
University of Liverpool - Technical Report January 2008
----------------------------------------------------------------------

QuestSemantics
Intelligent Search and Retrieval of Business Knowledge

I. Blacoe, L. Ianonne, I. Palmisano and V. Tamma

Department of Computer Science, University of Liverpool
L69 3BX Liverpool UK

{I.W.Blacoe, L.Iannone, ignazio, V.A.M.Tamma}@csc.liv.ac.uk

Abstract. Keyword-based search engines, though hugely popular, are limited
when trying to answer very specific queries. The processing of search results
is performed by users, rather than the software. Ontologies provide a means to
create formal, machine-processable descriptions of the knowledge in a certain
domain [1], and by using elements of these descriptions to annotate suitable in-
formation sources, they can be analysed and manipulated in an intelligent manner.
Our QuestSemantics platform provides automated, ontology-based metadata cre-
ation and resource annotation, with subsequent ontology-based querying of the
annotated resources. This platform has been deployed in two commercial scenar-
ios, providing useful feedback on both the feasibility and effectiveness of apply-
ing semantic web technologies to specific business problems.

1 Introduction

In today’s Web the information is primarily intended to be read and processed by hu-
mans, and cannot be readily manipulated by computers. The intelligence applied in
search tasks, as well as the assessment of the relevance of retrieved pages, is mainly
human, with limited support from software [2]. Whilst this type of processing is still
adequate for domestic users, it cannot scale to the volume of information available to
business, where the vast amount of data available on the web is coupled to company
documents and databases. Current keyword based search engines present limitations in
that they cannot fully capture the the richness intrinsic in natural language; an exam-
ple are the problems caused by synonymy and polysemy to the search task. Enhancing
search engines with lexicons such as WordNet [3] can help to relieve the problem, but
is not sufficient to identify and resolve more complicated types of ambiguity. Further-
more, keyword-based search engines make little provision for the formulation of very
specific queries, particularly those that make use of relationships between entities.

A possible way to overcome these limitations is to make use of semantic web tech-
nology. The semantic web [4] is an evolution of the current web where information is
represented in a machine-readable format, while maintaining the human-friendly rep-
resentation in HTML. The idea is to unleash the power of the web by extending it



to become a container of interconnected, machine-processable information and knowl-
edge, rather than just a collection of documents. This is made possible by placing an
infrastructure over the web that allows the annotation of resources in order to explicitly
represent their content. The value of knowledge representation is not limited to web
pages alone, as the technology can also be applied to corporate databases, managed
documents, multi-media resources and other information sources of various types that
are now available on the web, but need to be interpreted by humans (a typical example
would be a query for specific pictures on Google).

Ontologies [1] are crucial in providing shared and machine processable meaning
to web resources. An ontology models the entities and processes that are used to de-
scribe the content of a web resource, and, most importantly, the logical relations exist-
ing between them. Using this model, a representation can be created of the information
contained in relevant web documents (annotation), and thus more precise queries can
be formulated to retrieve this information. Annotation is normally achieved by using
or creating metadata items (as instances of concepts from the ontology) to represent
specific entities recognised in the resources, and then linking this metadata to the re-
source as its description. Many research efforts have thus been devoted to the provision
of (semi-) automatic solutions for annotating web documents expressed in various for-
mats, mainly text, but also structured formats, such as databases.

In this paper we present QuestSemantics, a platform supporting the semi-automatic
discovery, annotation, filtering and retrieval of information resources on the internet
and in intranets, on the basis of fine-grained business knowledge. QuestSemantics is
designed in order to maximise the separation between the different types of knowledge
represented - domain versus task-specific knowledge, and application versus generic
knowledge. This separation is aimed at achieving reusability, and easy customisation of
the various architectural components, thus allowing semantics-based search in a vari-
ety of task and domain scenarios. The platform is comprised of two main components:
a general framework for the (semi-) automatic annotation of resources, based upon a
detailed ontological model of the domain, and a search interface for the user-friendly
formulation and execution of knowledge-based queries over the generated metadata.

We have focused on applying knowledge representation and manipulation within
restricted and clearly delimited domains of knowledge, enabling detailed conceptual-
isations that provide the means to discover, annotate, filter and search resources on
the basis of fine-grained business knowledge. Once a suitable ontology of the domain
knowledge has been constructed, it can be used to identify and semantically annotate
relevant resources. This ontology also underpins the provision of fine-grained access to
the identified knowledge resources on the basis of the domain knowledge. Thus, through
the application of knowledge representation and manipulation techniques, within spe-
cific contexts, we can apply a degree of ’intelligence’ to the problem of access to infor-
mation.



The paper illustrates two different commercial use-cases in which the QuestSeman-
tics platform has been employed, providing concrete data on the advantages that the
adoption of semantic web technologies can bring to classical information retrieval prob-
lems. The remainder of the this paper is organised as follows. The next section, Platform
design and implementation, describes the design and implementation of the developed
application. Section 3, Test-case deployment and evaluation, gives details regarding the
deployment and evaluation of the platform in two commercial test-cases, one in the
safety legislation compliance contracts domain, the other in the aerospace domain. We
then describe related work in Section 4, and in Section 3, Conclusions, we draw some
conclusions based on our experiences in this project.

2 Platform design and implementation

The framework we present is designed for applications that aim to leverage different
information sources in order to provide searchable knowledge. Such a requirement is
often accomplished by means of steps that only differ slightly between different appli-
cations and different domains. The aim of our framework is to enable applications to
abstract from all the details that are common, so that application specific code is reduced
and simplified. In the reminder of this section we discuss the main aspects underlying
the design and implementation of QuestSemantics.

2.1 Knowledge independent components

QuestSemantics is a generic platform for the automatic annotation and retrieval of semi-
structured information sources based on semantic queries (i.e. queries that make use of
knowledge about the application domain). The platform components are designed to be
customisable depending on the specific domain it is applied to. Therefore, a main con-
cern in the platform design is that its customisation regards only domain related aspects,
i.e. an application of our platform is the result of providing application specific knowl-
edge to the general framework. In our design we make a distinction between domain
knowledge and task knowledge. Domain knowledge is the description of all relevant en-
tities in a specific domain of knowledge, representing a state of affairs and constraining
the possible states it can evolve into. Task knowledge, in general, references the domain
knowledge to describe the relevant entities with respect to the required tasks [5], and
thus describes the ways to perform useful changes to the domain states. Though sepa-
rate, they are dependant on each other - in fact domain knowledge representation cannot
be independent from the task it will be used for; this problem has been described in [6]
as the interaction problem.

The only decisions taken at platform level are those related to the formalisms adopted
for representing domain and task knowledge. A domain ontology needs a formalism
that allows to easily express taxonomical and non-taxonomical relationships among en-
tities, which is static knowledge. A task ontology, instead, needs to represent dynamic



operations like sequences, selections and iterations. The Semantic Web standard for
representing ontologies is the Web Ontology Language [7]. While this is adequate for
modelling domain knowledge, its lack of provision for dynamic operations lead us to
add rules on top of OWL ontologies, represented using its standard candidate extension
SWRL [8, 9]. One of the examples in which such an extension was necessary regarded
an domain requiring meronomic relations [10], and Description Logic was not expres-
sive enough to formalise them. Representing procedural knowledge, on the other hand,
was accomplished mixing declarative rules with a traditional programming language
(Java). Tasks then are represented by clauses (i.e. a set of premises in conjunction and
a single consequence) whose consequence is represented by a block of code to be exe-
cuted.

2.2 Annotation and search

The issue we are trying to solve is how to retrieve information from heterogeneous
sources that are described w.r.t. an ontology that formalises the application domain. We
divide the QuestSemantics framework into two stages, reflecting the two tasks of semi-
automatic resource annotation and knowledge-based resource retrieval -the annotation
stage and the search stage. In the first stage, we use both domain knowledge and task
specific knowledge (e.g. layout specification, annotation and filter rules) in order to cre-
ate semantic metadata about the information sources we want to exploit. This metadata
is then used in the search stage, where specific queries from the application user are
answered using the domain knowledge to guide the query process.

The Annotation stage is composed of four distinct process elements:

– Harvesting of live information sources, ensuring retrieved information is up to date
with the latest information available.

– Analysis of the retrieved resources, using the knowledge encoded in the heuristic
task rules, to identify which resources are of interest for the annotation component.

– Annotation of the analysis results using the domain ontologies - instances of con-
cepts are identified, and, where possible, attributes are retrieved and relations be-
tween instances are stated.

– Storage of the metadata resulting from the annotation process in an RDF database.

The Search stage is primarily devoted to using a semantic query language, in this
case the current W3C recommendation SPARQL [11], to retrieve specific information
from the metadata stored in the last step of the Annotation phase. Queries will impose
constraints upon potentially matching resources using the ontology representing the
application domain. Responses to queries will consist of lists of matching resources,
containing the metadata descriptions and pointer to the original source (e.g. web-page
or database record-set). A graphical search interface enables user-specification of the
semantic queries in an intuitive and non-technical manner, and allows clear presenta-
tion of and access to the resulting resources.



2.3 Design of the Framework

The framework design (depicted in Figure 1) is based around two software compo-
nents: an Annotation Engine to analyse and filter the retrieved documents (handling the
Annotation stage), and a semantic Search Engine to provide fine-grained access to the
filtered documents (handling the Search stage). The two components also share a Store
component, which is responsible for all data storage, consisting of document contents,
ontologies and metadata instantiations, and the intermediate results created by the anal-
ysis and annotation components.

Fig. 1. General System Architecture

The Annotation Engine component retrieves documents from their sources, and then
analyses, annotates and filters the documents on the basis of the application needs. Each
of these functions is performed by a specific element, which is an implementation of



one of the interfaces presented (Harvester, Analyzer, Annotation Engine, and Filter).
Task specific knowledge is separated from domain knowledge at this level of abstrac-
tion: the Analyzer element is devoted to use the task specific knowledge available, e.g.
how to find relevant information in a web page, while the Annotation Engine element
uses domain knowledge in order to create the actual metadata. We obtained these in-
dependent components by leveraging the distinction between knowledge needed for
each functionality, so that changes in task or domain only have impact on one compo-
nent. Moreover, confining the task specific knowledge to the Analyzer system makes
the Search component completely agnostic of the way information is retrieved, easing
the process of using multiple knowledge-bases to answer users’ queries. At the time of
writing, two examples of this modular system have been implemented, which are pre-
sented in detail in Section 3 Test-case Deployment and Evaluation. The four elements
of the Annotation Engine component are as follows.

Harvester element: An implementation of the Harvester interface must be able to
retrieve information resources, and convert them into a form suitable for the annotation
process. In the case of web pages, the Harvester retrieves the pages and saves them in
the Store component as text documents. When the source is a database, as in one of the
test cases we present later, it retrieves first the database schema and then the contents,
and saves them in a XML format.

Analyzer element: Analyzer elements define methods to extract relevant information
from an input information source, and store it in an intermediate format suitable for the
Annotation Engine element. The architecture of this element is sketched in Fig. 2. Doc-
ument layout specific information is encoded in the form of regular expressions (or
with specialized Java code) into an implementation of the MatchingPattern interface.
A set of these implementations is used by a Parser implementation, and a Parser to-
gether with its MatchingPattern elements forms a Rule. Rules are considered as atomic
objects, meaning that the relevant information found by the MatchingPattern elements
inside a Rule are only extracted if all the MatchingPattern are found to be satisfied in the
input document/source; this is the case in which a Rule is said to be applicable. Some
Rules can condition the applicability of other Rules, such as where one Rule determines
that the current resource is unsuitable and forces all subsequent Rules to be skipped (a
Blocking Rule), i.e. if Rule A is devoted to find an essential information, such as the
reference number of the document that is being analyzed, when this Rule is not satisfied
this means that the document is missing necessary information and is useless for search
purposes (e.g. this can happen if an unrelated web page is being fed into the Analyzer
element). When using the Analyzer over the XML structure extracted from a database,
its only function is to translate from XML to the intermediate format.

Annotation element : This element creates the RDF models representing the informa-
tion highlighted by the Analyzer - building source metadata according to the domain
and application specific ontology(ies). Its internal architecture is sketched in Fig. 3.
Analogously with the internal structure of the Analyzer element, annotation is per-
formed by means of AbstractDocumentMatchingPattern implementations. Each imple-



Fig. 2. Analyzer component detailed architecture

mentation extracts a specific piece of information from the Analyzer output, and An-
notator processes create and formalise the metadata into an RDF model. Annotators
and AbstractDocumentMatchingPatterns are grouped into AnnotationRules, which can
be Blocking or Non-Blocking. The Annotation element is the first point in the process
where the form of the source information becomes unimportant, i.e. it is agnostic w.r.t.
whether the data is from web pages or from other sources, such as a database.

Fig. 3. Annotation component detailed architecture

Filter element: This element’s role is to apply some pre-defined filter rules to deter-
mine whether a specific resource is suitable for use by the Search Engine. One example
of such uses is the removal of information that is no longer up to date or useful (e.g.
some information can expire after a certain amount of time, like a call for papers which
is not useful after the submission date). It’s architecture is outlined in Fig. 4.

Store element: Each step of the annotation process produces data that must be saved
persistently, both for performance reasons (e.g. to save retrieved documents so that they



Fig. 4. Filter component detailed architecture

are available for the analysis step) and to keep track of connections between informa-
tion items, such as the source of a specific annotation. The Store interface enables an
application to save and retrieve data identified by a URI, such as byte streams (typi-
cally containing text documents such as HTML pages), Java maps containing interme-
diate mapping results, and RDF models containing finished annotations. In addition,
the Store interface is designed to enable saving relations such as the fact that a specific
URI is an alternate name for another resource, i.e., in OWL terms, the two resources are
OWL:SAMEAS each other. This is particularly useful when a single conceptual resource
is described by different documents and enables the annotation rules to retrieve all the
available information for the resource, addressing the problem of information that is
logically related but phisically disconnected. At the moment, it is possible to use either
a file based persistence implementation (using files for byte streams, Java Properties
files for Java maps and RDF/XML serialization for RDF models) or a database imple-
mentation, where all the information are placed in database tables (currently MySQL
5.0.x is being used for this task).

The Search Engine component of the framework is responsible for querying the in-
formation generated by the Annotation component. It stores the ontology, knowledge
base, generated annotations and resource index, enabling access to the annotated docu-
ments on the basis of the encoded application knowledge. The search engine is intended
to accept queries posed in SparQL, and will return a set of links to matching resources.
This requires the search engine to first execute the SparQL against the stored RDF
model, and then use the resulting instance URIs to obtain the relevant URLs from the
document links data. It presents a specialised search interface, enabling users to de-
velop an abstract model of a semantic query, pose it to the engine, and then review the
resulting matched documents. The search interface provides the means by which end-
users (i.e. people who are not experts in Semantic Web technologies) will access the
resources filtered and annotated by the Annotation Engine component. It is also pos-
sible to add and delete entities and properties (with related values), so that a user can
interact with the knowledge base to fine tune the query, enabling subsequent searches
to become more accurate. There were two key aims for the query interface. First of all,



we wanted the user to be presented with an intuitive and clear abstract query model, in
order to hide as much as possible of the underlying complexity of representation and
reasoning. As a second target we wanted to be able to use powerful semantic queries,
that used as much as possible of the available information.

2.4 Tools and Languages

As already mentioned, the framework is built using Java version 5.0; the Semantic Web
languages used are RDF[12] for metadata representation and OWL[7] as ontology lan-
guage. The language used to query the knowledge base is SPARQL, which is an upcom-
ing standard (Working Draft at the time of writing1). As intermediate format, XML[13]
is used in both the Store component and as intermediate result for the database oriented
implementation of Harvester; the libraries used in this case are those included in Java
1.5, which means the Xerces API for XML2.

In order to access RDF models and ontologies, we have used the Jena Semantic Web
Framework by HP[14], version 2.4; in order to build, refine and check the ontologies
themselves, as well for reasoning and consistence checking purposes, we have used the
Pellet DL reasoner3 and the SWOOP ontology editor4. As for the SPARQL language,
the implementation we use is the ARQ engine which is developed by the Jena team and
included in the Jena download.

In order to develop the client side of the Search Engine in the easiest way, we used
GWT (Google Web Toolkit5) in order to have an easy way to code Javascript interfaces
through Java code and produce a AJAX compliant application; the use of the toolkit
enables us to build cross-browser applications that do not overload the server with page
reload requests in a very easy way.

The database we use for storage, as said earlier, is MySQL6 version 5.0.x, through
its JDBC driver. The Harvester implementation has been used to access both MySQL
databases and SQL Server7 databases. Our server side application server is Tomcat8

version 5.5.x, which complies with JSP specifications 2.09 / Servlet specifications 2.410.

1 http://www.w3.org/TR/rdf-sparql-query/
2 http://xerces.apache.org/
3 http://pellet.owldl.com/
4 http://www.mindswap.org/2004/SWOOP/
5 http://code.google.com/webtoolkit/
6 www.mysql.com
7 http://www.microsoft.com/sql/default.mspx
8 http://tomcat.apache.org/
9 http://java.sun.com/products/jsp/

10 http://java.sun.com/products/servlet/reference/api/index.html



3 Test-case Deployment and Evaluation

The QuestSemantics system has been deployed in two different commercial test-cases.
The first commercial partner was Vectra Group Ltd. Their problem was one of informa-
tion overload - they need to examine specific web-published documents for commercial
opportunities matching their areas of business interest. However, their current search
service only uses keywords to represent these interests and match against the publi-
cations - resulting in many potential matches, which then need to be human-filtered
to determine if they represent suitable commercial opportunities. QuestSemantics was
applied to this task of information retrieval, to enable more domain-specific analysis
and filtering of the published documents. The knowledge representation formalisms are
used to encode knowledge about the areas of business in which they are interested (i.e.
sectors, markets, activities, companies, locations, etc.), and knowledge about the source
material regarding how to find, annotate and filter those sources on the basis of the busi-
ness knowledge. The application runs a daily, automatic annotation and filtering process
of potentially matching resources, storing the results in the knowledge-base. This meta-
data is then accessed via the search interface to perform regular searches over sub-sets
of the company’s business interests for suitable opportunities.

Application of QuestSemantics to this task gives more accurate results from the
resource matching process, producing fewer false-positive matches for the business cri-
teria. This allows Vectra to concentrate efforts on a more precise set of results, reducing
the time spent checking which of the possible matches are actual matches. The increased
result accuracy also aids identification of suitable resources, that may be over-looked
in the current process due to information overload. In addition, providing fine-grained
access to potentially matching resources through an advanced search interface enables
Vectra to perform on-demand search, on the basis of the business knowledge, for re-
sources matching specific criteria rather than having to determine this by a manual
search of all resources.

The second commercial test-case concerns knowledge-based search over pre-existing
database information resources. The North West Aerospace Association (NWAA) main-
tains a database of its member aerospace companies, giving details of these compa-
nies (areas of expertise, specific capabilities, etc.). Access to this database is provided
through the NWAA website, enabling interested parties to search for aerospace com-
panies. However, the current search is inflexible, with only a basic categorization of
activities, capabilities and approvals, and cannot combine search features - meaning
that searches can only be approximate and do not allow identification of companies
exhibiting specific feature combinations without manual cross-referencing of search re-
sults.

The application of QuestSemantics enables creation of a knowledge-base, based on
an ontology of the domain, using the company data currently held in NWAA’s database,
and provides a semantic search facility allowing the knowledge-base to be searched by
constructing specific queries based upon the ontological model. The knowledge repre-
sented in the ontology is a conceptualistion of the aerospace domain in terms of the



features, capabilities and business relationships applying to companies within that do-
main. This conceptualisation is then instanciated to describe the specific companies and
ancillary information, gathered from existing database resources. The annotation rules,
layered on top of the ontology, specify how the existing information is automatically
mapped into this knowledge representation. The knowledge-base is thus dynamically
created from the existing data resources, and is updated on demand. The search inter-
face to this knowledge-base is designed to be used through the NWAA website by com-
panies seeking partners with specific aerospace expertise. The semantic search enables
use of multiple, hierarchically structured categorisations and features, combination of
features using boolean logic, aggregation of results over similar categories, and refer-
ence to specific company features within search constraints. The primary benefits of
the enhanced search facility to NWAA and its members are more accurate results for
all types of search over company information, leading to a saving of company time
analysing search results in order to identify potential partner companies.

We have performed an evaluation of the performance of the annotation and filter-
ing system when applied to Vectra’s problem of identifying web resources that match
business interests. The evaluation examined a large-scale harvest of 34285 documents,
determining how many are returned by the QuestSemantics system, and, of these, how
many are of genuine business interest to Vectra. These results (shown in Table 1)
demonstrate that only a very small fraction of the published documents are of gen-
uine interest to Vectra, which matches with their expectation. Furthermore, the results
show that the semantic annotation and filtering process is performing well, eliminating
over 93 percent of published documents with a British location (GB). The results for
QuestSemantics compare well with the results for the current service. A full compara-
tive evaluation is still ongoing in this regard, however, random spot-check comparisions
over individual daily returns show an average reduction in returns of 71 percent. The
effects on Vectra’s business have been significant - ceasing subscription to the existing
search service, and now intending to use QuestSemantics. However, there is still sig-
nificant room for improvement on the current results, as only 3.5 percent of the returns
from QuestSemantics were determined to be of genuine business interest to Vectra. The
main targets for these improvements are those documents were a search term has syn-
tactically matched, but has not fully matched the intention of the search term. This can
be addressed by further application of natural language understanding techniques, tak-
ing fuller account of context and grammar.

Contracts GB contracts Returned Interesting
Total 34285 2894 199 7
Daily average 836.22 70.59 4.83 0.17

Table 1. Summary of Vectra test-case evaluation.



Development and Maintenance The development of the QuestSemantics software was
undertaken in parallel with it’s application to the two test-cases. Both of the projects
had the following development milestones:

– Knowledge modeling and ontology construction: by elicitation of knowledge from
domain experts and analysis of existing data, etc.

– Development of annotation engine: to parse, analyse and filter resources, and to
create resource meta-data.

– Development of search interface: to enable knowledge-based access to annotated
resources.

– Deployment of integrated system: onto user systems, followed by evaluation and
user-feedback.

However, there was a degree of overlap between these tasks in order to ensure a
smooth development progression. There were four people involved in the development
of the QuestSemantics application, and the effort expended on the different aspects of
the two test-case development projects is show in Table 2. As can be seen from the table,
the distribution of effort is significantly different in the two test-cases. The majority of
the software design and development occurs in the Vectra project largely because this
was the first project and much of the development here was intentionally reused in the
second project. However, more effort was expended on knowledge engineering in the
NWAA project due to the fact that the domain was more complex to model, requiring
additional modelling of concept relationships (e.g. meronomy).

Vectra NWAA
Knowledge elicitation and modeling 4 pm 8 pm
Software design, development and testing 11 pm 7 pm
Deployment and evaluation 4 pm 2 pm

Table 2. Summary of effort in person/months in test-cases.

The deployments of QuestSemantics have been performed as a one-off, test-case
deployments, onto the commerical partners’ own systems as local applications. Whilst
we have little maintenance experience as yet, maintenance updates to the systems are
expected. Some of the expected maintenance activities are addressed providing the part-
ners with the ability to amend and update the knowledge-base themselves, through a
specially developed tool. Therefore the company maintains the knowledge used by the
application, which will only change in-line with their changing business interests, and
so is not very dynamic. Additional maintenance activities will be performed by the de-
velopers through continued development and update of the tool, in addition to respond-
ing to any software problems encountered. This intended maintenance is underpinned
by the modular design of the software, and by the strict separation of business knowl-
edge and software functionality.



There are many ways in which the current application could be improved, both in
the existing tasks of annotation and search, and in extensions to the current system to
address areas such as knowledge management and business intelligence. Examples of
such improvements for the Vectra test-case are:

– Extension of filter rules to consider specific rule-exceptions, thus allowing more
flexible application of filters.

– Refinement of the query construction and editing methodology, enabling a more
intuitive and flexible workflow.

– Search result ordering can be extended to allow a variety of rankings, based on
different criteria, to be applied.

– Annotation lifecycle management can be enhanced to revise and remove annota-
tions describing resources in a fully automated manner.

– Allow users to add further annotations to retrieved resources, indicating what action
is being taken, which would then enable monitoring of activity in this domain.

– Extensions to the knowledge-base regarding closely related business areas would
enable monitoring of opportunities on the margins of current business interests -
helping to identify areas of potential business expansion.

4 Related Work

Here we survey some of the relevant existing approaches for annotating and search-
ing web resources, based on Semantic Web technologies. One of the the first semantic
annotation applications was Annotea [15] in 2001. Annotea employs RDF Schema as
formalism to express the meta-data vocabulary, but the resource annotation process is
entirely manual. A manual annotation process tends to be subjective (i.e. depends on
the knowledge and point of view of the domain expert), and is time-consuming and
tedious - leading to a second generation of semi-automatic semantic annotation tools.
Besides automatizing parts of the process, such tools also proposed a slightly more con-
straining notion of annotation - it shifted from being generic information related to (a
portion of) a document, to being a formal description of the information within it. In
[16] the authors present a platform (Seeker), and an application (SemTag) built upon
it, that were designed to scale up to annotation for the whole web. SemTag relies on a
fixed ontology, namely TAP [17], as its meta-data vocabulary, and identifies instances
of the concepts appearing in the TAP ontology within the analysed documents. This is
accomplished by means of an algorithm for word sense disambiguation that considers
word windows around a term as context to help in disambiguating its sense.

The S-CREAM [18] abstract framework, and its implementation Ont-O-Mat, rep-
resent an evolution of such approaches. They do not depend on the use of a particular
ontology and individuate instances, relations between instances, and instance attributes
(relationships between instances and values). They employ Amilcare [19], a tool for
learning adaptive rules for tagging a corpus that leverages several Natural Language
Processing methodologies. The gap between XML-based Amilcare annotation and Se-
mantic Web meta-data formalised w.r.t. an ontology is bridged, within the S-CREAM



architecture, by a Discourse Representation component, which is responsible for trans-
lation from Amilcare results into the meta-data in a Semantic Web standard language.

The more recent Knowledge Parser [20] proposes an architecture that explicitly
accounts for layout processing as one of the early steps in the annotation process. An-
notations can be based on multiple ontologies that are not known a priori. Knowledge
Parser has a separate process (Intelligent Ontology Population) for the creation of in-
stances of the concepts in the ontologies. This process varies according to the domain,
in that the rules (policies) for populating the ontology are dependent on the application.
It provides a Natural Language interface for querying the generated knowledge base.

Knowledge Parser is the only one of the above systems that provides a search inter-
face, and only the latter two are domain independent systems. S-CREAM, Knowledge
Parser and our system can be categorised as systems that aim to employ semantic an-
notation and access in very specific knowledge domains. On the contrary, SemTag and
analogous systems (e.g. the KIM platform [21]) have been designed for bootstrapping
the Semantic Web by annotating the current Web, and rely on very general ontolo-
gies in order to capture the widest possible range of knowledge. Therefore, although
the SemTag-like category of tools need little customisation in order to be used in any
domain, they cannot be easily adapted to produce very detailed annotation regarding
specific domains.

5 Conclusions

As can be seen from the evaluation in the Vectra use-case (see Section 3), the applica-
tion of knowledge representation methodologies to intelligent data capture and access
can produce very successful results. The significant reduction in false positive returns
produces savings in company time and effort expended to identify opportunities, and
helps to reduce the likelyhood that suitable opportunities are missed due to information
overload. In addition, as shown with both Vectra and NWAA, the facility to access the
data resources on the basis of the encoded business knowledge enables users to identify
useful resources in a way that is tailored to their needs and experience. Furthermore,
our focus upon limited and clearly defined domains of knowledge enables the business
partners to specify the conceptualisation needed to apply their implicit knowledge about
their business to the problem tasks in an automated manner.

As a result of the two test-case applications of the QuestSemantics system, a number
of lessons have been learnt regarding the application of knowledge representation and
manipulation techniques within commercial scenarios. Companies require end-to-end
solutions that solve specific business problems, requiring development of an integrated
system of knowledge representation and other technologies to solve the whole of that
problem. The knowledge elicitation process requires significant time and effort, but, in
our experience, the rich expressivity of the formalisms employed provides a straight-
forward means to encode the knowledge required. To enable the business partners to



make full use of the application, the presentation of the knowledge is as important as its
representation. The languages employed provide assistance here by allowing concepts,
properties and values to be represented in a natural way that supports an expressive but
clear presentation. Finally, our focus upon maintaining a strict separation between the
various different types of knowledge represented, both problem-specific and generic,
underpins the flexiblility of our approach, and enables its application to almost any do-
main, given a sufficiently detailed ontology and annotation rules.

References

1. Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: Principles and methods.
Journal of the ACM 25(1-2) (March 1998) 161–197

2. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., Ciravegna, F.:
Semantic Annotation for Knowledge Management: Requirements and a Survey of the State
of the Art. Journal of Web Semantics 4(1) (2006)

3. Miller, G.: Wordnet: a lexical database for english. Communications of the ACM 38(11)
(November 1995) 39–41

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May
2001)

5. van Heijst, G., Schreiber, A.T., Wielinga, B.J.: Using explicit ontologies in kbs development.
Int. J. Hum.-Comput. Stud. 46(2) (1997) 183–292

6. Bylander, T., Chandrasekaran, B.: The right level of knowledge acquisition. In: Knowledge
acquisition for knowledge based systems. Volume 1. Academic Press (1988)

7. McGuinness, D.L., van Harmelen (Eds), F.: OWL Web Ontology Language Overview (2004)
http://www.w3.org/TR/owl-features/.

8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004)
http://www.w3.org/Submission/SWRL/.

9. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A proposal and
prototype implementation. J. of Web Semantics 3(1) (2005) 23–40

10. Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of part-whole relations. Cognitive
Science 11(4) (1987) 417–444

11. SPARQL: Query language for RDF. W3C Candidate Recommendation - 14th June 2007
12. : RDF model and syntax specification (2004) http://www.w3.org/TR/REC-rdf-syntax.
13. : Extensible Markup Language (XML) 1.0 (Fourth Edition) (2006)

http://www.w3.org/TR/2006/REC-xml-20060816/.
14. McBride, B.: JENA: A Semantic Web toolkit. IEEE Internet Computing 6 (Nov-Dec 2002)

55–59
15. Kahan, J., Koivunen, M.R.: Annotea: an open RDF infrastructure for shared Web annota-

tions. In: Proceedings of the 10th International Conference on the World Wide Web. (2001)
623–632

16. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Rajagopalan,
S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: SemTag and Seeker: bootstrapping the Semantic
Web via automated semantic annotation. In: Proceedings of the 12th International Confer-
ence on the World Wide Web. (2003) 178–186

17. Guha, R.V., McCool, R.: TAP: A semantic web test-bed. Journal of Web Semantics 1(1)
(2003) 81–87



18. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM - Semi-automatic CREAtion of Meta-
data. In: Proceedings of Knowledge Engineering and Knowledge Management. Ontologies
and the Semantic Web, 13th International Conference. (2002) 358–372

19. Ciravegna, F., Dingli, A., Wilks, Y., Petrelli, D.: Timely and non-intrusive active document
annotation via adaptive information extraction. In: Proceedings of the ECAI Workshop on
Semantic Authoring, Annotation and Knowledge Markup., Lyon, France. (2002)

20. Rodrigo, L., Benjamins, V.R., Contreras, J., Patón, D., Navarro, D., Salla, R., Blázquez, M.,
Tena, P., Martos, I.: A Semantic Search Engine for the International Relation Sector. In:
Proceedings of the 4th International Semantic Web Conference. (2005) 1002–1015

21. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annotation, index-
ing, and retrieval. Journal of Web Semantics 2(1) (2004) 49–79


