics of programs, since in the presence of the right zero axiom
(which is satis�ed in relational models), the isolation axiom collapses strong it-
eration to �nite iteration. Therefore, the results of the following section are not
directly related to Bachmair and Dershowitz’s termination theorem. But as re-
�nement theorems within the re�nement calculus they are certainly interesting
in their own right.

Also, all theorems of demonic re�nement algebra that do not mention strong
iterations are also theorems of Kleene algebra.

The code for demonic re�nement algebras in SPASS can again be found in
the research report [20].

7 Second Proof

In the context of demonic re�nement algebras, quasicommutation can of course
be written as before. But there are now two di�erent notions of termination. We
say that

{ x weakly terminates if x1 = x�;
{ x strongly terminates if x10 = 0.

Lemma 7.1. In every demonic re�nement algebra, strong termination implies
weak termination, but the converse need not hold.

The implication of weak termination by strong termination can be shown with
SPASS in less than 0:06s without any restrictions or additional hypotheses. For
the converse direction, the counterexample generator Mace4 [2] �nds a coun-
terexample with three elements. It is presented in the research report [20].

It has already been shown automatically that a variant of Equation (2) holds
in demonic re�nement algebra [1].

(x+ y)1 = y1 + y�x(x+ y)1: (6)

Moreover, x�x1 = x1, so that|up to the coinduction step|the equational
proof of Theorem 5.1 can be translated into demonic re�nement algebra. With
the strong coinduction law as a last step, we then obtain the following loop
re�nement law.

Theorem 7.2. Let x and y be elements of some demonic re�nement algebra
and let x quasicommute over y. Then

(x+ y)1 = x1y1: (7)

The right-to-left direction follows immediately from isotonicity and the identity
x1x1 = x1. The proof from left to right with SPASS takes 0:48s. It reuses the
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information of the corresponding proof of Theorem 5.1, i.e., a restricted set of
axioms and additional hypotheses. The right-to-left proof takes 11s. It also uses
a restricted set of axioms and additional hypotheses.

Due to the two variants of termination, we now obtain two variants of the
termination theorem as corollaries.

Theorem 7.3. Let x and y be elements of some demonic re�nement algebra
and let x quasicommute over y. Then

(i) x1 = x� ^ y1 = y� ) (x+ y)1 = (x+ y)�;
(ii) x10 + y10 = 0) (x+ y)10 = 0.

For (i), to show that (x+ y)1 � (x+ y)� follows from the hypotheses takes 13s.
It uses a restricted axiom set and an additional hypothesis. (x+ y)� � (x+ y)1

can be proved in 0:04s without any restrictions or additional hypotheses. The
proof of (ii) takes 0:05s, again without any restrictions or additions.

For the converse direction, we can prove the following statement.

Theorem 7.4. Let x and y be elements of some demonic re�nement algebra.
Then

(x+ y)10 = 0) x10 = 0 ^ y10 = 0:

This can be proved in 1min3s without any restrictions or additions.
However, a similar statement for strong termination does not hold. Mace4

yields a counterexample with three elements, which is presented in the research
report [20].

8 Kleene Modules

We will now show how notions of divergence and termination can be speci�ed
in the setting of Kleene modules. Such structures were �rst studied by �Esik
and Kuich [12] and by Lei� [18]. However, an operator for modelling program
divergence as a Park-style �xed point operator has, to our knowledge, not yet
been given.

Divergence and termination have already been investigated in the context
of modal Kleene algebras [10,9]. Every modal Kleene algebra is also a Kleene
module, but not vice versa [11]. So it is necessary to reconsider the notions of
termination and divergence. We study them in this more general setting because
it simpli�es automated deduction and provides some structural insights.

A Kleene module [18] (K;L; :) is a two-sorted structure of a Kleene algebra
K, a semilattice L = (L;+; 0) with zero and a scalar product : from K �L to L
that satis�es the following axioms.

(x+ y)p = xp+ yp; x(p+ q) = xp+ xq;

(xy)p = x(yp); 1p = p; x0 = 0;

xp+ q � r ) x�q � r;
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for all x; y 2 K and p; q; r 2 L. We usually omit the scalar product symbol.
A divergence module (K;L; :; r) is a structure such that (K;L; :) is a Kleene

module and r : K ! L a mapping that satis�es the divergence-unfold and the
divergence-coinduction axioms

xr � xxr; p � xp+ q ) p � xr + x�q;

for all x 2 K and p; q 2 L. Previously, the notation r(x) has been used to
denote the divergence of x [9]. Here, we use xr to emphasise the similarity to
the omega and the strong divergence operator.

This novel de�nition of divergence modules is very general; it admits at least
two interesting interpretations.

Under the �rst interpretation, xp models the preimage of a set p under a
relation x and xr models the set of all states from which in�nite x-sequences may
emanate. This divergence set is stable under x-actions and it is the greatest set
with that property (0 being the lest such set). Then x terminates if xr = 0. This
de�nition is consistent with the standard set-theoretic notion of Noethericity. In
set theory p�xp models the set of x-maximal elements of p, i.e., the set of those
elements from which no further x-action is possible. Now p � xp = 0, which
is equivalent to p � xp, says that p has no x-maximal elements. Then, if x is
Noetherian, the empty set 0 is the only element with that property; whence
p � ap ) p = 0. See [9] for further discussion in the setting of modal Kleene
algebras.

Under the second interpretation, elements of K model �nite computations
or actions of a program whereas elements of L model in�nite ones. The scalar
product relates �nite and in�nite computations in a reasonable way that makes
it impossible to compose an in�nite element at its right-hand side with any other
element. In this setting, the divergence operation maps �nite elements to in�nite
ones. The divergence axioms are precisely typed (or sorted) variants of the unfold
and coinduction axioms of omega algebra. So divergence acts as the appropriate
omega operator under this interpretation and therefore, xr = 0 means again
absence of in�nite iteration.

The two interpretations of omega make this operation very versatile and
applicable in di�erent contexts. Beyond modal reasoning, the �rst interpretation
is interesting for the analysis of in�nite behaviours in discrete dynamical systems.
The second one is more compatible with the de�nition of !-regular languages
than omega algebra. It seems challenging to obtain a completeness theorem with
respect to !-regular languages from this setting.

Since here, relational models are again admitted, divergence modules capture
again Bachmair and Dershowitz’s termination theorem. The correspondence be-
tween divergence and termination is even more transparent than for omega alge-
bra. A discussion of the general correspondence between divergence and omega
(for modal Kleene algebras) can be found in [13].

As a special case, the carriers of K and L can be the same and r becomes
an endomorphism. This immediately yields the following fact.
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Proposition 8.1. Every theorem of divergence modules is a theorem of omega
algebra (modulo translation).

The converse direction does, of course, not hold. x!0 = 0 holds in omega algebra
for every element x, but a corresponding identity cannot even be written down
in divergence modules.

It follows immediately from (x + y)p = xp + yp, from x(p + q) = xp + xq
and from the de�nition of the partial ordering that scalar products are isotone
in both arguments, i.e.,

x � y ) xp � yp and p � q ) xq � xq:

This can easily be proved from an equational encoding of divergence modules in
SPASS. We will add these properties together with the other isotonicity laws to
the prover input �les. Since the equational encoding is of no further interest, we
neither document this encoding nor the proofs in this paper. An order-based en-
coding of divergence modules in SPASS can be found in the research report [20].

9 Third Proof and Full Automation

The proofs of variants of the loop re�nement theorem and of Bachmair and
Dershowitz’s termination theorem in Kleene modules is particularly simple and
can therefore be automated without any restrictions or additional hypotheses.

Analogously to the previous sections, we can prove a variant of the special
unfold law for divergence modules. Since it has not yet been considered, we
present it as a lemma.

Lemma 9.1. Let x and y be elements of some divergence module. Then

(x+ y)r = yr + y�x(x+ y)r: (8)

The left-to-right direction takes 1min25s; its converse 2min53s. Both direc-
tions are proved from the full axiom set and need no additional hypotheses. This
law is interesting in its own right as a re�nement law, but we will not need it in
further proofs.

The next statement is an analogue to the loop re�nement laws Theorem 5.1
and Theorem 7.2 that hold in omega algebras and demonic re�nement algebras.
We display an equational proof to demonstrate that it is precisely along the lines
of omega algebras.

Theorem 9.2. Let x and y be elements of some divergence module and let x
quasicommute over y. Then

(x+ y)r = xr + x�yr:

Proof. We calculate

(x+ y)r = yr + y�x(x+ y)r � yr + x(x+ y)�(x+ y)r = yr + x(x+ y)r:

The claim then follows from divergence-coinduction. The identity xr = x�xr

can easily be veri�ed. ut
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In contrast to previous approaches, this statement can now be proved without
any restrictions on the axiom set and without any additional hypotheses with
SPASS. The left-to right direction that uses quasicommutation takes 1min51s.
Its converse takes 3min6s.

The fact that proof automation is particularly simple in divergence modules
might at �rst sight seem surprising, since the axiom set of divergence modules
is more complex than those of omega algebras and demonic re�nement algebras.
However, in the two-sorted setting, operations are applied to terms in a more
restrictive way, especially the computationally expensive rearrangements due to
associativity and commutativity of addition and to the �xed-point laws for �nite
and in�nite iterations that allow self-substitutions can be better controlled. This
certainly explains the success of SPASS which can manage sorts in an e�cient
way.

Theorem 9.2 is quite general and admits many di�erent interpretations be-
yond rewrite systems. Under the modal interpretation, since the divergence xr

models the basin of non-termination of x in the state space L, these basins of
non-termination can be separated by Theorem 9.2. This is certainly relevant to
the analysis of discrete dynamical systems.

Under the interpretation with �nite and in�nite actions, it models again loop
separation, which is interesting for program veri�cation.

A third variant of Bachmair and Dershowitz’s termination theorem now fol-
lows as a corollary, as before.

Theorem 9.3. Let x and y be elements of some divergence module and let x
quasicommute over y. Then

(x+ y)r = 0, xr + yr = 0:

The left-to-right direction takes 3min9s; its converse, assuming Theorem 9.2,
0:11s. The proofs are again obtained from the full axiom set without additional
hypotheses.

Since every modal Kleene algebra is a Kleene module, our results holds a
fortiori in the former setting. The relationship between the two approaches can
intuitively be described as follows. First, instead of de�ning Kleene modules
over a semilattice, we could use a Boolean algebra in the second component.
The resulting structures have been investigated in [11]; they are strongly related
to dynamic algebras, which are algebraic variants of propositional dynamic log-
ics, and they are Boolean algebras with operators in the sense of J�onsson and
Tarski [16]. Second, to obtain modal Kleene algebras, the Boolean algebra can
be embedded into the subalgebra bounded by 0 and 1 of the Kleene algebra
such that mixed terms between Kleenean and Boolean elements can be written
down. The axiom set for modal operators can then be reduced to three simple
equations. The precise connection has been set up in [11].

However, due to the more complex axiomatisation of dynamic logics, Boolean
algebras with operators and modal Kleene algebras, it cannot be expected to
obtain a similar degree of automation. Moreover, due to the abstractness and
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universality of variants of Kleene algebras, our results hold in models including
relations, program traces, paths and languages.

10 Conclusion

We solved a sharpened variant of Cohen’s challenge by proving Bachmair and
Dershowitz’s termination theorem mechanically in variants of Kleene algebras
and, in particular, fully automatically in the setting of divergence modules.
Through our proof experiments that involve hypothesis selection, we found par-
ticularly simple proofs that could be retranslated into fully formal equational
proofs with essentially one line of calculation. This is in sharp contrast to the
original argument by Bachmair and Dershowitz, a formalisation of which would
certainly require several pages, and which seems infeasible to automation.

The concise formalism of Kleene algebras and the discipline of proof enforced
in this setting also revealed some structural insight in the setting of Bachmair
and Dershowitz’s theorem. Through the equational proof we discovered a new
re�nement theorem for nested in�nite loops to which the termination theorem
is a simple corollary.

Using this structural insight, we replayed our proofs in further variants of
Kleene algebras and were particularly successful in the newly developed setting
of divergence modules.

The simple treatment of the termination theorem in the context of Kleene
algebras is based, of course, on a signi�cant amount of abstraction. The formal-
isation gap between concrete rewrite systems and Kleene algebras is, however,
closed once and for all by the well-known proofs that abstract reduction sys-
tems form omega algebras or divergence modules. The proofs obtained are short
relative to that abstraction.

When starting our proof experiments, we used McCune’s Prover9 [2], but
then moved to SPASS when proofs in the two-sorted setting of divergence mod-
ules seemed infeasible. We then replayed all proofs for omega algebras and de-
monic re�nement algebras with SPASS, to be able to present more coherent
results. Since we do not want to overload this paper, we do not present a com-
parison of Prover9 and SPASS. Let us only mention that for omega algebras and
demonic re�nement algebras they were comparable.

>From a more general point of view, this work contributes to a series of papers
devoted to the automation of �rst-order algebraic structures with applications
in program development, re�nement and veri�cation [14,15]. Our results suggest
that the combination of o� the shelf automated theorem proving with domain-
speci�c algebras has considerable potential to further establish �rst-order the-
orem proving as a feasible alternative to model checking and interactive proof
assistants. Due to the abstraction and universality provided by the algebras, we
believe that light-weight formal methods with heavy-weight automation can be
obtained.

This line of work also leads to interesting research questions in automated
deduction. A �rst strand is the integration and implementation of solvers and
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decision procedures for concrete data types as they arise in veri�cation scenarios,
e.g., arithmetics, lists, queues, arrays in automated theorem provers. A second
strand is the implementation of order-based reasoning through ordered chaining
calculi. Order-based reasoning often highly advantageous for automated alge-
braic proofs but rather neglected by the theorem proving community. A third
strand is the development of focused inference rules for the algebras under con-
sideration, which would further help to guide proof search and allow one to
prover relevant theorems of even greater complexity. Finally our algebraic ap-
proach provides challenging benchmarks for �rst-order theorem provers that are
both computationally hard and practically relevant. We will therefore make all
inputs available in TPTP-format [1].

While preparing the �nal version of this paper, Peter H�ofner and the author
were even able to push some of the results from this paper a step further. Bach-
mair and Dershowitz’s termination theorem (Theorem 4.1) could now be proved
in some minutes; the loop re�nement theorem in demonic re�nement algebra
(Theorem 7.2) could be proved in a couple of hours without any axiom restric-
tions or additional lemmas. These unexpected results were obtained by running
Prover9 with an equational axiomatisation of omega algebras and demonic re-
�nement algebras. These results are documented at the web-site [1]. They are in
contrast to our previous experience that an order-based approach work better
with more complex theorems. Further consideration of these novel results and a
comparison between di�erent approaches is planned for an extended version of
this paper.
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Abstract. ProofBuilder is an interactive �rst-order theorem-proving system. It is designed to help
students learn to construct proofs by structuring proofs and their construction clearly and performing
menial or error-prone symbolic manipulations, so students can concentrate on the higher-level process
of deduction. This system is further designed to be usable as widely as possible by allowing di�erent
forms of input and providing a variety of popular proof methods.

1 Introduction

This paper presents an interactive �rst-order theorem-proving system named ProofBuilder, which is
designed to enable student users to do basic proofs such as those for a course in Discrete Mathematics.
As with other systems, ProofBuilder’s capabilities include rewriting for logic operators, simpli�cation,
elimination of quanti�ers, substitution of equivalents or equals, and stepwise and strong induction; but
what distinguishes ProofBuilder is that it is designed to enable users to prove theorems like the way they
prove theorems manually. Such aspects of the design include a framework that clari�es which formulas
in a proof are premises that are hypothesized to be true, and which formulas are goals that need to be
proven; and mechanisms to apply a variety of proof methods and strategies such as forward and backward
reasoning, proving by contradiction, transforming one side of an equation or equivalence to the other, and
proving by cases. ProofBuilder is intentionally interactive | not completely automated | for pedagogical
reasons: automated systems enable students to avoid the intellectual deductive work of doing proofs. But
though it doesn’t do all the deductive work for students, ProofBuilder does help them learn to construct
proofs by: (i) structuring proofs and their construction clearly, avoiding confusion; (ii) showing in menus
the variety of options for deductive steps; (iii) performing menial or error-prone symbolic manipulations,
e.g. substituting \0" and \n+1" where appropriate when applying stepwise induction; and (iv) enforcing
soundness of deductive steps.

ProofBuilder is written in Java, so it is usable on essentially all common modern platforms (Mi-
crosoft Windows, LINUX, Apple Macintosh, UNIX, etc.); and it has a graphical user interface, including
capabilities for copying and pasting formulas from other convenient sources such as Web pages; and it uses
proper mathematical characters such as \ �", \8", \�", and \

P
".

2 Related Work

For one recent survey of the �eld of theorem-proving systems, see [1]. Regarding theorem-proving sys-
tems that are designed for educational purposes, see the Journal of Automated Reasoning, Vol.32 (2004)
No.3 (February), which was a special issue involving education. But most theorem-proving systems have
the explicit goal of automating deduction: they are cleverly designed to do as much deduction as possible
automatically, working as hard as possible to minimize the amount of deduction that users must do | even
if the users may be students learning to do proofs. Further, their interfaces are minimally GUI: they’re really
designed to ‘grind’ through logic formulas (which are treated like data) to automatically generate proofs,
rather than to just assist users in learning to achieve construction of proofs themselves much.

Some systems such as Omega and Mizar can be used interactively and have been used in educational
settings. [2,3] But consider the following:

First, instead of supporting the language the mathematician is used to, most systems impose their own formal
language on the user and require a machine-oriented formalization of the mathematical content to allow for
powerful automatic inference capabilities. As a result, the line of reasoning is often unnatural and obscured.
Next, the proofs are at a level of excruciating detail spelling out many logically necessary steps, which a
human would nevertheless consider trivial or obvious. [4]
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For example, here is part of some material for Mizar:

for k being Nat holds k + 0 = k;

And here is part of some material for Isabelle/Isar(/HOL):

let ?k = n! + 1
obtain p where prime: p 2 prime and dvd: p dvd ?k
using prime-factor-exists by auto

[5]

By contrast, ProofBuilder uses more standard mathematical notation than those systems, and it involves
less ‘machinery’ | neither libraries1 nor automatic reasoning. Again, the purpose of ProofBuilder is to
provide simply an environment for students to learn to construct formal proofs, as indicated in textbooks
for teaching Discrete Mathematics.

There are some other systems that are supposed to help students learn to construct proofs, e.g. [6] and [7].
But those systems are designed more for checking proofs that students enter rather than really helping them
construct proofs by performing logical steps that they select; and the installations are platform dependent
and not very standalone, involving the automated theorem provers Otter [8] or Isabelle [9], respectively, in
the background.

Some other related systems are \Deductive Tableau" [10] and \Deduct" 2, but those two systems limited
their scope to material of [11]; and perhaps more signi�cantly, the original authors of those systems no
longer support them. ProofBuilder, presented here, may be construed as developing those latter two systems
further: enabling users to avoid tedious ‘low-level’ steps of [11]’s formal scheme (such as applying associativity
to the formula \:P _ (P _ Q)" to simplify it to \true"); providing more proper mathematical notation such
as \8" and \�" instead of \forall" and \<="; handling more topics such as sets, summations, and O();
and formally providing more proof methods/strategies such as proving by contradiction or by cases, and
transforming one side of an equation to the other.

Some other pieces of software are pedagogical or used pedagogically in contexts where students learn
to construct proofs, but these pieces of software aren’t really designed for general construction of proofs.
For example, Maple [12] is referenced in textbooks such as [13] and [14], and the latter also references
Mathematica [15]; there are applets etc. illustrating algorithms [16]; and [17] has associated Flash software
enabling students to interactively work on piecing proofs together. But that proof-constructing work appears
to be either merely illustrative, algebraic, or prefabricated. For example, with [17] users form proofs simply
by putting several lines of prewritten text in proper order.

Incidentally, this work is not related to other software named \ProofBuilder" such as typographical
software nor even the work of Brauner et al.3

3 Illustrations of Operating ProofBuilder

To expedite the presentation of ProofBuilder, illustrations of it are used. Here is a �rst sample proof
produced in ProofBuilder:

1 \The size of the Mizar library is about 50 megabytes, while that of Isabelle is about 10 megabytes (including the
sources of the system and the example theories)." [5]

2 The \Deduct" software, by Michael Col�on et al., has not been published, but it has been available upon request
from the REACT research group under the supervision of Zohar Manna at Stanford University.

3 Not yet published at this time.
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ProofBuilder extends the deductive-tableau proof scheme of [11]. As shown in the sample proof above,
ProofBuilder constructs a proof in a table with two main columns labeled \Suppositions" and \Theo-
rem/Subgoals" containing the logic formulas used in the proof, a column labeled \Used" containing check-
boxes indicating whether formulas have been used yet in a proof, and two columns labeled \(#)" and \Names"
containing numbers and names for identifying the logic formulas. And in addition to the formulas, there are
also narrative texts (and blank lines) which serve to clarify the construction of the proof.

Construction of a proof in this system begins with the user entering the theorem to be proved as the �rst
formula in the \Theorem/Subgoals" column. If desired/needed, the user can also enter axioms or lemmas as
initial entries in the \Suppositions" column. For example, in the sample proof above the theorem is in the
row numbered (3), and a couple of basic de�nitions or axioms which are used in this proof are in the rows
numbered (1) and (2). Then, the user applies deductive steps | selected from the menu labeled \Deduc-
tion" | to formulas in the deductive tableau, generating additional formulas which are added to the deductive
tableau, until a deductive step achieves the proof-terminating ‘subgoal’ of true (or a ‘supposition’ of false,
when proving by contradiction). See Section 4 below for further details about operating ProofBuilder,
including options for di�erent symbols such as \)"/\!"/\implies"/\IMPLIES".

The �rst deductive step illustrated in the sample proof above is Quanti�er Removal, which is applied to the
theorem formula (3), (8S)[? � S], yielding the formula (4), ? � A, which is added as a new goal formula to be
proved; at this point ProofBuilder marks formula (3) as used, for clarity. As shown, ProofBuilder provides
‘canned’ narrative text for deductive steps; naturally, these texts can be changed. Proving the validity of
such a derived goal (4) would prove the validity of the original universally quanti�ed theorem formula (3) as
with classical Hilbert-style logic’s deductive step of universal generalization, which speci�es that proving a
formula ’ containing a constant symbol c su�ces to prove the formula (8x)’̂, where ’̂ is obtained from ’
by replacing occurrences of c with x (under some conditions). ProofBuilder does Quanti�er Removal also
implicitly/automatically when handling supposition formulas that are universal quanti�cations. For example,
in the sample proof above the supposition formula (2), (8x)[:(x 2 ?)], is handled as \:(x 2 ?)". This
variant of Quanti�er Removal is like quanti�er removal when converting formulas to clausal form. See the
documentation of ProofBuilder (referenced in Section 4 below) for further details about Quanti�er Removal.

The second deductive step illustrated in the sample proof above is Equivalence Substitution, which is
applied to formulas (1) and (4) yielding formula (5), at which point formulas (1) and (4) are marked as used.
When an equivalence formula of the form \’1 , ’2" such as formula (1) above is available and one side
of the equivalence can be safely uni�ed with another formula ’3 | e.g. here, equivalence formula (1)’s left-
hand side, S1 � S2, can be safely uni�ed with formula (4), ? � A, via the substitutions [S1 := ?; S2 := A] |
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then the formula ’3 may be replaced by the other side of the equivalence | e.g. here, the other side of the
equivalence is (8x)(x 2 S1 ) x 2 S2) | subject to application of the safely unifying substitutions. The
result here is formula (5), (8x)(x 2 ? ) x 2 A). The use of \=" in the narrative here is derived from [18].
See the documentation of ProofBuilder (referenced in Section 4 below) for further details about using
Equivalence Substitution (and safely unifying formulas).

Another deductive step illustrated in the sample proof above is nonclausal Resolution, which is applied
to formulas (2) and (6), yielding formula (7). [19,20] describe nonclausal resolution. Whereas clausal resolu-
tion involves joining two clauses containing uni�able terms of the form \P(: : :)" for which one of the terms is
negated and the other is not, nonclausal resolution here joins two formulas containing safely uni�able subfor-
mulas ’1 and ’2 for which their \polarities" are opposite. Polarity generalizes negation: goal formulas have
positive polarity, supposition formulas have negative polarity, and negation that is explicit or implicit (as
with \�" in an implication formula \�) �") yields reverse polarity. For example, in the sample proof above
the supposition formula (2), (8x)[:(x 2 ?)], has negative polarity, and the underlined subformula x 2 ?

inside it has positive polarity; the goal formula (6), a 2 ? ) a 2 A, has positive polarity, and the underlined
subformula a 2 ? inside it has negative polarity; (See the documentation of ProofBuilder (referenced in Sec-
tion 4 below) for further details about polarities). And these two underlined subformulas which have opposite
polarities are safely uni�able via the substitution [x := a]. (Again, ProofBuilder implicitly/automatically re-
moves supposition formula (2)’s universal quanti�er, (8x).) To do nonclausal resolution here, the user selects
the desired formulas and subformulas. When a supposition formula & contains a subformula ’1 with positive
polarity and a goal formula  contains a subformula ’2 with negative polarity and ’1 and ’2 are safely
uni�able, then in this case nonclausally resolving these formulas yields a new goal formula :&̂ ^ ̂, where &̂ is
derived from & by replacing ’1 with true and ̂ is derived from  by replacing ’2 with false | plus the safely
unifying substitutions are applied, and ProofBuilder also simpli�es the result. For example, in the sample
proof above, the result of nonclausally resolving formula (2) and formula (6) | with the subformulas in them
selected as indicated above | is the formula :[:(true)] ^ (false ) a 2 A), which ProofBuilder then sim-
pli�es as follows: the subformula :[:(true)] simpli�es to true, the subformula (false ) a 2 A) simpli�es
to true, and then the intermediate result at this point, true^true, simpli�es to true, which ProofBuilder

adds to the deductive tableau as formula (7) | and that completes this proof. See Section 4 below for further
details about simplifying, and see the documentation of ProofBuilder (referenced in Section 4 below) for
further details about using nonclausal Resolution.

Here is a second sample proof, of the theorem
X

1�i�n

i =
n(n + 1)

2
, i.e.

nX

i=1

i =
n(n + 1)

2
:
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Features of ProofBuilder highlighted with this proof are as follows. For details beyond what’s indicated
here (e.g., for strong induction), see the documentation of ProofBuilder (referenced in Section 4 below).

{ In addition to the notation shown above for summations, derived from [21] (and to a lesser extent
from [18]), ProofBuilder also accepts notation like what is more common: \

P
i for i = 1 to n".
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{ ProofBuilder uses notation shown in formula (2), \e@[v := y + 1]", to represent substitution. This
notation is derived from [11,18].

{ ProofBuilder performs induction as shown with formulas (9)-(10).
{ As shown above with formula (11), ProofBuilder enables the user to handle parts of a goal formula in

separate cases. Parts of a supposition formula can be handled similarly.
{ As shown with formulas (15)-(17), ProofBuilder enables the user to do direct proof.
{ As shown with formulas (17)�., ProofBuilder enables the user to prove an equation conveniently by

transforming one side to the other.
{ As shown with formulas (18)-(26), an additional deductive step is Equality Substitution. This is similar

to Equivalence Substitution.
{ As shown with formulas (3)-(5) (the latter of which is used with formula (21)), ProofBuilder enables

the user to instantiate a universally quanti�ed supposition with a value.

Finally, here is a third sample proof produced in ProofBuilder:

The theorem here, (P ^ Q) ) (Q _ R), could be proved several other ways in ProofBuilder; but the point
here is that this is one way that people like to do proofs, and ProofBuilder is capable of this method as
well as others. Rewritings like the ones shown here work for predicate as well as propositional formulas. See
Section 4 below for details about Rewriting.

4 Details of Operating ProofBuilder

Running ProofBuilder

ProofBuilder is written in Java (version 5.0), so it runs on any platform where that (or a later version of
Java) is installed. The software is contained in the �le ProofBuilder.jar. Anyone can obtain the software
and documentation (etc.) at the following URL: http://www.cis.gvsu.edu/~mcguire/ProofBuilder/ .
In a GUI operating system such as Microsoft Windows, one can start running ProofBuilder by double-
clicking on ProofBuilder.jar (if Java �5.0 is installed properly). Or in a command-line environment such
as LINUX, one can start running ProofBuilder by typing the following command:

java -ea -jar ProofBuilder.jar

ProofBuilder starts by presenting a window in which the user can enter the theorem being proved;
as indicated above, ProofBuilder inserts the theorem in the �rst row in the Theorem/Subgoals column.
An item in the Editing menu enables the user to enter premises, i.e. suppositions other than than ones
arising inside the proof (an example of a supposition arising inside a proof is when a goal formula is an
implication �) � and we suppose that � is true, and we try to prove �).
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After entering the theorem and premises, the user uses the mouse to select expressions and uses the De-
duction menu to choose deductions for ProofBuilder to apply to the selected expressions, and ProofBuilder

adds the results of the deductions to the proof until it achieves a goal of true (or a supposition of false),
which concludes the proof. The deductions that ProofBuilder provides are as follows:

Rewrite selection
Split formula into components
Suppose negation
Separate into cases
Remove quanti�er

Use additional row
Invoke bivalance
Substitute using equivalence
Substitute using equation
Invoke induction

Transform one side to other
Instantiate universal supposition
Try Simpli�cation
Conjoin two suppositions

Notation

When typing a theorem or presupposition formula, the user can copy and paste formulas from other
convenient sources such as Web pages | including symbols such as \�", \8", and \�". Alternatively, the user
can type such symbols by pressing the ALT key together with speci�ed keys; for example, pressing ALT-<
yields \�, pressing ALT-A yields \8, and pressing ALT-f yields \�. (On an Apple Macintosh, it may be
necessary to press the CTRL key also.) Here are such keymappings that ProofBuilder provides:

A �! 8 E �! 9 s �!
P

p �!
Q

= �! � B �! , b �! $ I �! ) i �! !
o �! _ a �! ^ : �!  # �! 6= < �! � > �! � e �! 2 [ �! � f �! �
u �! [ t �! \ + �! � W �! 
 w �! ! n �! : y �! 1 R �! R Q �! Q

Z �! Z N �! N / �! ?

superscript: 0 �! 0 1 �! 1 2 �! 2 3 �! 3 - �! �

And actually, the user can use di�erent symbols for things as desired; for example, the user can use any of
the symbols \)", \!", \implies", and \IMPLIES" as an implication symbol. Thus, ProofBuilder can be
used by people who have di�erent preferences for notation.

Incidentally, note the ‘na��vet�e’ of the logic, e.g. for set theory as demonstrated in the �rst illustra-
tion in Section 3 above. As is standard with textbooks for introductory courses on Discrete Mathematics,
ProofBuilder makes no restrictions on types of variables or other terms (Deductive Tableau and Deduct

provided such restrictions, but they were annoying), nor are axioms necessarily restricted to non-na��ve ones
for set theory such as Zermelo-Fraenkel. It might be considered bad that ProofBuilder thus allows one to
enter a Russell’s-paradox formula such as (9r)(8x)[x 2 r , :(x 2 x)] and then instantiate x with the the
value obtained for r, obtaining a contradiction. But enabling students to play with this paradox may actually
facilitate leading into discussion of non-na��ve set theories.4

Simplifying

Here are simpli�cations that ProofBuilder performs, automatically. In this list, the abbreviations \f"
and \t" are used for \false", and \true", respectively.

f ^ ’ �! f t ^ ’ �! ’ ’ ^ ’ �! ’ ’ ^ :’ �! f

f _ ’ �! ’ t _ ’ �! t ’ _ ’ �! ’ ’ _ :’ �! t

f) ’ �! t ’) f �! :’ t) ’ �! ’ ’) t �! t

’) ’ �! t ’) :’ �! ’ :’) ’ �! :’
:’1 ) :’2 �! ’2 ) ’1 :(’1 ) :’2) �! ’1 ^ ’2 ::’ �! ’
� = � �! t � 6= � �! f

Additionally, ProofBuilder simpli�es evaluable arithmetic expressions to their values. For example,
1 + 2 �! 3, 4 < 5 �! true, and 48 mod 7 �! 6.

Rewriting

Here are Rewritings that ProofBuilder can perform:

: (’1 ^ ’2)  ! :’1 _ :’2

: (’1 _ ’2)  ! :’1 ^ :’2

’1 ) ’2  ! :’1 _ ’2

’1 ^ (’2 _ ’3)  ! (’1 ^ ’2) _ (’1 ^ ’3)
’1 _ (’2 ^ ’3)  ! (’1 _ ’2) ^ (’1 _ ’3)

’1 , ’2  ! (’1 ) ’2) ^ (’2 ) ’1)
’1 , ’2  ! (’1 ^ ’2) _ (:’1 ^ :’2)
:(8�)’  ! (9�)[:’]
:(9�)’  ! (8�)[:’]

4 In the future, ProofBuilder may provide types as in [18].
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Further Rewritings are too trivial to list here, e.g. commutativity for ^, _, and ).
As shown in Section 3, ProofBuilder applies a Rewriting chosen by the user to an expression selected

by the user (using the mouse).

Safely Unifying

Some of ProofBuilder’s deductive steps, notably nonclausal resolution and Equivalence Substitution,
require safely unifying subformulas of two formulas. Details of safe uni�cation are as follows:

1. The subformulas are not allowed to contain any quanti�ed variables because it is unsound to allow
arbitrary substitution for quanti�ed variables.

2. Renaming is done as necessary to ensure that the two formulas have distinct variables.
3. Then, unifying substitutions of terms for free variables are accumulated, subject to the restriction that

a variable must not occur in the term being substituted for it.

Further Details

For further details of operating ProofBuilder, see the full documentation of it at the following URL:
http://www.cis.gvsu.edu/~mcguire/ProofBuilder/ .

5 Conclusion

To summarize, ProofBuilder is an interactive system designed to help students learn to construct proofs,
by allowing use of symbols and steps as in di�erent textbooks, by structuring proofs and their construction
clearly, and by performing menial or error-prone symbolic manipulations so students can concentrate on the
higher-level process of deduction. It provides powerful capabilities such as nonclausal resolution, forward and
backward reasoning, proving by contradiction, transforming one side of an equation or equivalence to the
other, and proving by cases; but it does not automatically do such deductions: ProofBuilder leaves the
activity of directing the deductive process to the student users, so they learn it.

Future Work

ProofBuilder is still a work in progress. Future work planned for it includes the following:

{ Enhance the user interface. For example, enable the user to change formulas’ formats | amounts of
spaces, line breaks, indentation, and delimiters.

{ Employing graphics, provide more canonical mathematical notations for things such as summations and
sequences (e.g., \an").

{ Cover more topics such as graphs, boolean algebra, and formal languages.
{ Extend ProofBuilder to more advanced logics such as modal temporal logic.
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Appendix: Soundness and Completeness of ProofBuilder

This explanation is derived from [11].
We associate with each deductive tableau a formula of the form \& ) ", where & here is obtained as the conjunction

of the universal closures of the deductive tableau’s supposition formulas, and  is obtained as the disjunction of the
existential closures of the deductive tableau’s goal formulas. I.e., if a deductive tableau’s supposition formulas are
&1; &2; &3; : : : ; &m and its goal formulas (i.e., the theorem and subgoals) are 1; 2; 3; : : : ; n, then the associated formula is

^

1�i�m

(8�)&i )
_

1�j�n

(9�)j, where \(8�)" and \(9�)" stand for universal and existential quanti�cations of all appropriate

free variables.
For example, consider the following ‘arti�cial’ deductive tableau:

Suppositions Theorem/Subgoals

IsZero(0)

(8z)(y < z) ^ IsZero(x)

(9y)(x < y)

z < 0

If the symbols \x", \y", and \z" are variables, then the associated formula for this deductive tableau is as follows:

[IsZero(0)] ^ [(8x)(9y)(x < y)] )
h

(9x;y)
�

(8z)(y < z) ^ IsZero(x)
�i

_ [(9z)(z < 0)]

Or when one starts constructing a proof of a theorem � with presuppositions &1, &2, and &3, then the deductive tableau
appears as follows:

Suppositions Theorem/Subgoals

&1
&2
&3

�

If &1, &2, &3, and � are closed formulas (i.e., if all of the variables in these formulas appear within the scope of quanti�ers
in these formulas), then the associated formula for this deductive tableau is (&1 ^ &2 ^ &3) ) � . Clearly, at this starting
point, the deductive tableau’s associated formula may be valid (i.e., true under every model or interpretation) if and
only if every model that satis�es the presuppositions &1, &2, and &3 also satis�es � . That is to say, the validity of the
associated formula of the initial deductive tableau corresponds to the validity of the theorem being proved (relative
to presuppositions such as axioms or lemmas that are added to the proof).

The criterion for soundness here is that each deductive step is supposed to preserve the validity or nonvalidity
of deductive tableaux’ associated formulas. That is to say, the associated formula of a deductive tableau after a
deductive step may be valid or nonvalid if and only if the associated formula of the deductive tableau before the
deductive step was also equally valid or nonvalid. (In fact, almost all of the deductive steps here preserve equivalence
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of deductive tableaux’ associated formulas, not just validity.) For example, suppose a supposition formula & contains
a subformula ’1 with positive polarity and a goal formula  contains a subformula ’2 with negative polarity and ’1

and ’2 are safely uni�able, in which case nonclausally resolving these formulas yields a new goal formula new which
is :&̂ ^ ̂, where &̂ is derived from & by replacing ’1 with true and ̂ is derived from  by replacing ’2 with false

(plus the safely unifying substitutions are applied). Recall that the associated formula � of the deductive tableau

is
^

i

(8�)&i )
_

j

(9�)j, with new included among the js after the deductive step but not before it. We show that

nonvalidity (or validity) is preserved as follows:

{ If the associated formula after the deductive step is not valid, i.e. if in some model the associated formula after
the deductive step has the value false, then clearly in that model each formula (8�)&i has the value true and each
formula (9�)j has the value false after the deductive step | which is when new is included among the js. Then
clearly in that model each formula (8�)&i had the value true and each formula (9�)j had the value false also
before the deductive step when new was not included among the js, hence in that model the associated formula
before the deductive step had the value false, hence the associated formula before the deductive step was not
valid,

{ If the associated formula before the deductive step was not valid, i.e. if in some model the associated formula before
the deductive step had the value false, then (like above) in that model each formula (8�)&i had the value true
and each formula (9�)j had the value false before the deductive step when new was not included among the js.
Recall that formula new is :&̂ ^ ̂, where &̂ is derived from & by replacing ’1 with true and ̂ is derived from 
by replacing ’2 with false (plus the safely unifying substitutions are applied). Also note that in the model here,
the formula (8�)& has the value true and the formula (9�) has the value false. Also, (9�)new i.e. (9�)[:&̂ ^ ̂]
is equivalent to :(8�)&̂ ^ (9�)̂ because &̂ and ̂ have undergone safe uni�cation, which ensures that all their
respective free variables are actually distinct. We will see that in the model here, the value of (9�)new is false.
Consider the value assigned by the model here to the formula ’ obtained when ’1 and ’2 are uni�ed; this value
is either true or false.

� First, suppose this value is true. Well, recall that the value of (8�)& is true in this model. Safely unifying
substitutions are applied to &, changing some of its free variables to other terms; but since (8�)& is true
in this model, & is true for all values at the places of its free variables, so (8�)& with the safely unifying
substitutions applied to & is true in this model. Now, the unifying substitutions change ’1 inside & to ’,
and we are assuming in this case that the value of ’ is true in this model. Then replacing ’ inside there
with true should still yield the same value. Thus, (8�)&̂ must be true in this model. Then, in this case, the
value of :(8�)&̂ ^ (9�)̂] is false, i.e. the value of (9�)new is false.

� Otherwise, suppose the value of ’ is false in the model here. Well, recall that the value of (9�) is false in
this model. Safely unifying substitutions are applied to , changing some of its free variables to other terms;
but since (9�) is false in this model,  is false for all values at the places of its free variables, so (9�) with
the safely unifying substitutions applied to  is false in this model. Now, the unifying substitutions change
’2 inside  to ’, and we are assuming in this case that the value of ’ is false in this model. Then replacing
’ inside there with false should still yield the same value. Thus, (9�)̂ must be false in this model. Then,
in this case also, the value of :(8�)&̂ ^ (9�)̂] is false, i.e. the value of (9�)new is false.

Thus, even when new is included among the js after the deductive step here, each formula (8�)&i has the
value true and each formula (9�)j has the value false, so the associated formula after the deductive step has the
value false in the model here. Consequently, the associated formula after the deductive step is not valid.

Thus, the associated formula of a deductive tableau after this deductive step may be nonvalid if and only if the
associated formula of the deductive tableau before the deductive step was also equally nonvalid. This implies that the
associated formula of a deductive tableau after this deductive step may be valid if and only if the associated formula
of the deductive tableau before the deductive step was also equally valid.

Now, consider a �nal deductive tableau containing either a proof-terminating ‘supposition’ &m which is false or
a ‘subgoal’ n which is true. If either &m is false or n is true, then clearly the associated formula at this point,

^

1�i�m

(8�)&i )
_

1�j�n

(9�)j, is valid. But every deductive step here preserves validity of deductive tableaux’ associated

formulas, i.e. the associated formula of a deductive tableau after any deductive step is valid if and only if the associated
formula of the deductive tableau before the deductive step was also valid. Well then, with the associated formula
of the �nal deductive tableau being valid, then the associated formula of the initial deductive tableau must also be
valid. But also, the validity of the associated formula of the initial deductive tableau corresponds to the validity
of the theorem being proved (relative to presuppositions such as axioms or lemmas that are used in the proof).
Therefore, achieving a ‘subgoal’ of true (or a ‘supposition’ of false) establishes the validity of the theorem being
proved (relative to presuppositions such as axioms or lemmas that are used in the proof).

Regarding completeness, ProofBuilder can do all the steps of classical clausal resolution | including the process
of reducing a given theorem to clausal form; thus, as is known for classical clausal resolution, ProofBuilder is
refutation complete.
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Abstract

The distributed temporal logic DTL [3] is a logic for reasoning about temporal
properties of distributed systems from the local point of view of the system’s
agents, which are assumed to execute sequentially and to interact by means of
synchronous event sharing.

DTL was �rst proposed in [3] as a logic for specifying and reasoning about
distributed information systems. The logic has also been used in the context
of security protocol analysis for reasoning about the interplay between protocol
models and security properties [1,2]. However, all of the previous results have
been obtained directly by semantic arguments. It would be reassuring, and useful
in general, to have a usable deductive system for DTL. An attractive possibility
in this regard is a labeled tableaux system as deductions will then closely follow
semantic arguments.

We present a sound and complete labeled tableaux system for DTL. To
achieve this, we formalize a labeled tableaux system for reasoning locally at
each agent and afterwards we combine the local systems into a global one by
adding rules that capture the distributed nature of DTL.
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Abstract

Temporal logics have long been recognised as introducing appropriate languages for speci-
fying a wide range of important computational properties in computer science and arti�cial
intelligence. However, the use of �rst-order temporal logic has been hampered by its lack
of a complete proof system. Hodkinson, Wolter, and Zakharyaschev [1] were the �rst to
show that a non-trivial fragment of �rst-order temporal logic, called the monodic fragment,
or monodic �rst-order temporal logic, has the completeness property. This initial result
was followed by an examination of the monodic fragment in terms of decidable subclasses,
automated deduction, and applications.

In particular, Konev, Degtyarev, Dixon, Fisher and Hustadt investigated monodic �rst-
order temporal logic in the context of resolution. In [4,5] they devise the �ne-grained reso-

lution calculus for monodic �rst-order temporal logic. This calculus forms the basis of the
prover TeMP [2]. A re�nement of this calculus, ordered �ne-grained resolution with selec-
tion, is presented by Hustadt, Konev, and Schmidt [3], and shown to decide the guarded
fragment and the dual Maslov class K fragment of monodic �rst-order temporal logic.

In this paper we �rst recall the de�nition of the ordered �ne-grained resolution with
selection calculus. We then discuss the contribution that classical �rst-order resolution can
make to the implementation of that calculus, using the architecture of TeMP and its
connection with Vampire to illustrate this particular approach. Finally, we discuss a problem
with this particular architecture, namely that derivations in general cannot be guaranteed
to be fair and present a revised architecture which solves this problem.
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Abstract. In previous works on verifying C programs by deductive ap-
proaches based on SMT provers, we proposed the heuristic of separation
analysis to handle the most di�cult problems. Nevertheless, this heuris-
tic is not su�cient when applied on industrial C programs: it remains
some Veri�cation Conditions (VCs) that cannot be decided by any SMT
prover, mainly due to their size.
This work presents a strategy to select relevant hypotheses in each VC.
The relevance of an hypothesis is the combination of two separated de-
pendency analysis obtained by some graph traversals. The approach is
applied on a benchmark issued from an industrial program veri�cation.

1 Introduction

Using formal methods for verifying properties of programs at their source code
level has gained more interest with the increased use of embedded programs,
as for instance, plane command control, cars, smart cards. . . Such embedded
programs, which require a high-level of con�dence, are often written in C. In
such a case, it is widely known that verifying safe pointers manipulation is one
of the most critical tasks: aliasing, that is referencing a memory location by
several pointers and out-of-bounds array access must be taken into account for
instance.

Among the veri�cation methods, the deductive one consists in transform-
ing logical annotations of the program (pre- and post-conditions of a function,
invariants) into formulae whose validity implies the correctness of these annota-
tions. In practice, the technique that has shown itself the most e�ective is the
Weakest Precondition (wp) calculus of Dijkstra [12]. It is the basis of e�ective
tools such as ESC/Java [11], several tools for Java programs annotated using
the Java Modeling Language [4], Boogie [1] for the C# programming language,
and a tool of our own for C programs called Caduceus/Why [14].

However all these methods su�er from generating large Veri�cation Condi-
tions (VCs) when applied on industrial programs where scalability and e�ciency

? This work is partially funded by the French Ministry of Research, thanks to the CAT
(C Analysis Toolbox) RNTL (Reseau National des Technologies Logicielles).

{couchot,hubert}@lri.fr
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are of paramount importance. Possible solutions are to optimize the memory
model (e.g. by introducing separations of zones of pointers [16]), to improve
the calculus of weakest precondition [17] and to apply strategies for simplifying
VCs [15,9,18].

This work focuses on the latter. A VC is expressed as a goal and a context.
The goal encodes the execution of the program, which can be seen as hypotheses,
and the property that the program should satisfy, namely the conclusion. The
context is an extension of a base theory (usually a combination of equality with
uninterpreted function symbols and linear arithmetic) with a large set of axioms.
context describes many features of the program such as the memory model.

Veri�cation Conditions may contain useless axioms (e.g., when the program
does not manipulate pointers, all the axioms about pointers could be dropped)
and a huge number of useless hypotheses (e.g., when the property is initially
established and does not concern subsequent instructions) introduced by wp.
Moreover, a large number of useless axioms/hypotheses unnecessarily enlarge the
search space of SMT solvers (i.e., Satis�ability Modulo Theories), and degrade
unacceptably their performances.

Instead of invoking the SMT solvers blindly on the whole set of hypotheses
in the whole context, we present a method to remove as many hypotheses as
possible by a suitable selection strategy, which allows us to signi�cantly prune
the search space of SMT solvers.

The idea of the strategy developed here is quite natural: an hypothesis is rel-
evant if it contains both the predicates and the variables needed to establish the
conclusion. To compute this relevance result, we analyse dependencies between
variables of the conclusions and variables of each hypothesis on one hand and
predicates of the conclusion, predicates of the hypotheses and predicates used in
the theory on the other hand.

Section 2 presents how the goal is preprocessed as the �rst step of the method.
Section 3 presents a running example. Section 4 shows how we store dependencies
in graphs. The selection of hypotheses is then presented in Sec. 5. These last two
sections are the �rst contribution. The second contribution is the implementation
of this strategy as a module of Caduceus/Why [14] and its application on an
industrial C example that is about 4000 lines of annotated C code (Sec. 6).
Section 7 discusses related work, concludes and presents future work.

2 Veri�cation Conditions Normal Form

This section presents the normal form for VCs that we consider in the rest of
this paper. A �rst point to be noted is that due to the application of a weakest
precondition calculus on imperative programs, the usual form of Veri�cation
Condition is

8X(H1 ) (H2 ) : : : (Hn ) C)))

where X is the set of variables in the formula collected during a prenexing step,
Hi, 1 6 i 6 n and C are �rst-order logic formulas.
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In what follows we consider C and Hi, 1 6 i 6 n to be quanti�er free.
Such a restriction is not a problem since each remaining quanti�ed subformula
’ may be replaced by a predicate p(Y ), where p is a fresh symbol and Y is
the set of free variables in ’ with Y � X . To be correct and complete, we add
the axiom 8Y : p(Y ) , ’ into the theory (see [7] for more details and proof of
equisatis�ability).

split(H1 _H2 ) C) = split(H1 ) C) [ split(H2 ) C)
split(H ) C) =

S

c2split(C)fH ) cg

split(C1 ^ C2) = split(C1) [ split(C2)
split(’) = f’g

Fig. 1. Generating small VCs with split function

For simpli�cation purpose, we consider that each hypothesis is written in
DNF and the conclusion is written in CNF. We use then a function that reduces
the size but raise the number of the VCs by splitting conjunctions in positive
occurrences and equivalently disjunction in negative occurrence. It is formalized
with the function split given in Fig. 1, where rules are applied from the left to
the right and where the last rule is considered if upper ones can not be applied.
It results in a set of valid VCs if and only if the given larger VC is valid. Notice
that resulting VCs are free of negative occurrences of disjunction and positive
occurrence of conjunction.

We are left with VCs of the form

l11 ^ : : : ^ l
m1
1 ) (l12 ^ : : : ^ l

m2
2 ) : : :) (l1n ^ : : : ^ l

mn
n ) (l1n+1 _ : : : _ l

mn+1

n+1 )))

where each li,1 6 i 6 n+ 1 is a literal. Obviously, each VC of this form is valid
if and only if one of the mn+1 VCs given by

�
l11 ^ : : : ^ l

m1
1

^

: : :
^

l1n ^ : : : ^ l
mn
n

�
) lin+1;

1 6 i 6 mn+1, is valid. The normal form of our VC is

�
l1 ^ : : : ^ ln

�
) ln+1; (1)

where each li is a literal which is a Horn Clause.

3 Running Example

Figure 2 is the starting point of the running example that illustrates the ap-
proach throughout the following sections. The left side column of this C pro-
gram introduces matryoshka structures, whereas the right side column presents



66 Jean-Fran�cois Couchot, Thierry Hubert

struct pf
int x;
g p;

struct sf
struct p v[2];
g s;

struct tf
struct s *y;

gt;

/*@ requires \valid(c)
assigns c�>v[0].x*/

void g(struct s *c);

/*@ requires \valid(a) && \valid(b)
&& \valid(a�>y)

assigns a�>y�>v[0..1].x*/
void f(struct t *a, struct p *b)f
int i = b�>x;
g(a�>y);
a�>y�>v[1].x=i;
g

Fig. 2. C running example

the interface g and the function f. This later function calls g and explicitly mod-
i�es the value stored in one of the innermost �elds of the structure pointed by a

(namely a�>y�>v[1].x).

Functions are annotated in the language of the Caduceus/Why [14], which
is composed of

{ pre-conditions (de�ned by requires keyword); such pre-conditions ensure
that each pointer given in parameter is \valid (i.e. is correctly allocated)
when entering the function f or the interface g;

{ a list of data modi�ed by side e�ects (de�ned by assigns keyword); for in-
stance assigns a�>y�>v[0..1].x means that the function f does not
modify locations outside the set fa�>y�>v[0].x; a�>y�>v[1].xg; such
property can be established by considering the side e�ects of g and the
body of f.

Caduceus VCs generator yields predicates valid and di� which have the se-
mantic of \valid and assigns respectively.

This example is quite representative of the class for which it is hard to show
the absence of threats (null pointer dereferencing, out-of-bounds array access,
or more generally dereferencing a pointer that does not point to a regularly
allocated memory block).

For such a program, Caduceus/Why yields two kinds of VCs: some that
establish validity of pointers for each memory access, and some that establish
which the list of side e�ects given in annotations is a superset of the function’s
side e�ects. For instance, the instruction g(a�>y) constraints a to be valid and
a�>y to be also valid due to the pre-condition of g.

We apply a Burstall-Bornat method [5,3] which consists in having one ‘array’
variable (later called a memory) for each structure �eld. This modeling syntacti-
cally encodes the fact that two structure �elds cannot be aliased. The important
consequence is that whenever one �eld is updated, the corresponding array is
the only one which is modi�ed. Hence, we have for free that any other �eld is
left unchanged. In practice the �elds x, v and y yield respectively the memories
mx, mv and my .
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Memories can be accessed only by function acc; acc(m; p) returns the value
stored in the memory m at index p. A fresh memory can be generated by function
upd; upd(m; p; v) duplicates m except at pointer p where it sets the value v.

Let us de�ne the predicate di�(m1; m2; l) wherem1 andm2 are two memories,
and let l be a set of pointers. Intuitively, di�(m1; m2; l) means that di�erences
between m1 and m2 only concern the set l. It is formalized with

di�(m1; m2; l),
�
8p : valid(p) ^ :mem(p; l)) acc(m1; p) = acc(m2; p)

�
(2)

where p is a pointer and mem(p; l) means that p is a member of l. Note that
the formula (2) is one of the 80 axioms that compose the memory model of
Caduceus/Why.

The VC generated according to the assigns annotation of function f is

H1

��
valid(a) ^ valid(b) ^ valid(acc(my; a))^

valid acc range(mv; 2) ^ separation1 range(mv; 2)

�

)

H2

( 

di�(mx; mx 0; singleton(shift(acc(mv; acc(my; a)); 0))))

C

8

><

>:

di�(mx; upd(mx 0; shift(acc(mv; acc(my; a); 1)); acc(mx; b));

range(singleton(acc(mv; acc(my; a))); 0; 1))

!

(3)

where all variables are universally quanti�ed. We have two hypotheses:

H1: The �rst line corresponds to the pre-condition of function f. The second line
is issued from the de�nition of structure s: predicate valid acc range(mv; 2)
means that accessing to the memory mv, for each index p that is a valid
pointer, returns an array t s.t. pointers t[0] and t[1] are valid; with the same
notations separation1 range(mv; 2) means that t[0] 6= t[1].

H2: It is issued from the instruction g(a�>y): function singleton has the usual
meaning and shift(t; i) allows to access in the array t to the index i. This hy-
pothesis de�nes the access of variable mx 0 which is equal to the access in mx

except for the index shift(acc(mv; acc(my; a)); 0) corresponding to assigns

c�>v[0].x where c is replaced by a�>y.

The conclusion C is a di� predicate applied to two memories. The �rst memory is
the memory before execution of f and the second memory is the memory after ex-
ecution of f. The third parameter range(singleton(acc(mv; acc(my; a))); 0; 1) de-
�nes the set of pointers located at the indices 0 and 1 in the array acc(mv; acc(my; a))
in fact this is the representation of a->y->v[0..1]
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Normal form of the VC (3) is

0

B
B
B
B
B
B
@

valid(a)^
valid(b)^
valid(acc(my; a))^
valid acc range(mv; 2)^
separation1 range(mv; 2)^
di�(mx; mx 0; singleton(shift(acc(mv; acc(my; a)); 0)))

1

C
C
C
C
C
C
A

)

di�

�
mx; upd(mx 0; shift(acc(mv; acc(my; a); 1)); acc(mx; b));

range(singleton(acc(mv; acc(my; a))); 0; 1))

�

(4)

Even if this example is quite short, among the SMT-provers Simplify [10],
Yices [13], Ergo [6], haRVey [21] and CVC-lite [2], Simplify and haRVey are the
only ones which succeed in establishing the validity of this VC in a few seconds.

However, an engineer would have deduced from the background theory that
di� and validacc are not directly linked in the present case. Removing the hy-
pothesis concerning valid acc range permits him to obtain the desired result.

The next section shows how dependencies are memorized in the problem of
proving a goal in a SMT solver. This is the starting point of the approach of
removing useless hypotheses.

4 Memorizing Dependency

Dependencies between hypotheses or between an hypothesis and the conclusion
of the goal can be of two levels: predicative level and variable level. In the former
case, two predicates are dependent if there exists a (deductive) path leading from
the �rst one to the second one. Such a path may be deduced from axioms of the
theory and does not depend on the program. Such a dependency, later denoted
as static, is presented in Sec. 4.1. In the later case, it is obvious that two formulae
are dependent if they have a common set of variables. These variables may either
be program variables or may result from a weakest precondition calculus applied
on the program and its assertions. For that reason such dependency is later
denoted dynamic and is presented in Sec. 4.2.

4.1 Static Dependency

Our goal is to compute an directed graph with weights representing the implica-
tive relation between predicates. Intuitively, in this graph, each vertex represents
a predicate name and an arc from the vertex p to the vertex q means that p may
imply q. What follows details how to compute such a graph of predicates named
GP .

Practically, each vertex of the graph is labelled with a predicate symbol that
appears in one literal except equality or inequality predicates of the theory.
Notice that if a predicate r appears in a negative occurrence (e.g. in a axiom of
the form :r), it is nevertheless represented as an vertex labeled with r. Let us
show how the dependency between these predicates are represented as edges.
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First, each axiom is written as a CNF, but in a straightforward way (by oppo-
sition to elaborate CNF [19]): axioms are of short size and their transformation
into CNF do not yield combinatorial explosion. Then, each resulting clause C
(viewed as a set of literals) can be seen as the union of C� and C+ contain-
ing negative literals of C and positive literals of C respectively. Intuitively each
predicate symbol of C� is a premise and each predicate symbol of C+ is a con-
sequence. An edge is then added for each pair in C��C+ that does not contain
an equality or an inequality.

Let p be a predicate symbol in C� and q be a predicate symbol in C+. We
propose to label each edge from p to q with a weight k such that the lowest the
edge weight k is, the highest is the probability of p to establish q. Such an edge is
labeled with the number card(C)�1. A large clause with many premises, among
of them p, and with many consequents, among of them q, has less chance to be
used in a deduction step leading to q than the clause f:p; qg. If there exist p

w1�!q

and p
w2�!q, we leave only the edge p

min(w1;w2)
�! q. Notice that even if equality and

inequality predicates are not represented as edges they are however considered
in the graph of dependency since they are involved in the calculus of weights.

Running example. As a short example, we apply the method on axiom (2).
Its CNF is given by

ff:di�(M1;M2; L);:valid(P );mem(P; L); acc(M1; P ) = acc(M2; P )g;
fvalid(p0); di�(M1;M2; L)g;
f:mem(p0; L); di�(M1;M2; L)g;
facc(M1; p0) 6= acc(M2; p0); di�(M1;M2; L)gg

(5)

where capitalized variables are universally quanti�ed and p0 is a fresh constant
resulting from the skolemization of p. Figure 3 represents the dependency graph
corresponding to this axiom. It is then an excerpt of the graph representing the
memory model of Caduceus/Why.

diff

mem

3 1

valid

3

Fig. 3. Dependency graph of axiom (2)
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4.2 Dynamic Dependency

Our aim is to compute an undirected graph which represents the relation between
hypotheses as relations between the variables they contain. Let us detail how to
build such a graph of variables named GV .

Vertices are labeled with the variables of the goal and variables resulting
from a attening process on hypotheses: in some hypothesis H, a functional
term f(t1; : : : ; tn) that is a parameter of a predicate, or a function, should be
replaced by a fresh variable x. The hypothesis x = f(t1; : : : ; tn) should be added
just before H. Obviously, the attening task is not applied when the functional
symbol is the parameter of the equality predicate.

Each predicate is then represented by the complete graph composed by all
the vertices corresponding to the predicate variables.

Notice that both attening and edge computing do not concern the conclusion
of the goal: adding intermediate variables and allowing to incrementally select
deeper and deeper variables is only meaningful for hypotheses. All the variables
of the conclusion have to be selected without any graph traversal.

Running example. The graph representing veri�cation condition (4) is given
in Fig. 4. In such a graph, singleton 2,shift 3, acc 4 and acc 5 are fresh variables
introduced by the attening-like step applied on the hypothesis

di�(mx; mx 0; singleton(shift(acc(mv; acc(my; a)); 0))):

It leads to �ve complete graphs corresponding to sets fmx; mx 0; singleton 2g,
fsingleton 2; shift 3g, fshift 3; acc 4g, facc 4; acc 5; mvg and facc5; my; ag.

The approach is similar for acc 1 which is issued from valid(acc(my; a)).

m_v

a

b

m_y

m_x

m_x_0

acc_1

acc_4

acc_5

singleton_2

shift_3

Fig. 4. Dependency graph of veri�cation condition (4)
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5 Selection of Relevant Hypotheses

We are left to select relevant hypotheses. Intuitively, a sub-formula is relevant
with respect to the conclusion of the formula if this formula cannot be established
without the former. More formally, let ’ =def h1 ^ : : : ^ hn ) C be a formula.
The hypothesis h1 is relevant w.r.t. C if h1 ^ : : : ^ hn ) C is valid whereas
h2 ^ : : :^ hn ) C is not, and similarly for any hi, 1 6 i 6 n. This section shows
how to select relevant predicates (Sec. 5.1), relevant variables (Sec. 5.2) and
explains how to combine these results to select relevant hypotheses (Sec. 5.3).

5.1 Relevant Predicates

As shown in Sec. 2, the conclusion can be reduced to one literal c without loss
of generality. In what follows, we do not distinguish a predicate symbol from its
corresponding node in the graph of predicates GP .

A predicate symbol p is relevant w.r.t. a predicate symbol q if there is a path
from p to q. Intuitively, the weakest the weight of the path is, the highest the
probability of p to establish q is.

A search computes the set of predecessors of positive occurrence of any pred-
icate appearing in the conclusion. Similarly, successors of any predicate wich
appears in a negative occurrence in the conclusion are computed (e.g. if the con-
clusion is :q). All these predecessors and successors are stored into the list L

ordered by the path weight. Finally, completeness of the selection is obtained by
adding unreachable predicates into the list tail.

In the following, if i is an index that is positive or null, L[0 : : : i] denotes
the set of predicates symbols of L stored in the i + 1 �rst places of the list.
Particularly, L[0 : : : 0] is the set of conclusion predicates.

Running example. According to the graph given in Fig. 3, we have :

L[0] = fdi�g
L[1] = L[0] [ fmemg
:::

Notice that valid acc range appears neither in L[0] nor in L[1].

5.2 Relevant Variables

Starting with the variables of the conclusion V0, a breadth-�rst search algorithm
computes the �x-point V� variables that are reachable from V0 in the variable
graph GV .

The sequence
�
Vn
�

n2N
of reachable variables sets is de�ned for n 2 N with

8

<

:

V2n+1 = V2n [ fv j 9v1; v2 : v1 6= v2 ^ v1 2 V2n ^ v2 2 V2n ^ v 62 V2n^
(v $ v1; v$ v2 are edges of GV )g

V2n+2 = V2n+1 [ fv j 9v0 : v0 2 V2n ^ v 62 V2n+1 ^ (v $ v0 is an edge of GV )g
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Practically, the heuristic which consists in �rst computing the set of new
nodes that are doubly linked before nodes that are simply linked introduces
more granularity in the calculus of reachable variables. Semantically it privileges
variables that are strongly connected with already selected variables, i.e. those
which are closer to the conclusion. Finally, unreachable variables are added to
the �x-point V� for completeness reason and let V1 be the set so obtained.

Running example. The sequence of reachable variable sets of veri�cation con-
dition (4) is

V0 = fmx; mx 0; mv; my; a; bg;
V1 = V0 [ facc 1; acc 5; singleton 2g;
V2 = V1 [ facc 4g;
V

3 = V
2 [ fshift 3g;

V� = V3 and
V1 = V�:

5.3 Hypothesis Selection

Suppose given the ordered list of predicates L, the sequence
�
Vn
�

n2N
of reachable

variables sets and an hypothesis H. Let i be the counter which represents the
level of predicate selection. Similarly, j is the counter corresponding to the level
of variables selection. Let V be the set of variables ofH augmented with variables
resulting from attening (see Sec. 4.2). Let P be the set of predicates of H.

Di�erent criteria can be used to select an hypothesis H according to its sets
V and P . Possible choices are, in increasing order of selectiveness

1. when V \Vj 6= ; or P \L[0 : : : i] 6= ;: in the hypothesis, there is at least one
relevant variable or one relevant predicate;

2. when card(V \ Vj)=card(Vj) and card(P \ L[0 : : : i])=card(L[0 : : : i]) are
greater than a threshold;

3. when both V � Vj and P � L[0 : : : i] (i.e. all the hypothesis variables and
hypothesis predicates are relevant).

Our experiments on these criteria have shown that a too weak a criterion
does not accomplish what it is designed for: too many hypotheses are selected
for few iterations, making the prover quickly diverge. In what follows, we only
consider the strongest criterion.

Consider a formula resulting from the selection of hypotheses according to
the strongest criterion. Then, three issues can arise when discharging it into a
prover:

1. The formula is declared to be valid and the procedure ends.
2. The formula is declared to be invalid, maybe because we have omited some

hypotheses; we are then left to increment either i or j, i.e. to enlarge either
the set of selected predicates or the set of selected variables.
However, divergence appears when the generation of new literals by a set
of axioms is a process that falls in a bottomless pit. Such a generation is
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controlled by the presence in the formula of predicates of incriminated ax-
ioms. Given a set of predicates and a set of variables, allowing the use of new
predicates has a more critical impact than allowing the use of new variables.

To conclude, we �rst increment j, eventually until we reach V1 before con-
sidering incrementing i. In this later case, j reset to 0.

3. The formula is not decided in less than a given time. If this case occurs
after having iteratively incremented i and j, the approach halts. The user
is left with an unsatisfactory answer. Otherwise, we propose �rst to reduce
i in order to be in a state where the prover can conclude and to restart the
procedure.

Running example. For L[0], no hypothesis is selected with V0, V1, V2. How-
ever with V3 it yields the VC

di�(mx; mx 0; singleton(shift(acc(mv; acc(my; a)); 0))))
di�(mx; upd(mx 0; shift(acc(mv; acc(my; a); 1)); acc(mx; b));

range(singleton(acc(mv; acc(my; a))); 0; 1))
(6)

which does not contain the hypothesis with valid acc range which is the expected
result. In addition to Simplify and haRVey that already discharged the original
VC, Ergo and Yices run successfully on VC (6).

6 Experimentations

In previous work, we presented our context of certi�cation of anotated C pro-
grams: we proposed in [16] a separation analysis that allows to greatly simplify
the veri�cation conditions generated by a weakest precondition calculus, and
thus greatly helps proving such pointer programs. We illustrate the improve-
ments both in term of scaling for codes of large size, and in term of simpli�cation
of the reasoning for establishing advanced behaviors.

We have applied this separation analysis on an avionic program that is about
4000 lines of annotated C code, and which aims at analyzing information re-
turned by sensors. This code is critical since it is embedded into a Dassault
Aviation airplane. It is a simple program without explicit memory allocation
but with many structures, as sketched in the running example. Caduceus/Why
yielded about 184000 VCs.

Among of them, 65 were not discharged by any automatic prover with a
timeout of 240 seconds for each VC, on an Intel Xeon 3.20GHz with 2Gb of
Memory. All the VCs not discharged concern the predicate not_assigns and
are not so short since they contain an average of 200 literals, corresponding to
the same number of hypotheses.

Thanks to the method developed along these lines, all the remaining VCs
are automatically discharged in less that 240s, by Simplify notably. In such
experiment, i and j have reached the maximal number 1 and 3 respectively.
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7 Related Work and Conclusion

In this work, we have presented a new strategy to select relevant hypotheses in
formulas issued from program veri�cation. To do so we have combined two sep-
arated dependency analyses based on graph computation and graph traversal.
Moreover, we have given some heuristics to compute the graph with su�cient
granularity. Finally we have shown the pertinence of this approach with a bench-
mark issued from a real industrial code.

Strategies to simplify the prover task have been widely studied since auto-
mated provers exist [25], mainly to propose more e�cient deductive systems
[25,24,23].

The work presented here can be compared with the set of support (sos) se-
lection strategy [25,20]. Such an approach starts with asking the user to provide
an initial sos: it is classically the denial of the conclusion and a subset of hy-
potheses. It is then restricted to only apply inferences with at least one clause
in the sos, consequences being added next into the sos.

Our work can also be viewed as an automatic guess of the initial sos guided
by the formula to prove. In this sense, it is close to [18] where initial relevant
clauses are selected according to syntactical criteria, i.e. counting matching rates
between symbols of any clause and symbols of clauses issued from the conclusion.
By considering syntactical �ltering on clauses issued from axioms and hypothe-
ses, this later work does not consider the relation between hypotheses, formalized
by axioms of the theory: it provides a reduced forward proof. In the opposite,
by emphasizing sharing static dependency and dynamic dependency, we are not
so far from backward proof search.

By focusing on predicative part of the proof obligation, our objectives are
dual than those developed in [15]: this later work concerns boolean veri�cation
conditions of any boolean structure whereas we treat predicative formula whose
symbols are axiomatized in a quanti�ed theory.

Work presented here does apply a strategy to select relevant axioms of the
theory, even if, most of the time, each proof obligation only requires a tiny
portion of such a big theory. In [22,8], an instance of such a strategy is presented
but it needs a preliminary manual task of classifying axioms. We plan to extend
these works in the direction of automation.

References

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Program-
ming System: An Overview. In Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices (CASSIS’04), volume 3362 of Lecture Notes in Com-
puter Science, pages 49{69. Springer, 2004.

2. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Computer Aided Veri�cation, 16th Interna-
tional Conference, CAV 2004, Lecture Notes in Computer Science. Springer, 2004.
http://verify.stanford.edu/CVCL/.

http://verify.stanford.edu/CVCL/


A Graph-based Strategy for the Selection of Hypotheses 75

3. Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of
Program Construction, pages 102{126, 2000.

4. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. Technical Report NIII-R0309, Dept. of Computer Science, University
of Nijmegen, 2003.

5. Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23{50, 1972.

6. Sylvain Conchon and Evelyne Contejean. The Ergo automatic theorem prover.
http://ergo.lri.fr/.

7. J.-F. Couchot, D. D�eharbe, A. Giorgetti, and S. Ranise. Scalable automated prov-
ing and debugging of set-based speci�cations. Journal of the Brazilian Computer
Society, 9(2):17{36, November 2003. ISSN 0104-6500.

8. David Deharbe and Silvio Ranise. Satis�ability Solving for Software Veri�cation.
available at http://www.loria.fr/~ranise/pubs/sttt-submitted.pdf, 2006.

9. Ewen Denney, Bernd Fischer, and Johann Schumann. An empirical evaluation
of automated theorem provers in software certi�cation. International Journal on
Arti�cial Intelligence Tools, 15(1):81{108, 2006.

10. David Detlefs, Greg Nelson, and James B. Saxe. The Simplify decision procedure
(part of ESC/Java). http://research.compaq.com/SRC/esc/simplify/.

11. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Ex-
tended static checking. Technical Report 159, Compaq Systems Research Center,
December 1998. See also http://research.compaq.com/SRC/esc/.

12. Edsger W. Dijkstra. A discipline of programming. Series in Automatic Computa-
tion. Prentice Hall Int., 1976.

13. Bruno Dutertre and Leonardo de Moura. The YICES SMT Solver. available at
http://yices.csl.sri.com/tool-paper.pdf, 2006.
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Abstract. We study lemma simpli�cation for geometric resolution, mainly
from a theoretical viewpoint. For this purpose we develop a framework of
proof permutations, which is somewhat similar to the permutions used
in proofs of cut elimination. A side e�ect of this framework is, that one of
the rules of the original geometric resolution calculus, can be simpli�ed
into simpler rules, which may have an advantage for proof presentation.

Using the framework of proof permutations, we are able to prove the-
oretical results on proof length for three simpli�cation rules that have
been empirically successful in our implementation geo. These rules are
subsumption, functional reduction, and equality splitting.

This work is work-in-progress, because there exist more simpli�cation
principles, for which at this moment we have neither theoretical results,
nor practical experience.

1 Introduction

Geometric resolution is a proof search strategy, which was initiated in [3]. It
works on a normal form called geometric formula, which it tries to refute by
enumerating candidate models.

The variant of geometric resolution studied in this paper was initiated in [6],
and di�ers from the one in [3] in the following ways:

1. The structure of geometric formulas is more restricted, but it is allowed to
contain equality.

2. Witnesses for quanti�ers are enumerated in the same way as in [4], (and
di�erent from [3]), which makes it possible to obtain completeness for �rst-
order logic with equality.

3. From every failed attempt to construct a model, a lemma is learnt, which
ensures that no similar models will be explored later during proof search.

We now de�ne (our variant) of a geometric formula, then we outline the proof
search algorithm for geometric resolution. It makes use of a resolution-like cal-
culus (the geometric resolution calculus) with which it derives a closing lemma
from every failed attempt to �nd a model. (Very similar to the way lemmas
are learnt in modern approaches to DPLL, see [7]). The fact that this is always
possible, was proven in [6].
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After that we discuss what e�ects one can expect from simpli�cation in geometric
resolution, and we compare with simpli�cation for saturation-based calculi ([1]).
The main di�erence is that in geometric resolution, inferences are controlled by
the model search algorithm, where in saturation-based calculi, they are made
blindly. Because of this, we expect the e�ect of simpli�cation in geometric reso-
lution to be more predictable.

De�nition 1. We assume an in�nite set of variables V: A variable atom is
de�ned by one of the following two forms:

{ x1 6� x2; with x1; x2 2 V and x1 6= x2:
{ p(x1; : : : ; xn) with n � 0 and the xi 2 V:

There are no constants and no function symbols in variable atoms. There are also
no positive equalities. Negative of equalities of the form v 6� v are disallowed,
because they are trivially false. Geometric formulas are built from variable atoms
as follows:

De�nition 2. A geometric formula has form

8x A1(x) ^ � � � ^ Ap(x) ^ x1 6� x
0
1 ^ � � � ^ xq 6� x

0
q ! Z(x);

where p � 0; q � 0; and the x1; x
0
1; : : : ; xq; x

0
q 2 x � V:

The right hand side Z(x) must have one of the following three forms:

1. The false constant ?:
2. A non-empty disjunction of non-disequality atoms B1(x) _ � � � _ Br(x) with

r > 0:
3. An existential formula of form 9y B(x; y) with y 2 V but y 62 x: The variable

y must occur in B(x; y):

A formula of the �rst type is called lemma. A formula of the second type is called
disjunctive. A formula of the third type is called existential.

The notations can be clari�ed as follows:

{ In 8x; x denotes an enumeration of x; in arbitrary order, mentioning each
variable of x exactly once. The scope of 8x is the whole geometric formula.

{ In A(x); x denotes a sequence of variables from x: Variables may be re-
peated, and not all variables need to occur.

{ Later in this paper, an expression of form �(x); 	(x) or X(x) will denote
a conjunction of variable atoms, possibly containing disequality and non-
disequality atoms.

It was shown in [6] that every �rst-order formula can be translated into an equi-
satis�able set of geometric formulas. The translation is related to the translation
in of [2], and also somewhat related to the translation in [5]. The main di�erence
with [5] is that we do not introduce functionality axioms. (although we will see
them back as simpli�cation rules later)
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An interpretation can be viewed as a set of ground atoms I: An interpretation
does not contain disequality atoms. Let � = 8x �(x)! Z(x) be a geometric rule.
Let � be a substitution that assigns constants occurring in I to the variables in
x: We call the rule � applicable in I with substitution � if

1. for each disequality atom x1 6� x2 2 �(x); we have x1� 6= x2�;
2. for each usual atom A(x) 2 �(x); the atom A(x)� occurs in I; and
3. Z(x)� is false in I under substitution �:

(The constant ? is always false. The disjunction B1(x)_ � � � _Br(x) is false
if none of the Bj(x)� occurs in I: A formula of the form 9y B(x; y) is false
if I contains no constant c; s.t. B(x�; c) 2 I )

As an example, 8x A(x)! B(x) is not applicable in fA(0); B(0); A(1); B(1)g:
The rule 8x A(x) ! B(x) _ C(x) is not applicable in fA(0); B(0); A(1); C(1)g:
It is applicable in fA(0); C(0); A(1)g with substitution fx := 1g:
The rule 8xy A(x) ^B(y) ^ x 6� y ! 9z C(x; y; z) is applicable in
fA(0); A(1); B(0); B(1); C(0; 1; 0)g with substitution fx := 1; y := 0g: It is not
applicable with any other substitution.
In geometric resolution, proof search proceeds by a combination of model search
and lemma generation. The algorithm recursively tries to extend an interpreta-
tion I into a model. (i.e. an interpretation in which no rule is applicable) At each
recursive level, the input consists of an interpretation I; and a set of geometric
formulas G: When I cannot be extended into a model, the algorithm returns a
pair (�;�) s.t. � is a lemma which is applicable on I with substitution �: In
case the lemma � is not already present in G; either I is a model, or there is an
applicable rule �0 which is not a lemma. In that case, the algorithm uses �0 to
extend I; by which it possibly has to backtrack. When backtracking is complete,
it uses the geometric resolution rules to derive a �: It was proven in [6] that this
is always possible, using geometric resolution. We describe the algorithm:

1. Select a rule � and a substitution �; s.t. � is applicable in I with �:
2. If no (�;�) was found, then I is a model. Report I:
3. If � is of type 1, then return (�;�):
4. If � is of type 2, then write � = 8x �(x)! B1(x) _ � � � _Bq(x): Recursively

call the algorithm on each I [ fBj(x�)g: If one of the recursive calls results
in a model, then report this model. Otherwise, the recursive calls will collect
a sequence of pairs (�1; �1); : : : ; (�q; �q); s.t. each �j is a lemma applicable
in the interpretation I [ fBj(x�)g with �j : Using disjunction resolution, it
is possible to derive a pair (�0; �0); s.t. �0 is a lemma applicable in I with
substitution �0:

5. If � is of type 3, then write � = 8x �(x) ! 9y B(x; y): Assume that the
constants occurring in I are called c0; : : : ; cn�1: Let cn be the next constant
which is not in I: For each i with 1 � i < n; recursively call the model search
algorithm on the interpretation I [ fB(x�; ci)g: Also call the model search
algorithm on I[fB(x�; cn)g: If one of the recursive calls constructs a model,
then report this model. Otherwise, the recursive calls will collect a sequence
of pairs (�1; �1); : : : ; (�n; �n); s.t. each �i is a lemma which is applicable in
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I [ fB(x�; ci)g with substitution �i: Using existential resolution, one can
derive a pair (�0; �0); s.t. �0 is a lemma applicable in I with substitution �0:

The most important heuristic of the algorithm is the choice which application
(�;�) should be expanded. In general, it seems sensible to prefer lemmas over
rules of other types. Between lemmas, geo currently decides by selecting the
smaller lemma. Between rules 8x �(x) ! Z(x) of type 2 or type 3, it decides
by selecting the application for which �(x)� has the smallest set of premises,
viewing this set as a multiset, and considering older atoms smaller than new
atoms. In this way, fairness is guaranteed. However, there is a much variation
possible and the e�ect of the heuristic on the performance of geo is largely
unexplored.
The main distinction between geometric resolution and saturation-based theo-
rem proving, (e.g. superposition) apart from the di�erent normal form, is the
fact that in geometric resolution, proof search is controlled by the model search
algorithm. The model search algorithm decides which resolution inferences are
made. When it needs a closing lemma, it calls the resolution module with de-
tailed instructions about which inferences should be made. In saturation-based
theorem proving, inferences are made essentially ’in a blind way’. Clauses are se-
lected, and all possible inferences are made. This di�erence has some important
consequences for the use of redundancy.
First recall that in saturation-based theorem proving a clause d is called re-
dundant when it is implied by a set of clauses c1; : : : ; cn; such that (somewhat
informally) c1; : : : ; cn come before d in the multiset order. This notion was in-
troduced in [1], and it is able to prove the completeness of most of the existing
simpli�cation rules for superposition theorem proving.
In this paper, we study only a relatively weak version of redundancy in the
geometric setting: A lemma � is redundant when it is implied by a set of lemmas
�1; : : : ; �n; s.t. each of the lemmas �1; : : : ; �n would be preferred over � by
the heuristic. This notion would cover �-subsumption, but also the following
example:
8xyz S(x; y) ^ S(x; z) ^ y 6� z ! ? and 8xy A(x) ^ B(y) ^ x 6� y ! ? make
8xyzt A(x) ^ S(x; y) ^ B(y) ^ S(y; z) ^ y 6� z ! ? redundant. If one wants to
obtain stronger notions of redundancy, where the implying clauses do not need
to be lemmas, then one very probably needs to modify the heuristic. This will
be a subject for future study.
Now that we have de�ned redundancy in our setting, we can discuss the di�er-
ences with redundancy in saturation-based theorem proving.

1. Redundancy is much more important for saturation-based theorem proving
than it is for geometric resolution. In saturation-based theorem proving,
redundant clauses can become selected, they will create consequences, which
again may be selected, etc. Therefore, high priority should be given to the
deletion of redundant clauses.
In geometric resolution, redundant lemmas will not be selected by the heuris-
tic. Therefore, they will not be used in the derivation of new lemmas.
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2. For saturation-based theorem proving, forward redundancy checking is more
important than backward redundancy checking. For geometric resolution,
forward redundancy checking is wasted e�ort: The algorithm will never
create a redundant lemma. If �1; : : : ; �n make � redundant, then one of
�1; : : : ; �n would have been a closing lemma, and the algorithm would have
reused it.

We have now seen, that whereas the price for tolerating redundant clauses in
saturation-based theorem proving can be exponential, it causes only a small over-
head in geometric resolution. So we could stop here, and make this is pleasant,
short paper.
Unfortunately there is something more to tell, namely about simpli�cation. Sim-
pli�cation is when one derives a consequence �0 of a lemma �; s.t. �0 (possibly
with some other lemmas) makes � redundant. Although it is not possible that the
model search algorithm derives a redundant lemma, it is possible that it derives
a lemma that can be simpli�ed. If one does not simplify a lemma that could have
been simpli�ed, it will possibly resolve with other lemmas that could have been
simpli�ed, and the e�ect will add up. For this reason, simpli�cation is important
for geometric resolution. As an example, consider the following simpli�cation
rule, which is an instance of functional reduction. Suppose that the rule system
contains only one positive occurrence of A; which has the form 9y A(y): Then
in every interpretation constructed by the model search algorithm, there will be
at most one constant c such that A(c) occurs in the model. As a consequence,
in any lemma containing more than one occurrence of A; all these occurrences
can be uni�ed (Because they will be uni�ed anyway in every application of the
lemma) If one does not unify all occurrences of A in a lemma, it may resolve
with another lemma which also contains multiple occurrences of A: In that case,
the resulting lemma will inherit the repeated occurrences of A from both its
parents.
In the rest of this paper, we analyze redundancy-based simpli�cation re�nements
of geometric resolution using proof theoretic methods. The reason for this is that
we want to obtain results about proof length.
In saturation-based theorem proving, in general one cannot prove anything about
proof length when redundant clauses are removed. The completeness proof im-
plies that the new proof is smaller under the multiset order, but the length of
the new proof can actually be bigger. One notable exception to this situation is
subsumption. For subsumption, it can be proven that the new proof using the
subsuming clause, is not longer than the proof using the subsumed clause.
Our intuition is that the chances of obtaining results about proof length with
geometric resolution are better. The reason for this is the fact that the derivations
are in some sense more deterministic, because they are governed by the model
search algorithm. At this moment, we only have results for a few equality-based
re�nements, but we think that more results are possible. In order to prepare for
proving the results about proof length, we �rst introduce a modi�cation of the
calculus of [6]. The reason for this is that the calculus of [6] is too much tuned
towards the model search algorithm. (In particular the 9-resolution rule of [6] is
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too complicated to analyze) We show that the new calculus is as strong as the
old calculus, and that proofs constructed by the model search algorithm are in
a certain normal form, which we call �9-normal form. Note that this change of
the calculus has no inuence at all on the model search algorithm, because the
lemmas derived remain the same.
We then study the e�ect of proof replacements. Suppose that one has a proof �
obtained by a run of the model search algorithm. Let � be a lemma occurring in
� that was redundant at the moment it was used. If � is made redundant by a
set of lemmas �1; : : : ; �n; then it is possible to construct a proof �0 which proves
� from �1; : : : ; �n: We can remove � from � and replace it by the new proof �0:
In all probability this new proof will not correspond to a run of the model search
algorithm anymore, because of two possible reasons:

1. The new proof is not in �9-normal form.
2. The new proof is in �9-normal form, but is not consistent with the applica-

tion selection heuristic.

We will introduce a set of proof permutations, with which every proof can be
permuted back into �9-normal form. In case a clause was deleted due to redun-
dancy, the proof �[�0] is almost in �9-normal form, except for the path leading
to �0 and �0 itself. We will give examples (functional reduction, nested subsump-
tion) where it can be shown that the permutation back to �9-normal form does
not increase the size of the proof. This means that these re�nements can be
applied without restriction.

2 A Modi�ed Calculus for Geometric Resolution

We present the modi�ed calculus that we used for analyzing proof lengths. The
main di�erence with the calculus of [6] is that we simpli�ed the existential reso-
lution rule and introduced a new rule called equality resolution. Apart from that,
the only di�erence is that we made instantiation explicit. In practice the instan-
tiations are determined by uni�cation, but for analysis it is more convenient to
have a calculus with explicit instantiation.

De�nition 3. The new calculus consists of the following rules:

instantiation: Let

� = 8x �(x)! Z(x)

be a geometric rule. Let � be a substitution of form x1 := x2; where x1 2 x:
Then

8(x�) �(x�)! Z(x�)

is an instance of �: In case both x1 and x2 occur in �(x) or Z(x); and
x1 6= x2; we call the instantiation a proper instantiation. In case x2 does
not occur in �(x) or Z(x); we call the result a renaming of �:
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merging: Let � be a lemma of form

8x �(x) ^A(x) ^ A(x)! ?:

Then the lemma

8x �(x) ^ A(x)! ?

is a merging of �: A(x) can be either a disequality atom, or a usual atom.
disjunction resolution: Let

� = 8x �(x)! B1(x) _ � � � _Bq(x)

be a disjunctive formula. For 1 � j � q; let each

�j = 8x 	j(x) ^Bj(x)! ?

be a lemma. Then

8x �(x) ^ 	1(x) ^ � � � ^ 	q(x)! ?

is a disjunction resolvent of � with �1; : : : ; �q:
existential resolution: Let � = 8x �(x) ! 9y B(x; y) be an existential for-

mula. Let � have form

8x 8y 	(x) ^B(x; y)! ?:

We have y 62 x: Then

8x �(x) ^ 	(x)! ?

is an existential resolvent of � with �:
(degenerated) existential resolution: Let � = 8x �(x) ! 9y B(x; y) be an

existential formula. Let � have form

8x 8y 	(x)! ?:

We have y 62 x: Then

8x �(x) ^ 	(x)! ?

is a (degenerated) existential resolvent of � with �:
equality resolution: Let � = 8x �(x) ^ x1 6� x2 ! ? be a lemma. Let � be

the substitution x1 := x2: Let � be a lemma that can be written in the form

� = 8(x�) 	(x�)! ?:

Then the lemma

8x �(x) ^ 	(x)! ?

is an equality resolvent of � with �:
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Disjunction resolution is the same as hyperresolution. Equality resolution can be
explained as follows: If � is the substitution x1 := x2; then 8(x�)	(x�)! ?is
equivalent to 8x x1 � x2 ^ 	(x) ! ?: In this formula, the equality can resolve
with the disequality in �:

Most cases of degenerated existential resolution can be simulated by instantiating
y to one of the variables of x: In that case, one would obtain 8x 	(x)! ? which
subsumes the result. We keep the degenerated existential resolution rule because
it is still needed for the case where x is empty, and in the future we may want
to add types to geometric resolution. In that case it may happen that the type
of y is not among the types of x:

Theorem 1. The calculus of De�nition 3 is complete. If �1; : : : ; �n are geomet-
ric rules, and � is a lemma, then if �1; : : : ; �n j= �; then � is provable from
�1; : : : ; �n:

For � = ?; completeness follows from the fact that the new calculus can sim-
ulate the old calculus. (This will be proven in the next section) For � 6= ?;
completeness can be proven in a fairly standard way, by enumerating the models
of �1; : : : ; �n: Full completeness, (for � 6= ?) is not used in this paper, but it
may be important in future studies of other redundancy rules.

3 �9-Normal Derivations

In this section we show that the calculus of De�nition 3 can be used in the
same way as the calculus of [6] for the generation of closing lemmas during
model search. This change of calculus will have no impact on the model search
algorithm and on the lemmas that it generates. 1 The reason for introducing
the new calculus is that its permutations can be understood more easily. There
could also exist an advantage in proof output for external veri�cation, because
the new calculus is more standard.

The di�erence between the old calculus and the calculus of De�nition 3, is the
replacement of the stronger existential resolution rule of [6] by the combination
of a weaker existential resolution rule and equality resolution.

It is not possible to derive the stronger existential resolution rule in the new
calculus, but it can be shown that every lemma obtained by an application of
strong existential resolution can be obtained by a combination of weak existential
resolution and equality resolution.

In [6], existential resolution is always used in the way shown in Figure 1. Figure 2
shows a proof of the same result using (non-generalized) existential resolution
and equality resolution. First, the disequalities in 8x �(x) ^ B(x; y) ^ y 6� x1 ^
� � �^y 6� xn ! ? are resolved away one-by-one using equality resolution. On the
result, (non-generalized) existential resolution is applied, and the same result is
obtained.

1 actually, they can sometimes be slightly stronger



Redundancy for Geometric Resolution 85

It can be seen from Figure 2 that equality resolution is never applied ’stand
alone’ in proofs that are constructed by the model search procedure. Equality
resolution is only used for resolving away the disequalities in a lemma of form
8xy 	(x) ^ B(x; y) ^ y 6� x1 ^ � � � ^ y 6� xn ! ? in order ’to prepare it’ for
an existential resolution step in which B(x; y) is resolved away. We call proofs
satisfying this condition �9-normal. Proofs constructed by the model search
algorithm will be always �9-normal.

Fig. 1. Application of General 9-Resolution

Let � be an existential resolution step

8x �(x) ! 9y B(x; y) 8x 	(x) ^ B(x; y) ^ y 6� x1 ^ � � � ^ y 6� xn ! ?

8x �(x) ^ 	(x) ! B1(x; x1) _ � � � _ Bq(x; xn);

It is used in a proof of form

� 8x X1(x) ^ B1(x; x1) ! ? � � � 8x Xn(x) ^ B1(x; xn) ! ?

(_-res)

8x �(x) ^ 	(x) ^ X1(x) ^ � � � ^ Xn(x) ! ?

4 Redundancy through Proof Permutations

The �nal goal of the research reported in this paper is to study the e�ect of
redundancy on proof length, using proof transformations. At present, we have
only hard results for a restricted form of simpli�cations but we expect that more
results are possible.

We outline the general technique: In case a lemma � is made redundant by
formulas �1; : : : ; �n; we take out every application of � from the proof, and re-
place it by a proof of �1; : : : ; �n j= �: The resulting proof is still a valid proof, but
very probably it is not in �9-normal form anymore. The proof can be permuted
back into � 9-normal form, using proof permutations. If the new proof is not too
long, in comparison to the old proof, then e�ciency improves when � is replaced
by �1; : : : ; �n:
Since our calculus is similar to resolution, all transformations have essentially
one of the forms that follow below. (Equality resolution is similar to standard
resolution, if one keeps in mind that 8(x�) �(x�)! ? with � = fx1 := x2g is
equivalent to 8x x1 � x2 ^ �(x)! ?)
In both of the permutations, application of the �rst rule is postponed until after
the second rule. The two possibilities depend on where the premise of the second
rule originates from. If it originates from only one of the parents of the �rst rule,
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Fig. 2. Reconstruction of General 9-Resolution

For each i with 1 � i � n; let �i be the substitution fy := xig:
Then each of the lemmas 8x Xi(x) ^B(x; xi) ! ? can be written in the form

8((xy)�i) Xi((xy)�i) ^B((xy)�i; y�i) ! ?;

because no variable in x is modi�ed by �i; and y�i = xi: Let �1 be the proof

8((xy)�1) X1((xy)�1)^B((xy)�1; y�1) ! ? 8xy 	(x)^B(x; y)^y 6� x1^� � �^y 6� xn ! ?

(�-res)

8xy X1(x) ^ 	(x) ^ B(x; y) ^ B(x; y) ^ y 6� x2 ^ � � � ^ y 6� xn ! ?

Similarly, let �2 be the proof

8((xy)�2) X2((xy)�2) ^ B((xy)�2; y�2) ! ? �1

(�-res)

8xy X1(x) ^ X2(x) ^ 	(x) ^ B(x; y) ^ B(x; y) ^ B(x; y) ^ y 6� x3 ^ � � � ^ y 6� xn ! ?

Continuing, one eventually reaches �n; which has form

8((xy)�n) Xn((xy)�n) ^ B((xy)�n; y�n) ! ? �n�1

(�-res)

8xy X1(x) ^ X2(x) ^ � � � ^ Xn(x) ^ 	(x) ^ B(x; y) ^ � � � ^ B(x; y) ! ?

At this point, one can apply 9-resolution:
�n

(merging)

8x �(x) ! 9y B(x; y) 8xy X1(x) ^ � � � ^ Xn(x) ^ 	(x) ^ B(x; y) ! ?

(9-res)

8x �(x) ^ X1(x) ^ � � � ^ Xn(x) ^ 	(x) ! ?
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then the transformation is unproblematic, because the size of the proof does not
increase. If the premise of the second rule originates from both parents of the
�rst rule, then the size of the proof does increase. We give examples of both
situations:

unproblematic:

A _ B _ R1 :A _ R2

(res)

B _ R1 _ R2 :B _ R3

(res)

R1 _ R2 _ R3

permutes into

A _ B _ R1 :B _ R3

(res)

A _ R1 _ R3 :A _ R2

(res)

R1 _ R2 _ R3

problematic:

A _ B _ R1 :A _ B _ R2

(res+merging)

B _ R1 _ R2 :B _ R3

(res)

R1 _ R2 _ R3

permutes into

A _ B _ R1 :B _ R3 :A _ B _ R2 :B _ R3

(res) (res)

A _ R1 _ R3 :A _ R2 _ R3

(res+merging)

R1 _ R2 _ R3

As mentioned above, proof permutations can be used to bring a proof back
into �9-normal form, after some lemma � has been replaced by some formu-
las �1; : : : ; �n that make it redundant. They also can be used to make a proof
consistent with the selection heuristic of the search algorithm.

Unfortunately, each time a rule application from the redundancy proof is per-
muted down, it may double the part of � that it permutes through, due to the
problematic permutations.

We conclude that, when designing redundancy strategies, one should look for
strategies that do not cause too much doubling. One of the possible ways to
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do this, is by showing that there exists a low upperbound on one of the copies.
Since the other copy is not bigger than the original proof, the increase in proof
size can be kept small in this way. We end the paper with a few examples, and
explain for each of the examples how this can be done.

{ We �rst study functional reduction. Functional reduction exploits the fact
that some predicate can be shown to be functional in one or more of its
arguments during proof search. Let F be a predicate whose only positive
occurrences are in formulas of form 8x �(x)! 9y F (x; y): The model search
algorithm will create an atom F (c; d1) only in case there exists no other atom
of form F (c; d2) in the interpretation. Therefore, in every interpretation I
the last argument of F is a function of the other arguments. This fact can
be used in simpli�cations. Whenever a lemma contains two atoms of form
F (x; y1) and F (x; y2); the variables y1 and y2 can be uni�ed.
In order to ensure that the simpli�ed clause implies the original clause, we
add so called inductive axioms. The axiom for F is

8xy1y2 F (x; y1) ^ F (x; y2) ^ y1 6� y2 ! ?:

Since F is functional, the inductive axiom will never be applicable. However,
it triggers functional reduction. Consider the formula

8xyz F (x; y) ^ F (x; z) ^B(y; z)! ?;

which can be functionally reduced into

8xy F (x; y) ^B(y; y)! ?:

Using the inductive axiom for F; one can can construct the following proof:

8xyz F (x; y) ^ F (x; z) ^ y 6� z ! ? 8xz F (x; z) ^ B(z; z) ! ?

(�-res)

8xyz F (x; y) ^ F (x; z) ^ B(y; z) ! ?

The �-resolution has to be permuted down in order to restore �9-normality.
We show that during these permutations, the �-resolution disappears. First
the �-resolution permutes down to the point where either F (x; y) or F (x; z)
is used in disjunction resolution or exists resolution. At this point, since
functionality holds for F; F (x; y) and F (x; z) have to be merged before they
are resolved away. But then the �-resolution will become an instantiation
when it permutes with the merging.
Using the same argument, it can be shown that the �-resolution also disap-
pears in case the �-resolution is already in �9-normal form.
Note the peculiar way in which the inductive axiom 8xyz F (x; y)^F (x; z)^
y 6� z ! ? was used in the simpli�cation. If F is indeed functional, the
axiom will never be applicable, and therefore never occur in a proof. The
axiom caused the functional reduction step, but the correctness of the step
does not rely on it. Soundness follows from the fact that functional reduction
is a form of instantiation.
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{ Next we consider nested subsumption. Suppose we want to use a � b to
delete s(a) � s(b):

8xyt S(x; y) ^ S(x; t) ^ y 6� t ! ? 8xz A(x) ^ B(z) ^ x 6� z ! ?

(�-res)

8xyzt A(x) ^ S(x; y) ^ B(z) ^ S(z; t) ^ y 6� t ! ?

The equality resolution step uses the substitution fx := zg: By the same
argument as in the previous case, it can be seen that the �-resolution will
disappear when it is permuted downward.

{ The following simpli�cation has no counterpart in resolution, because it can
be expressed only with relations. In the presence of

�1 = 8xyzt A(x) ^ S(x; y) ^B(z) ^ S(z; t) ^ y 6� t! ?;

the formula

�2 = 8xyzt ��� A(x) ^ S(x; y) ^ C(�) ^ F (y; �; �)^

B(z) ^ S(z; t) ^D() ^ F (t; ; �)^ � 6� � ! ?

can be simpli�ed into

�3 = 8xzt���A(x) ^ S(x; t) ^ C(�) ^ F (t; �; �)^

B(z) ^ S(z; t) ^D() ^ F (t; ; �)^ � 6� � ! ?:

�2 is an equality resolvent of �1 and �3: In case all positive occurrences of the
predicates S;A;B are in existential formulas, the only way in which formula
�1 can be used is in an equality resolution, followed by an 9-resolution. It
follows that the path from �1 towards the �-resolution must have length 1:
Therefore the increase in proof length is at most 1:

5 Conclusions and Future Work

First, we have modi�ed the calculus of [6], in such a way that that the resulting
calculus is close to standard resolution. The most notable di�erence, which is
the equality resolution rule, can be explained from the equivalence

8(xfx1 := x2g) �(xfx1 := x2g)! ? , 8x x1 � x2 ^ �(x)! ?:

We intend to change geo to use the new calculus, because we expect that it will
make proof veri�cation easier.

We have introduced a proof theoretical method with which it is possible
to justify some of the successful forms of redundancy in geometric resolution.
With this method, we can rigorously prove that functional reduction and nested
subsumption (the �rst two cases in the previous section) do not increase proof
length.
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At this moment, we do not have su�cient empirical evidence to be able to tell
whether a more sophisticated form of analysis will be necessary. In particular, it
may be necessary to take reuse of proofs into account. A concrete example where
this could be the case is the last case of previous section, (the one with �1; �2; �3)
It seems likely that also in the case when S occurs positively in disjunctive
formulas, the replacement �2 ) �3 would be an improvement. In order to justify
such replacements, one could argue that it is very likely (perhaps provable) that
the system will encounter situations in which �1 alone is applicable, as well as
situations where �2 is applicable. The e�ect of the simpli�cation can be viewed
as replacing �2 by �2n�1: If, whenever �2n�1 is applied, �1 has already been
applied before, then the simpli�cation has caused no loss in logical strength.
At this moment, we �rst need to collect some more experience with ad hoc
implemented redundancy criteria.
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We give a list of the possible rule permutations. They will not be part of the
�nal version of the paper.

A Pushing Equality Resolution Towards the Root

An equality resolution step on disequality x1 6� x2 can be pushed towards the
root, until it reaches a sequence of disequality steps after which one of x1; x2 is
resolved away in an existential resolution step. When this point is reached, the
result is �9-normal. We list for each of the possible other rules, how the equality
resolution permutes through it.
_-resolution

8(x�) 	(x�) ^ [A1(x�)] ! ? 8x X(x) ^ x1 6� x2 ^ [A1(x)] ! ?
(�-res)

8x 	(x) ^ X(x) ^ A1(x) ^ A1(x) ! ?
(merging)

8x 	(x) ^ X(x) ^ A1(x) ! ?

8x �(x) ! A1(x)_� � �_Ap(x)
.
.
. 8x A2(x)^Y2(x) ! ? � � � 8x Ap(x)^Yp(x) ! ?

(_-res)

8x �(x) ^ 	(x) ^ X(x) ^ Y2(x) ^ � � � ^ Yp(x) ! ?

If 8(x�)	(x�)^[A1(x)]! ? contains A1; then let �1 the following proof, which
is de�ned through �0; �2; : : : ; �p : De�ne

�0 =
8x �(x) ! A1(x) _ � � � _ Ap(x)

8(x�) �(x�) ! A1(x�) _ � � � _ Ap(x�)
(int)

�2 =
8x A2(x) ^ Y2(x) ! ?

8(x�) A2(x�) ^ Y2(x�) ! ?
(inst) � � �

8x Ap(x) ^ Yp(x) ! ?

8(x�) Ap(x�) ^ Yp(x�) ! ?
(inst)

� =
�0 8(x�) 	(x�) ^ A1(x�) ! ? �2 � � � �p

�(x�) ^ 	(x�) ^ Y2(x�) ^ � � � ^ Yp(x�) ! ?
(_-res)

Otherwise, let �1 be just 8(x�) 	(x�)! ?:
Similarly, if 8x X(x) ^ x1 6� x2 ^ [A1(x)] ! ? does contain A1(x); then let

�2 be the following proof:
8x �(x) ! A1(x) _ � � � _ Ap(x) 8x X(x) ^ x1 6� x2 ^ A1(x) ! ?

8x A2(x) ^ X2(x) ! ? � � � 8x Ap(x) ^ Xp(x) ! ?

(_-res)

8x �(x) ^ X(x) ^ x1 6� x2 ^ Y2(x) ^ � � � ^ Yp(x) ! ?

Otherwise let �2 be just 8x X(x) ^ x1 6� x2 ! ?:
Finally, we can construct

�1 �2

(�-res)
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8x �(x) ^ 	(x) ^ X(x) ^ Y2(x) ^ � � � ^ Yp(x) ! ?

9-resolution
Consider the following proof, in which existential resolution is applied on the
result of an equality resolution step.

8(x�)y 	(x�) ^ [B(x�; y)] ! ? 8xy X(x) ^ x1 6� x2 ^ [B(x; y)] ! ?

(�-res)

8x �(x) ! 9y B(x; y) 8xy 	(x) ^ X(x) ^ B(x; y) ! ?

(9-res)

8x �(x) ^ 	(x) ^ X(x) ! ?

The notation [B(x; y)] means that B(x; y) is optional. One of the premises of the
�-resolution step must contain B(x; y); because otherwise the next 9-resolution
step would be not possible. � denotes the substitution x1 := x2: We have y 6= x1;
for the reasons mentioned before. For this reason, there is no need to apply �
on y:

Write �1 for the lemma 8(x�)y 	(x�) ^ [B(x�; y)] ! ?: If �1 does contain
B(x�; y); then let �1 denote the following proof:

8x �(x) ! 9y B(x; y)

(inst)

8(x�) �(x�) ! 9y B(x�; y) 8(x�)y 	(x�) ^ B(x�; y) ! ?

(9-res)

8(x�) �(x�) ^ 	(x�) ! ?

Otherwise, let �1 be just �1: Write �2 for the other premise 8xy X(x) ^ x1 6�
x2^ [B(x; y)]! ?: If �2 does contain B(x; y); then let �2 be the following proof:

8x �(x) ! 9y B(x; y) 8xy X(x) ^ x1 6� x2 ^ B(x; y) ! ?

(9-res)

8x �(x) ^ X(x) ^ x1 6� x2 ! ?

Otherwise, let �2 be just �2: Finally, we can construct

�1 �2

(�-res+merging)

8x �(x) ^ X(x) ^ 	(x) ! ?

For i = 1 or i = 2; if �i contains B(x; y); (or B(x�; y) ); then the conclusion of
�i contains �(x): (or �(x�) ): In both cases, the �nal result will contain �(x):
If both of �1; �2 contain B(x; y); then the result will receive two copies of �(x);
which have to be merged.

�-resolution
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Our concern is to arrange applications of �-resolution in such a way, that the
resulting proof is � 9-normal.

8x �(x) ^ x1 6� x2 ^ x0
1 6� x0

2 ! ? 8(x�) 	(x�) ^ x1� 6� x2� ! ?
(�-res)

8x �(x) ^ 	(x) ^ x1 6� x2 ^ x1 6� x2 ! ?
(merging)

8x �(x) ^ 	(x) ^ x1 6� x2 ! ? 8(x�) X(x�) ! ?
(�-res)

8x �(x) ^ 	(x) ^ X(x) ! ?

� denotes the substitution x0
1 := x0

2; and � denotes the substitution x1 := x2:
We may assume that the second equality resolution step is already part of a
normal sequence. (which will end with poor x1 being resolved away)

If x1 = x0
1; nothing needs to be changed, because the proof is already normal.

If x1 = x0
2; then de�ne �0 = (x0

2 := x0
1): The �rst equality resolution can be

replaced by

First de�ne �1 as the following proof:

8x �(x) ^ x1 6� x2 ^ x0
1 6� x0

2 ! ? 8(x�) X(x�) ! ?

(�-res)

8x �(x) ^ x0
1 � x0

2 ^ X(x) ! ?

Before we can de�ne �2; we need a property of substitution. Obviously, � is the
mgu of x1 and x2: Let �0 be the substitution x1� := x2�: Then clearly for the
substitution � � �0 holds that x1� � �

0 = x2� � �
0: Therefore, there exists a

substitution �0; s.t. � ��0 = � ��0:

We de�ne �2 as the proof:

8(x�) X(x�) ! ?

(inst)

8(x��0) X(x��0) ! ?

=

8(x�) 	(x�) ^ x1� 6� x2� ! ? 8(x��0) X(x��0) ! ?

(�-res)

8(x�) 	(x�) ^ X(x�) ! ?

It remains to apply �-resolution on the results of �1 and �2:

We know come to the case where the instantiated premise of an equality resolu-
tion step is derived by another equality resolution step:

8(x��) �(x��) ! ? 8(x�) x0
1 6� x0

2 ^ 	(x�) ! ?

(�-res)

8(x�) �(x�) ^ 	(x�) ! ? 8x X(x) ^ x1 6� x2 ! ?

(�-res)

8x �(x) ^ 	(x) ^ X(x) ! ?

In this proof, � denotes the substitution x1 := x2; and � denotes the substi-
tution x0

1 := x0
2: It can be assumed that x1 6= x0

1; because otherwise � would
have no e�ect, and the �rst equality resolution step could be trivially removed.
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Similarly, if x1 = x0
2; we would have either x1 = x2; in which case � would be

the empty substitution and it would be possible to remove the last equality res-
olution step, or x1 does not occur in x�: In that case, � would be renaming on
x�; and the upper equality resolution step could be replaced by an instantiation
using ��1: We de�ne �1 as the following proof:

8x X(x) ^ x1 6� x2 ! ?

(inst)

8(x��) �(x��) ! ? 8(x�) X(x�) ^ x1� 6� x2� ! ?

(�-res)

8(x�) �(x�) ^ X(x�) ! ?

In order to show that this proof is correct, we show that

� �� = � � fx1� := x2�g:

Since x1 6� x0
1; we have x1� = x1: As a consequence, the domains of the sub-

stitutions �; �; fx1� := x2�g consist only of the variables x1 and of x0
1: It is

therefore su�cient to compare the behaviour of the substitutions on x1 and x0
1:

x1� �� = x2�; x1� � fx1� := x2�g = x2�:

x0
1� �� = x0

1� = x0
2; x0

1� � fx1� := x2�g = x0
2fx1� := x2�g = x0

2:

The last step is correct because x1� = x1; and x1 6� x
0
2:

Next, let �2 be the proof:

8(x�) x0
1 6� x0

2 ^ 	(x�) ! ? 8x X(x) ^ x1 6� x2 ! ?

(�-res)

8x x0
1 6� x0

2 ^ 	(x) ^ X(x) ! ?

It remains to apply equality resolution on the results of �1 and �2:
instantiation
Consider the following proof

8(x�) �(x�) ! ? 8x 	(x) ^ x1 6� x2 ! ?

(�-res)

8x �(x) ^ 	(x) ! ?

(inst)

8(x�) �(x�) ^ 	(x�) ! ?

� denotes the substitution fx1 := x2g: � is the substitution used in the in-
stantiation. De�ne �0 = fx1� := x2�g: For the substitution � � �0 holds that
x1� ��

0 = x2� ��
0:
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The substitution � is clearly the mgu of x1 and x2: Hence there exists a substi-
tution �0; s.t. � ��0 = � ��0; and we can construct the following proof:

8(x�) 	(x�) ! ?

(inst)

8(x��0) 	(x��0) ! ? 8x �(x) ^ x1 6� x2 ! ?

= (inst)

8(x��0) 	(x��0) ! ? 8(x�) �(x�) ^ x1� 6� x2� ! ?

(�-res)

8(x�) �(x�) ^ 	(x�) ! ?

In case that x1� = x2�; �0 will be the empty substitution, and the equality
resolution step will transform itself into an instantiation step.

SOMETHING about preservance � 9-normality should be said at the end.
The essential thing is that both �1 and �2 consists of an equality resolution on
x1 = x1�:

B Pushing _-Resolution Towards the Root

We list the possible other rules, and show how the _-resolution step permutes
through it.
_-resolution

Let � be the following disjunction resolution proof:

8x �(x) ! A1(x) _ � � � _ Ap(x)

8x A1(x) _ [B1(x)] ^ X1(x) ! ? � � � 8x Ap(x) _ [B1(x)] ^ Xp(x) ! ?

(_-res)

8x �(x) ^ B1(x) ^ � � � ^ B1(x) ^ X1(x) ^ � � � ^ Xp(x) ! ?

(merging)

8x �(x) ^ B1(x) ^ X1(x) ^ � � � ^ Xp(x) ! ?

The square brackets are used for indicating the fact that [B1(x)] is optional.
However, at least one of the premises of � must contain B1(x): In the result of
�; the atom B1(x) is resolved away in another disjunction resolution step:

� 8x B2(x) ^ Y2(x) ! ? � � � 8x Bq(x) ^ Yq(x) ! ?

8x 	(x) ! B1(x) _ � � � _ Bq(x)

_-res

8x 	(x) ^ �(x) ^ X1(x) ^ � � � ^ Xp(x) ^ Y2(x) ^ � � � ^ Yq(x) ! ?:

For i with 1 � i � p; de�ne �i = 8x Ai(x) _ [B1(x] ^Xi(x)! ?: If �i contains
B1(x); then let �i be the following proof:

8x 	(x) ! B1(x) _ � � � _ Bq(x) �i 8x B2(x) ^ Y2(x) ! ? � � � 8x Bq(x) ^ Yq(x) ! ?
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(_-res)

8x 	(x) ^ Ai(x) ^ Xi(x) ^ Y2(x) ^ � � � ^ Yq(x) ! ?

In case �i does not contain B1(x); �i is just the proof of �i: On the results of
the �i; the �rst disjunctive rule can be applied:

8x �(x) ! A1(x) _ � � � _ Ap(x) �1 � � � �p

(_-res+merging)

8x �(x) ^ 	(x) ^ X1(x) ^ � � � ^ Xp(x) ^ Y2(x) ^ � � � ^ Yq(x) ! ?

9-resolution:
Consider a proof, where �rst a disjunction resolution is applied, and after that
existential resolution:

8x �(x) ! A1(x) _ � � � _ Ap(x)

8xy A1(x) ^ X1(x)[^B(x; y)] ! ? � � � 8xy Ap(x) ^ Xp(x)[^B(x; y)] ! ?

(_-res)

8xy �(x) ^ X1(x) ^ � � � ^ Xp(x) ^ B(x; y) ^ � � � ^ B(x; y) ! ?

(merging)

8x 	(x) ! 9y B(x; y) 8xy �(x) ^ X1(x) ^ � � � ^ Xp(x) ^ B(x; y) ! ?

(9-res)

8x 	(x) ^ �(x) ^ X1(x) ^ � � � ^ Xp(x) ! ?:

Again, the notation [B(x; y)] means that B(x; y) is optional. For each i with
1 � i � p; write �i for the lemma 8xy Ai(x) ^Xi(x) ^ [B(x; y)]! ?: For those
�i that do contain B(x; y) let �i be the following proof:

8x 	(x) ! 9y B(x; y) 8xy Ai(x) ^ Xi(x) ^ B(x; y) ! ?

(9-res)

8x 	(x) ^ Ai(x) ^ Xi(x) ! ?

For the other �i; let �i be just �i: Using �1; : : : ; �p; we can construct the per-
muted proof:

8x �(x) ! A1(x) _ � � � _ Ap(x) �1 � � � �p

(_-res)

8x �(x) ^ 	(x) ^ � � � ^ 	(x) ^ X1(x) ^ � � � ^ Xp(x) ! ?

(merging)

8x �(x) ^ 	(x) ^ � � � ^ X1(x) ^ � � � ^ Xp(x) ! ?

�-resolution:

We �rst study the case where the disjunction resolution is used for deriving the
instantiated premise of the equality resolution. Consider a proof of the following
form, where the result of a disjunction resolution application is the instianted
premise of an equality resolution application:
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