
Forgetting and uniform interpolation in large-scale
description logic terminologies

Boris Konev, Dirk Walther, and Frank Wolter

Department of Computer Science
University of Liverpool, UK

{konev, dwalther, wolter}@liverpool.ac.uk

Abstract. We develop a framework for forgetting concepts and roles (aka uni-
form interpolation) in terminologies in the lightweight description logic EL ex-
tended with role inclusions and domain and range restrictions. Three different
notions of forgetting, preserving, respectively, concept inclusions, concept in-
stances, and answers to conjunctive queries, with corresponding languages for
uniform interpolants are investigated. Experiments based on SNOMED CT (Sys-
tematised Nomenclature of Medicine Clinical Terms) and NCI (National Cancer
Institute Ontology) demonstrate that forgetting is often feasible in practice for
large-scale terminologies.

1 Introduction

The main application of ontologies in computer science is to fix the vocabulary of an
application domain and to provide a formal theory that defines the meaning of terms
built from the vocabulary and their relationships. Current applications lead to the de-
velopment of very large and comprehensive ontologies such as the medical ontology
SNOMED CT (Systematised Nomenclature of Medicine Clinical Terms) (Spackman
2000) containing about 380 000 concept definitions and the National Cancer Institute
ontology (NCI) (Sioutos et al. 2006) containing more than 60 000 axioms. For ontolo-
gies T of this size, it is often of interest to forget a subvocabulary Σ of the vocabulary
of T ; i.e., to transform T into a new ontology TΣ (called a Σ-interpolant of T) that
contains no symbols from Σ and that is indistinguishable from T regarding its conse-
quences that do not useΣ. In AI, this problem has been studied under a variety of names
such as forgetting and variable elimination (Reiter and Lin 1994; Eiter and Wang 2008;
Lang et al. 2003). In mathematical logic, this problem has been investigated as the uni-
form interpolation problem (Visser 1996). Computing Σ-interpolants of ontologies has
a number of potential applications, e.g.,
Re-use of ontologies: when using ontologies such as SNOMED CT in an application,
often only a very small fraction of its vocabulary is of interest. In this case, one could
use a Σ-interpolant instead of the whole ontology, where Σ is the vocabulary not of
interest for the application.
Predicate hiding: an ontology developer might not want to publish an ontology com-
pletely because a certain part of its vocabulary is not intended for public use. Again,
publishing Σ-interpolants, where Σ is the vocabulary to be hidden, appears to be a
solution to this problem.

Exhibiting hidden relations between terms: large ontologies are difficult to maintain as
small changes to its axioms can have drastic and damaging effects. To analyze possibly
unwanted consequences over a certain part Γ of the vocabulary, an ontology developer
can automatically generate a complete axiomatization of the relations between terms
over Γ by computing a Σ-interpolant, where Σ is the complement of Γ .
Ontology versioning: to check whether two versions of an ontology have the same con-
sequences over their common vocabulary (or a subset thereof), one can first compute
their interpolants by forgetting the vocabulary not shared by the two versions and then
check whether the two interpolants are logically equivalent (i.e., have the same models).

In the description of Σ-interpolants given above, we have neither specified a lan-
guage in which they are axiomatized nor did we specify the language wrt. which Σ-
interpolants should be indistinguishable from the original ontology. The choice of the
latter language depends on the application: for example, if one is interested in inclu-
sions between concepts, then a Σ-interpolant should imply the same concept inclusions
using no symbols from Σ as the original ontology. On the other hand, if the ontology
is used to query instance data using conjunctive queries, then a Σ-interpolant together
with any instance data using no symbols fromΣ should imply the same certain answers
to conjunctive queries using no symbols from Σ as the original ontology.

Regarding the language L in which Σ-interpolants should be axiomatized, one has
to find a compromise between the following three conflicting goals:
(R) Standard reasoning problems (e.g., logical equivalence) in L should not be more
complex than reasoning in the language underlying the ontology.
(I) Σ-interpolants in L should be uniquely determined up to logical equivalence: if T ′1
and T ′2 areΣ-interpolants inL of ontologies T1 and T2 that have the same consequences
not using Σ, then T ′1 and T ′2 should be logically equivalent.
(E) The language L should be powerful enough to admit finite and succinct (ideally,
polynomial size) axiomatizations of Σ-interpolants, and it should be possible to com-
pute Σ-interpolants efficiently (ideally, in polynomial time).

For ontologies given in standard description logics (DLs) such as EL and any lan-
guage between ALC and SHIQO, there do not exist languages L achieving all these
goals simultaneously.1 To illustrate this point, let L be second-order logic. Then L triv-
ially satisfies (E) but fails to satisfy (R) and (I), for ontologies in any standard DL.

In this paper, we consider forgetting in the lightweight description logic EL under-
lying the designated OWL2-EL profile of the upcoming OWL Version 2 extended with
role inclusions and domain and range restrictions (Baader et al. 2008). This choice it
motivated by the fact that forgetting appears to be of particular interest for large-scale
and comprehensive ontologies and that many such ontologies are given in this lan-
guage. We introduce three DLs for axiomatizing Σ-interpolants satisfying criteria (R)
and (I) and preserving, respectively, inclusions between concepts, concept instances,
and answers to conjunctive queries. These DLs do not satisfy (E), as Σ-interpolants
sometimes to not exist or are of exponential size. We demonstrate that, nevertheless,
Σ-interpolants typically exist and can be computed in practice for large-scale termi-

1 This follows from the fact that deciding whether TBoxes in these DLs imply the same con-
cept inclusions over a signature is by at least one exponential harder than deciding logical
equivalence (Lutz and Wolter 2007; Lutz et al. 2007).

Concept C Translation C] Concept C Translation C]

> x = x dom(r) ∃y (r(x, y))
A A(x) ran(r) ∃y (r(y, x))

C uD C](x) ∧D](x) ∃u.C (x = x) ∧ ∃y C](y)
∃r.C ∃y (r(x, y) ∧ C](y)) ∃r1 u · · · u rn.C ∃y(r1(x, y) ∧ · · · ∧ rn(x, y) ∧ C](y))

Fig. 1. Standard translation ·]

nologies such as SNOMED CT and appropriate versions of NCI. Detailed proofs and
additional experiments are available in the appendix.

2 Preliminaries

Let NC, NR, and NI be countably infinite and mutually disjoint sets of concept names,
role names, and individual names. EL-concepts C are built according to the rule

C := A | > | C uD | ∃r.C,

whereA ∈ NC, r ∈ NR, andC,D range over EL-concepts. The set of ELHr-inclusions
consists of concept inclusions C v D and concept equations C ≡ D, domain restric-
tions dom(r) v C, range restrictions ran(r) v C and role inclusions r v s, where
C,D are EL-concepts and r, s ∈ NR. An ELHr-TBox T is a finite set of ELHr-
inclusions. An ELHr-TBox is called ELHr-terminology if all its concept inclusions
and equations are of the form A v C and A ≡ C and no concept name occurs more
than once on the left hand side. In what follows we use A ./ C to denote expressions
of the form A v C and A ≡ C.

Assertions of the form A(a) and r(a, b), where a, b ∈ NI, A ∈ NC, and r ∈ NR,
are called ABox-assertions. An ABox is a finite set of ABox-assertions. By obj(A)
we denote the set of individual names in A. A knowledge base (KB) is a pair (T ,A)
consisting of a TBox T and an ABoxA. Assertions of the formC(a) and r(a, b), where
a, b ∈ NI, C a EL-concept, and r ∈ NR, are called instance assertions. To define the
semantics of DLs considered in this paper we make use of the fact that DL-expressions
can be regarded as formulas in FO, where FO denotes the set of first-order predicate
logic formulas with equality using unary predicates in NC, binary predicates in NR, and
constants from NI; see Figure 1 (in which the DL-constructors not considered so far
are defined later). In what follows, we will not distinguish between DL-expressions and
their translation into FO and regard TBoxes, ABoxes and KBs as finite subsets of FO.
Thus, we use T |= ϕ to denote that ϕ follows from T in first-order logic even if ϕ is an
ELHr-inclusion and T a subset of FO and similar conventions apply to DLs introduced
later in this paper. FO (and, therefore, ELHr) is interpreted in models I = (∆I , ·I),
where the domain ∆I is a non-empty set, and ·I is a function mapping each concept
name A to a subset AI of ∆I , each role name r to a binary relation rI ⊆ ∆I × ∆I ,
and each individual name a to an element aI ∈ ∆I .

The most important ways of querying ELHr-TBoxes and KBs are subsumption
(check whether T |= α for an ELHr-inclusion α), instance checking (check whether

(T ,A) |= α for an instance assertion α), and conjunctive query answering. To de-
fine the latter, call a first-order formula q(x) a conjunctive query if it is of the form
∃yψ(x,y), where ψ is a conjunction of expressions A(t) and r(t1, t2) with t, t1, t2
drawn from NI and sequences of variables x and y. If x has length k, then a sequence
a of elements of obj(A) of length k is called a certain answer to q(x) of a KB (T ,A)
if (T ,A) |= q(a).

3 Forgetting

A signature Σ is a subset of NC ∪ NR
2. Given a signature Σ, we set Σ = (NC ∪

NR) \ Σ. Given a concept, role, concept inclusion, TBox, ABox, FO-sentence, set of
FO-sentences E, we denote by sig(E) the signature of E, that is, the set of concept and
role names occurring in it. We use the term ELHrΣ-inclusion (Σ-ABox, Σ-query, LΣ-
sentence, etc.) to denote ELHr-inclusions (ABoxes, queries, L-sentences, etc.) whose
signature is contained in Σ.

To define forgetting, we first formalize the notion of inseparability between TBoxes
wrt. a signature. Intuitively, two TBoxes T1 and T2 are inseparable wrt. a signature Σ if
they have the same Σ-consequences, where the set of Σ-consequences considered can
either reflect subsumption queries, instance queries, or conjunctive queries, depending
on the application. We give the definitions for sets of FO-sentences because we later
require these notions for a variety of DLs.

Definition 1. Let T1 and T2 be sets of FO-sentences and Σ a signature.

– T1 and T2 are concept Σ-inseparable, in symbols T1 ≡CΣ T2, if for all ELHrΣ-
inclusions α: T1 |= α⇔ T2 |= α.

– T1 and T2 are instanceΣ-inseparable, in symbols T1 ≡iΣ T2, if for allΣ-ABoxesA
and Σ-instance assertions α using individual names from obj(A): (T1,A) |= α⇔
(T2,A) |= α.

– T1 and T2 are query Σ-inseparable, in symbols T1 ≡qΣ T2, if for all Σ-ABoxes A,
conjunctive Σ-queries q(x), and vectors a of the same length as x of individual
names in obj(A): (T1,A) |= q(a)⇔ (T2,A) |= q(a).

The definition of forgetting (Σ-interpolants) is now straightforward.

Definition 2 (Σ-interpolant). Let T be an ELHr-TBox, Σ a finite signature, and L
a set of FO-sentences. If TΣ is a finite set of LΣ-sentences such that T |= ϕ for all
ϕ ∈ TΣ , then TΣ is

– a concept Σ-interpolant of T in L if T ≡C
Σ
TΣ ;

– an instance Σ-interpolant of T in L if T ≡i
Σ
TΣ ;

– a query Σ-interpolant of T in L if T ≡q
Σ
TΣ .

2 We investigate forgetting for TBoxes for DLs without nominals; thus we do not include indi-
vidual names into the signature.

One can show that every query Σ-interpolant is an instance Σ-interpolant and every
instance Σ-interpolant is a concept Σ-interpolant. The converse implications do not
hold, even for ELHr-terminologies:

Example 1. Let T = {ran(r) v A1, ran(s) v A2, B ≡ A1 uA2} and Σ = {A1, A2}.
One can show that the empty TBox is a concept Σ-interpolant of T . However, the
empty TBox is not an instance Σ-interpolant of T . To show this, consider the Σ-ABox
A = {r(a0, b), s(a1, b)}. Then (T ,A) |= B(b) but (∅,A) 6|= B(b). Observe that no
ELHr-TBox (and even no SHQ-TBox) is an instance Σ-interpolant of T because it is
impossible to capture the ABox A in a DL in which one cannot refer to the range of
distinct roles in one concept. On the other hand, the TBox T ′ = {ran(r)u ran(s) v B}
given in an extension of ELHr is an instance Σ-interpolant of T .

Example 2. Let T = {A v ∃s.>, s v r1, s v r2} and Σ = {s}. Then T ′ = {A v
∃r1.> u ∃r2.>} is an instance Σ-interpolant of T , but T ′ is not a query Σ-interpolant
of T . To show the latter, let A = {A(a)} and let q = ∃x(r1(a, x) ∧ r2(a, x)). Then
(T ,A) |= q but (T ′,A) 6|= q. Again, no ELHr-TBox (and even no TBox in SHIQ) is
a queryΣ-interpolant of T . On the other hand, the TBox T ′′ = {A v ∃r1ur2.>} given
in an extension of ELHr with conjunctions of roles names is a query Σ-interpolant of
T .

Besides of exhibiting examples where concept-, instance-, and query Σ-interpolants
are distinct, Example 1 and 2 also show that even in extremely simple cases ELHr
and a variety of more expressive DLs are not sufficiently powerful to express instance
and query Σ-interpolants of ELHr-terminologies. Rather surprisingly, there also exist
simple examples in which ELHr-TBoxes are not sufficiently expressive to axiomatize
concept Σ-interpolants of ELHr-terminologies.

Example 3. Let Σ = {Research Inst,Education Inst} and T be

University ≡ Research Inst u Education Inst

School v Education Inst

ran(PhD from) v Research Inst

Then there does not exist an ELHr-TBox that is a concept Σ-interpolant of T . Intu-
itively, the reason is that there is no ELHr

Σ
-TBox which follows from T and has the

following infinite set of Σ-consequences (which are consequences of T):

∃PhD from.(School uA) v ∃PhD from.(University uA),

where A ∈ Σ. On the other hand, the TBox T ′ = {ran(PhD from) u School v
University} given in an extension of ELHr is a concept Σ-interpolant of T .

We now introduce three extensions of ELHr which we propose to axiomatize concept-,
instance-, and query Σ-interpolants.

Definition 3 (ELran,0, ELran, ELran,u,u). Cran,0-concepts are constructed using the fol-
lowing syntax rule

C := D | ran(r) | ran(r) uD,

where D ranges over EL-concepts and r ∈ NR. The set of ELran,0-inclusions consists
of concept inclusions C v D and role inclusions r v s, where C is a Cran,0-concept, D
an EL-concept, and r, s ∈ NR.
Cran-concepts are constructed using the following syntax rule

C := A | ran(r) | C uD | ∃r.C,

where A ∈ NC, C,D range over Cran-concepts and r ∈ NR. The set of ELran-inclusions
consists of all concept inclusions C v D and role inclusions r v s, where C is a
Cran-concept, D an EL-concept, and r, s ∈ NR.

Let u (the universal role) be a fresh logical symbol. Cu,u-concepts are constructed
using the following syntax rule

C := A | C uD | ∃R.C | ∃u.C,

whereA ∈ NC, C,D range over Cu,u-concepts andR = r1u· · ·urn with r1, . . . , rn ∈
NR. The set of ELran,u,u-inclusions consists of concept inclusions C v D and role
inclusions r v s, where C is a Cran-concept, D a Cu,u-concept, and r, s ∈ NR.

An X-TBox is a finite set of X-inclusions, where X ranges over ELran, ELran,0,
and ELran,u,u.

We have the following inclusions:

ELHr C ELran,0 C ELran C ELran,u,u

where L1 C L2 means that every L1-TBox is logically equivalent to some L2-TBox.
The semantics of the additional constructors is straightforward and given in Figure 1.
We regard the universal role u as a logical symbol (i.e., u 6∈ NR). This interpretation re-
flects the fact that the signature of the first-order translation of ∃u.C coincides with the
signature of C. Observe that the TBox given as a concept Σ-interpolant in Example 3
is an ELran,0-TBox; the instance Σ-interpolant given in Example 1 is an ELran-TBox,
and the query Σ-interpolant in Example 2 is an ELran,u,u-TBox. The need for the uni-
versal role is illustrated by considering T = {A v ∃r.B} and Σ = {r}. The empty
TBox is a concept and an instance Σ-interpolant of T . A query Σ-interpolant is given
by T ′ = {A v ∃u.B} and reflects the fact that (T ,A) |= ∃xB(x) for A = {A(a)}.

We show that the languages introduced in Definition 3 satisfy criteria (R) and (I)
from the introduction. (R) is a consequence of the following result.

Theorem 1. The following problems are PTIME-complete for ELran,u,u-TBoxes T and
ABoxes A: decide whether

– T |= C v D, for C v D an ELran,u,u-inclusion;
– (T ,A) |= C(a), where C is an EL-concept.

Deciding whether (T ,A) |= q(a), where q is a conjunctive query, is NP-complete, and
deciding this problem for fixed q(a) (knowledge base complexity) is PTIME-complete.

It follows, in particular, that logical equivalence of ELran,u,u-TBoxes is decidable in
PTime. These complexity results are exactly the same as for ELH-TBoxes (Rosati
2007). For (I) and the computation of Σ-interpolants below, we first investigate the

relationship between the distinct inseparability notions introduced in Definition 1 and
inseparability wrt. the new languages. (For EL this relationship is characterized in (Lutz
and Wolter 2009).) Let X range over the superscripts ran, 0 and ran and ran,u, u. Say
that two finite sets of FO-sentences T1 and T2 are X-inseparable wrt. Σ, in symbols
T1 ≡XΣ T2, if T1 |= α⇔ T2 |= α, for all ELXΣ -inclusions α.

Theorem 2. Let T1 and T2 be ELran,u,u-TBoxes and Σ an infinite signature. Then the
following holds:

– T1 ≡CΣ T2 iff T1 ≡ran,0
Σ T2;

– T1 ≡iΣ T2 iff T1 ≡ran
Σ T2;

– T1 ≡qΣ T2 iff T1 ≡ran,u,u
Σ T2.

The condition that Σ is infinite is required only for the implication from right to left in
Point 1. As we forget finite signatures, their complement is always infinite.

From Theorem 2 we immediately obtain that (I) is met for the three notions of Σ-
interpolants. For example, assume that T1 and T2 are ELHr-TBoxes such that T1 ≡qΣ
T2 and let T ′1 and T ′2 be query Σ-interpolants in ELran,u,u of T1 and T2, respectively.
By Theorem 2, T ′1 ≡

ran,u,u
Σ

T ′2 . But then T ′1 and T ′2 are logically equivalent: we have
T ′1 |= α for all α ∈ T ′2 because all such α are ELran,u,u

Σ
-inclusions and T ′2 |= α. The

converse direction holds for the same reason.

4 ComputingΣ-interpolants

We present algorithms computing Σ-interpolants for ELHr-terminologies satisfying
certain acyclicity conditions. In this section, we assume wlog. that terminologies are
normalized ELHr-terminologies; i.e., ELHr-terminologies T consisting of role inclu-
sions and axioms of the form (here, and in what follows, we write r vT s if T |= r v s)

– A ./ ∃r.B, where B ∈ NC ∪ {>};
– A ./ B1 u · · · uBn, where B1, . . . , Bn ∈ NC;
– dom(s) v A, where A ∈ NC;
– ran(s) v A, where A ∈ NC

such that dom(s) v A ∈ T and r vT s imply dom(r) v A ∈ T ; ran(s) v A ∈ T
and r vT s imply ran(r) v A ∈ T ; and r vT s and s vT r implies r = s. It is easy
to see that every ELHr-terminology T can be transformed (in polynomial time) into a
normalized terminology T ′ such thatΣ-interpolants of T coincide withΣ′ interpolants
of T ′, where Σ′ contains additional fresh concept names.

We give the acyclicity conditions required for the algorithms to terminate. The Σ-
cover CΣT (r) of a role r wrt. a terminology T consists of all s ∈ Σ such that r vT s
and there does not exist r′ ∈ Σ with r′ 6= s and r vT r′ vT s.

Definition 4 (Σ-loop). Let T be a normalized ELHr-terminology and Σ a signature.
Define a relation ≺Σ⊆ (NC ∩Σ)× (NC ∩Σ) as follows: A ≺Σ B if A,B ∈ Σ and
(a) A ./ C ∈ T for some C such that B occurs in C, or
(b) A ./ ∃r.A′ ∈ T for some A′ ∈ NC ∪ {>} and r ∈ Σ such that dom(r) v B ∈ T ,
or

(c) A ./ ∃r.A′ ∈ T for some A′ ∈ NC ∪ {>} and r ∈ Σ such that there exists
s ∈ CΣT (r) with ran(r) v B ∈ T , ran(s) v B 6∈ T .
We say that T contains a Σ-loop if ≺Σ contains a cycle.

The following example illustrates this definition and shows that the existence of Σ-
loops typically entails the non-existence of Σ-interpolants, even in FO.

Example 4. Consider the set of inclusions

Elephant v Mammal (1)
Mammal v ∃has mother.Mammal (2)
Mammal v ∃has mam′l father.> (3)

dom(has mam′l father) v ∃has mother.Mammal (4)
ran(has mam′l father) v Mammal (5)

has mam′l father v has mother (6)

and define ELHr-terminologies T1 = {(1), (2)}, T2 = {(1), (3), (4)}, and T3 =
{(1), (3), (5), (6)}, and let Σi = sig(Ti) \ {Elephant, has mother}, for i = 1, 2, 3.
Even in FO, there exists no concept/instance/query Σi-interpolant of Ti. To see this ob-
serve that in all three cases an infinite axiomatization of such a Σ-interpolant is given
by the inclusions

{Elephant v
n︷ ︸︸ ︷

∃has mother. · · · ∃has mother .> | n ≥ 1}.

This theory cannot be finitely axiomatized in FO without additional predicates. Ob-
serve that T1 contains a Σ1-loop as axiom (2) implies Mammal ≺Σ1 Mammal by
clause (a) of Definition 4 for Σ1-loops; T2 contains a Σ′2-loop as axioms (3) and (4)
imply Mammal ≺Σ′2 A ≺Σ′2 Mammal by clauses (a) and (b), where the fresh concept
name A is due to normalization replacing (4) with the inclusions

dom(has mam′l father) v A, A v ∃has mother.Mammal;

and T3 contains a Σ3-loop as axioms (3), (5), and (6) imply Mammal ≺Σ3 Mammal by
clause (c).

Call a concept name A primitive (pseudo-primitive) in a terminology T if A does not
occur on the left hand side of any axiom in T (does not occur in the form A ≡ C in T).

The intuition behind the following algorithms for concept-, instance- and query Σ-
interpolants is as follows: first, one can show using Theorem 2 and a sequent-style
proof system for ELHr that under the conditions of Theorems 3, 4 and 5 there exists a
concept-, instance- and query Σ-interpolant, respectively, consisting of (in addition to
role inclusions and domain and range restrictions) concept inclusions of the form

– C v A and A v C,

whereA is a concept name. In Figures 2 and 3 below, we compute the set PΣ(A) of con-
cepts C such that the inclusion C v A is in the interpolant. The algorithm in Figure 2
is used to compute PΣ(A) for concept Σ-interpolants, and the algorithm in Figure 3
is used for instance- and query Σ-interpolants. In both cases, PΣ(A) is computed by
making a case distinction:

For A ∈ sig(T), let PreΣ(A) consist of all D = ran(r), D = ∃r.>, and D ∈ NC such that
T |= D v A and sig(D) ⊆ sig(T) ∩Σ; construct PΣ(A) as follows:

– for A pseudo-primitive in T , PΣ(A) = PreΣ(A);
– if A ≡ B1 u · · · uBn ∈ T , then PΣ(A) is the set of CB1 u · · · u CBn , where
• if Bi ∈ Σ: CBi ∈ PΣ(Bi);
• if Bi /∈ Σ: CBi = Bi;

such that there are no two top-level conjuncts ran(s) and ran(s′) with s 6= s′;
– if A ≡ ∃r.A′ ∈ T , then PΣ(A) is the union of PreΣ(A) and
• if A′ ∈ Σ: {∃s.A′ | s vT r, s ∈ Σ};
• if A′ 6∈ Σ: the set of all concepts ∃s.D such that s vT r, s ∈ Σ, and there exists
D′ ∈ PΣ(A′) such that D does not contain a top-level conjunct of the form ran(r′)
and is the resulting concept when all top-level conjuncts of the form ran(s′) with
s vT s′ are removed from D′.

Fig. 2. Computing PΣ(A) (for concept Σ-interpolants)

For A ∈ sig(T), let PreΣ(A) consist of all D = ran(r), D = ∃r.>, and D ∈ NC such that
T |= D v A and sig(D) ⊆ sig(T) ∩Σ; construct PΣ(A) as follows:

– for A pseudo-primitive in T , PΣ(A) = PreΣ(A);
– if A ≡ B1 u · · · uBn ∈ T , then

PΣ(A) = {CB1 u · · · u CBn | (Bi ∈ Σ and CBi = Bi)
or (Bi ∈ Σ and CBi ∈ PΣ(Bi))};

– if A ≡ ∃r.A′ ∈ T , then PΣ(A) is the union of PreΣ(A) and
• if A′ ∈ Σ: {∃s.A′ | s vT r, s ∈ Σ};
• if A′ 6∈ Σ: {∃s.D | s vT r, s ∈ Σ,D′ ∈ PΣ(A′)}.

Fig. 3. Computing PΣ(A) (for intance and query Σ-interpolants)

– in Point 1, A is pseudo-primitive;
– in Point 2, it is defined by a conjunction;
– in Point 3, it is defined as ∃r.A′.

Points 2 and 3 are recursive as they require the sets PΣ(B) when B is used in the defi-
nition of A. Σ-loops (or Σ-u-loops, defined below, in the case of query Σ-interpolants)
describe exactly the situation in which the recursion does not terminate.

In Figures 4 and 5 below, we compute, in a similar way, the set QΣ(A) of concepts
C such that the inclusion A v C is in the interpolant. The algorithm in Figure 4 is
used to compute QΣ(A) for concept- and instance Σ-interpolants, and the algorithm in
Figure 5 is used for query Σ-interpolants.

Having computed the sets PΣ(A) and QΣ(A), for all concept names A ∈ sig(T),
the corresponding concept-, instance-, or query Σ-interpolant T XΣ (where X stands for
C, i, or q, respectively) consists of the following axioms, where A, r, and s range over
sig(T) ∩Σ:

– r v s, for r vT s;

– D v A, for all D ∈ PΣ(A);
– A v D, for all D ∈ QΣ(A);
– ran(r) v D, for all D ∈ QΣ(B) such that ran(r) v B ∈ T and B ∈ Σ;
– dom(r) v D, for all D ∈ QΣ(B) such that dom(r) v B ∈ T and B ∈ Σ.

We now discuss a variety of runs of these algorithms in order to illustrate the dif-
ference between concept-, instance-, and query Σ-interpolants. We start by considering
the computation of PΣ(A) and QΣ(A) for concept and query Σ-interpolants.

Recall that conceptΣ-interpolants are formulated using ELran,0-inclusions, whereas
instance Σ-interpolants use ELran-inclusions. For the former, the set PΣ(A) must con-
sist of Cran,0-concepts only, whereas Cran-concepts are allowed for the latter. This is
reflected in the two algorithms computing PΣ(A) in Figures 2 and 3: in the recursion
in Figure 2 we require a more complicated definition than in Figure 3 because we have
to ensure that the concepts in PΣ(A) are Cran,0-concepts. The next example illustrates
this difference by showing a run of these algorithms on Example 1.

Example 5. Consider the TBox and signature of Example 1. That is T = {ran(r) v
A1, ran(s) v A2, B ≡ A1 u A2} and Σ = {A1, A2}. Then QΣ(E) = ∅ for all
E ∈ {A1, A2} and QΣ(B) = {B}. For the instance case, we compute PΣ according
to Figure 3:

– PΣ(A1) = {ran(r1), B};
– PΣ(A2) = {ran(r2), B};
– PΣ(B) consists of ran(r1) u ran(r2), B uB, ran(r1) uB, B u ran(r2).

Thus, we obtain the following finite ELran-TBox as axiomatization of an instance Σ-
interpolant:

ran(r1) u ran(r2) v B
B uB v B

ran(r1) uB v B
B u ran(r2) v B

B v B

From these axioms, only the first one is non-tautological, and so we obtain the axiom-
atization given in Example 1. Notice that this is not an axiomatization of a concept
Σ-interpolant, as the first axiom is not an ELran,0-inclusion. We, therefore, compute
PΣ according to Figure 2 which yields PΣ(B) = {B uB, ran(r1) uB, B u ran(r2)}.
The resulting axiomatization consists of tautologies only, and thus the empty TBox is a
concept Σ-interpolant; cf. Example 1.

The following example shows a run of the algorithms for concept- and instance
Σ-interpolants and illustrates the normalization of terminologies.

For A ∈ sig(T), let PostΣ(A) = {B ∈ Σ ∩ sig(T) | T |= A v B} and construct QΣ(A) as
follows:

– for A primitive in T , QΣ(A) = PostΣ(A);
– if A ./ B1 u · · · uBn ∈ T , then

QΣ(A) = PostΣ(A) ∪
⋃

1≤i≤n,Bi∈Σ

QΣ(Bi);

– if A ./ ∃r.A′ ∈ T , then QΣ(A) is the union of PostΣ(A),⋃
rvT s

{QΣ(B) | dom(s) v B ∈ T , s ∈ Σ,B ∈ Σ},

and
{∃s.Es | s ∈ CΣT (r)},

where
Es =

l

B∈Σ, ran(r)vB∈T
ran(s)vB 6∈T, D∈QΣ(B)

D u
l

D∈QΣ(A′)
A′∈Σ

D u
l

B∈Σ
T |=ran(r)uA′vB

B.

Fig. 4. Computing QΣ(A) (for concept and instance Σ-interpolants)

Example 6. Let T be given as

B ≡ ∃t.(A1 uA2)
t v s
s v r1
s v r2

ran(r1) v A1

ran(r2) v A2

and Σ = {A1, A2}. Note that T is not a normalized ELHr-terminology. We transform
T into a normalized terminology T ′:

B ≡ ∃t.E
E ≡ A1 uA2

t v s
s v r1
s v r2

ran(`) v A1 for ` = r1, t, s

ran(`) v A2 for ` = r2, t, s

ran(`) v E for ` = t, s

For A ∈ sig(T), let PostΣ(A) = {B ∈ Σ ∩ sig(T) | T |= A v B} and construct QΣ(A) as
follows:

– for A primitive in T , QΣ(A) = PostΣ(A);
– if A ./ B1 u · · · uBn ∈ T , then

QΣ(A) = PostΣ(A) ∪
⋃

1≤i≤n,Bi∈Σ

QΣ(Bi);

– if A ./ ∃r.A′ ∈ T , then QΣ(A) is the union of PostΣ(A) and

{∃R.E} ∪
⋃
rvT s

{QΣ(B) | dom(s) v B ∈ T , s ∈ Σ,B ∈ Σ},

where
• if CΣT (r) = ∅: R = u;
• if CΣT (r) 6= ∅: R =

d
s∈CΣT (r) s;

and
E =

l

B∈Σ, ran(r)vB∈T
∀s∈CΣT (r)(ran(s)vB 6∈T)

D∈QΣ(B)

D u
l

D∈QΣ(A′)
A′∈Σ

D u
l

B∈Σ
T |=ran(r)uA′vB

B.

Fig. 5. Computing QΣ(A) (for query Σ-interpolants)

where E is a fresh concept name not contained in sig(T). Let Σ′ = Σ ∪ {E}. Then a
TBox T ′′ is a concept/instance/queryΣ-interpolant of T iff it is a concept/instance/query
Σ′-interpolant of T ′.

For both the concept and instance case, the algorithms yields PΣ′(B) = {B, ∃t.>},
QΣ′(B) = {B, ∃t.>}. Then the concept and instance Σ-interpolant coincide and con-
sist of the obvious role inclusions and

∃t.> v B,B v ∃t.>,

where redundent axioms such as B v B have been removed already.
For Σ = {A1, A2, t} we obtain, besides of role inclusions,

B v ∃s.>

as the only axiom of the concept and instance Σ-interpolant.

The following theorems state that the algorithms terminate and that our construction
indeed yields concept- and instance Σ-interpolants.

Theorem 3 (Concept Σ-interpolant). Let Σ be a finite signature and T a normal-
ized ELHr-terminology without Σ-loops. Then the algorithms computing PΣ(A) and
QΣ(A) in Figures 2 and 4, respectively, terminate, for all A ∈ sig(T).

Let T CΣ be the TBox as defined above wrt. PΣ(A) and QΣ(A). Then T CΣ is an
concept Σ-interpolant of T .

Theorem 4 (Instance Σ-interpolant). Let Σ be a finite signature and T a normal-
ized ELHr-terminology without Σ-loops. Then the algorithms computing PΣ(A) and
QΣ(A) in Figures 3 and 4, respectively, terminate, for all A ∈ sig(T).

Let T iΣ be the TBox as defined above wrt. PΣ(A) and QΣ(A). Then T iΣ is an in-
stance Σ-interpolant of T .

Query Σ-interpolants are axiomatized using ELran,u,u-inclusions. We use a differ-
ent algorithm in Figure 5 for computing the set QΣ(A) consisting of Cu,u-concepts
instead of the algorithm in Figure 4 which yields EL-concepts only. The following ex-
ample illustrates this by showing a run of the algorithms on Example 2.

Example 7. Consider the TBox and signature of Example 2. That is, T = {A v
∃s.>, s v r1, s v r2} and Σ = {s}. We obtain PΣ(A) = {A}. Observe that
CΣT (s) = {r1, r2}. In the instance case, we obtain

QΣ(A) = {A,∃r1.>,∃r2.>}

As A v A is tautological, we obtain the following axiomatization of an instance Σ-
interpolant:

A v ∃r1.> u ∃r2.>

For the query case, we have QΣ(A) = {A,∃r1 u r2.>} and thus obtain

A v ∃r1 u r2.>

as an axiomatization of a query Σ-interpolant.

We now state that our construction of queryΣ-interpolants terminates and is correct.
Extend the relation ≺Σ to ≺uΣ by adding (A,B) to ≺Σ if there are A ./ ∃r.A′ ∈ T
such that CΣT (r) = ∅ and ran(r) v B ∈ T . T contains Σ-u-loops if ≺uΣ contains a
cycle.

Theorem 5 (Query Σ-interpolant). Let Σ be a finite signature and T a normalized
ELHr-terminology without Σ-u-loops. Then the algorithms computing PΣ(A) and
QΣ(A) in Figures 3 and 5, respectively, terminate, for all A ∈ sig(T).

Let T qΣ be the TBox as defined above wrt. PΣ(A) and QΣ(A). Then T qΣ is a query
Σ-interpolant of T .

Notice that both, PΣ(A) and QΣ(A), are of exponential size, in the worst case. For
PΣ(A), this is clear from Point 2 of the construction: let T consist ofA ≡ B1u· · ·uBn
and Aji v Bi (1 ≤ i, j ≤ n) and let Σ = {Bi | 1 ≤ i ≤ n}. Then PΣ(A) is of size
nn, and one can show that there does not exist a shorter Σ-interpolant in ELran,u,u. For
QΣ(A) this follows from the fact that one might have to construct a complete unfolding
of the terminology.

If we admit disjunctions in C in axioms C v D of Σ-interpolants, then we can
replace, in Point 2, PΣ(A) for A ≡ B1 u · · · uBn ∈ T by the singleton set consisting
of l

1≤i≤n,Bi∈Σ

Bi u
l

1≤i≤n,Bi∈Σ

⊔
CBi∈PΣ(Bi)

CBi .

We will see below that in practice this construction leads to much smallerΣ-interpolants.
However, this improvement does not come for free. Consider the language ELran,t,

|Σ ∩ sig(·)| SNOMED CT |Σ ∩ sig(·)| NCI

2 000 93.0% 5 000 97.0%

3 000 84.5% 10 000 81.1%

4 000 67.0% 15 000 72.0%

5 000 59.5% 20 000 59.2%

Table 1. Success rate of NUI

where the only difference to ELran is that Cran-concepts now admit ‘t’ as a binary
concept constructor. Every ELran,t-TBox is logically equivalent to an (exponentially
larger) ELran-TBox, and so ELran,t inherits many desirable properties from ELran.
However, one can show that, in contrast to ELran, logical equivalence between ELran,t-
TBoxes is coNP-hard.

5 Experiments

We have implemented a prototype called NUI that computes instance Σ-interpolants
as presented in Theorem 4. We have applied NUI to a version of SNOMED CT dated
09 February 2005 (without two left-identities) and the ELHr-fragment of the release
08.08d of NCI. The first terminology has approx. 380K axioms, almost the same num-
ber of concept names, and 56 role names. The ELHr-fragment of NCI has approx. 63K
axioms, approx. 65K concept names, and 123 role names. We note that the algorithms
given above compute (for ease of exposition) a large number of redundant axioms and
NUI implements a variety of straightforward optimizations.

First observe that neither SNOMED CT nor NCI contain any Σ-loops, for any sig-
nature Σ. Thus, Σ-interpolants always exist and can, in principle, be computed using
our algorithm.

In our experiments, we focus on the case of forgetting a large signature Σ (and
keeping a “small” signatureΣ∩ sig(·)), as this corresponds to many application scenar-
ios. The experiments have been performed on a standard PC with 2.13 GHz and 3 GB
of RAM.
Success rate: Table 1 shows the rate at which NUI succeeds to compute instance Σ-
interpolants of SNOMED CT and NCI wrt. various signatures. All failed cases are due
to memory overflow after several hours. For each table entry, 100 samples have been
used. The signatures contain concept and role names randomly selected from the full
signature of SNOMED CT (we never forget the role ‘roleGroup’ as this would make
forgetting trivial) and NCI, respectively. Σ ∩ sig(·) always contains 20 role names. For
NCI and signatures of size ≤ 4 000, NUI had a 100% success rate.
Size: We compare the size of instance Σ-interpolants of SNOMED CT and NCI com-
puted by NUI with the size of extracted Σ ∩ sig(·)-modules; i.e., minimal subsets of the
respective terminologies which preserve, e.g., inclusions between Σ ∩ sig(·)-concepts.
We use MEX-modules (Konev et al. 2008a) of SNOMED CT and, respectively,>-local
modules (Cuenca Grau et al. 2007) of NCI. The size of Σ-interpolants, terminologies,

Fig. 6. Size distribution of MEX-modules and instance Σ-interpolants of SNOMED CT

and modules is measured as number of symbols rather than number of axioms as Σ-
interpolants can contain large axioms.

For SNOMED CT, we generated 100 random signatures with 3 000 concept names
and 20 role names in Σ ∩ sig(·). For 17 of those signatures, NUI failed to compute an
instance Σ-interpolant. For the remaining 83 signatures, Figure 6 shows the number
interpolants and Σ ∩ sig(·)-modules (vertical axis) of a given size (horizontal axis).
The size of the Σ ∩ sig(·)-modules lies between 125K and 150K symbols, i.e., it lies
between 2.94% and 3.21% of SNOMED CT. 48.19% of instance Σ-interpolants are
smaller than the corresponding modules. However, 10 instance Σ-interpolants contain
more than one million symbols and the largest instance Σ-interpolant is more than 11
times larger than SNOMED CT.

For NCI, we computed instanceΣ-interpolants andΣ∩sig(·)-modules wrt. random
signatures with 7 000 concept names and 20 role names in Σ ∩ sig(·). NUI succeeded
to compute interpolants for 97 of 100 signatures, each within 25 min. Figure 7 shows
the size distribution of the successfully computed interpolants and the corresponding
modules. The size of theΣ∩sig(·)-modules lies between 140K and 160K symbols, i.e.,
it lies between 21.62% and 23.17% of NCI. 74.47% of the instance Σ-interpolants are
smaller than the corresponding modules. On the other hand, 18 instance Σ-interpolants
consist of more than 400K symbols and the largest instance Σ-interpolant is more than
12 times larger than NCI.

Forgetting with disjunction: All failures in Table 1 are due to the fact that PΣ(A) is
too large. Indeed, if we admit disjunction and consider ELran,t, then NUI succeeds to
compute all Σ-interpolants from Table 1, each within 15 min. Moreover, for NCI, no
signature for which NUI fails has been detected. For SNOMED CT, however, NUI still
typically fails for |Σ ∩ sig(·)| ≥ 30 000.

Fig. 7. Size distribution of CEL-modules and instance Σ-interpolants of NCI

6 Discussion

The notion of forgetting in DL ontologies has recently been investigated in a number
of research papers. (Kontchakov et al. 2008; Wang et al. 2008) consider forgetting in
DL-Lite and (Eiter et al. 2006) investigate in how far forgetting in DLs can be reduced
to forgetting in logic programs. (Konev et al. 2008b) proposes forgetting for acyclic
EL-terminologies restricted to inclusions between concepts.

The main novel contributions of this paper are (i) the first algorithms with exper-
imental results indicating the practical feasibility of forgetting in DL-terminologies
and (ii) the first systematic analysis of the distinct languages required to axiomatize Σ-
interpolants for distinct queries languages. Many open problems remain; e.g., we con-
juncture that Σ-interpolants of ELHr-terminologies (and possibly even TBoxes) exist
in the languages introduced whenever they exist in FO. Such a result would provide
further justification for those languages. Secondly, it would be of interest to prove de-
cidability (and complexity) of the decision problem whether there exists aΣ-interpolant
for a given ELHr-terminology (TBox). Note that our acyclicity conditions are sufficient
but not necessary for the existence of Σ-interpolants.

APPENDIX

The appendix is organized as follows. In the first three sections, we present basic
results which are required for the proofs of the results presented in the paper. Subse-
quent sections then provide detailed proofs of the claims made in the paper. The first
section presents basic semantic properties of ELran,u,u and its sublanguages. In the sec-
ond section we briefly discuss basic material required about query answering. The third
section presents a sequent style proof systems for ELHr-terminologies. Finally, we ap-
ply these results to present detailed proofs of the claims made in the paper. Throughout
the appendix we will make use of two additional sets of concepts:

– Cu denotes the set of Cu,u-concepts not using conjunctions of roles.
– Cu denotes the set of Cu,u-concepts not using u.

We also sometimes make use of the fact that every Cu,u-concept is equivalent to a
concept C1 u ∃u.C2 u · · · u ∃u.Cn, where C1, . . . , Cn are Cu-concepts.

A Basic properties of ELran,u,u

In this section, we first provide a projective reduction of ELran,u,u-TBoxes to ELHr-
TBoxes. Many results for ELran,u,u-TBoxes can thus be obtained by considering ELHr.
Then we introduce different types of canonical models for ELHr-KBs and TBoxes
(similar to (Lutz and Wolter 2007))

Proposition 1. Let T be an ELran,u,u-TBox. Then there exists an ELHr-TBox T ′ with
sig(T) ⊆ sig(T ′) such that

– Every model I ′ of T ′ is a model of T ;
– If I is a model of T , then there exists model I ′ of T ′ which coincides with I

regarding the interpretation of symbols in sig(T) and such that I ′ |= T ′.

Proof. Suppose T is given. Take

– for every concept ran(r) in T a fresh concept name Xr, replace all occurences of
ran(r) in T by Xr and add the inclusion ran(r) v Xr to T ;

– for every proper conjunction R = r1 u · · · u rm of role names in T , introduce a
fresh role name sR, replace each occurrence of r1 u · · · u rm in T by sR, and add
the inclusions sR v ri to T , for 1 ≤ i ≤ m.

– for every occurrence of u in T , take a fresh role name s and replace u in T by s.

It is easily seen that the resulting TBox T ′ is as required.

We now define canonical models for ELHr-knowledge bases and TBoxes. In the
construction of canonical models and throughout this section (but not in later sections),
we assume that

(i) T does not contain any domain restrictions;
(ii) T contains exactly one range restriction per role name;

(iii) if r v s, ran(r) v C, ran(s) v D are in T , then T |= C v D; and

∆IK := obj(A) ∪ NIaux

AIK := {a ∈ obj(A) | K |= A(a)} ∪ {xC,D ∈ NIaux | K |= C uD v A}
rIK := {(a, b) ∈ obj(A)× obj(A) | s(a, b) ∈ A and K |= s v r} ∪

{(a, xC,D) ∈ obj(A)× NIaux | K |= ∃s.D(a), ranT (s) = C, and K |= s v r} ∪
{(xC,D, xC′,D′) ∈ NIaux × NIaux | K |= C uD v ∃s.D′, ranT (s) = C′, and K |= s v r}

aIK := a, for all a ∈ obj(K)

Fig. 8. Canonical model IK of a KB K = (T ,A)

(iv) there are no r, s ∈ NR with r 6= s, T |= r v s, and T |= s v r.

All these assumptions can be made wlog. This is true for Assumption (i) because
dom(r) v C is equivalent to ∃r.> v C; for Assumption (ii) because two range re-
strictions ran(r) v C and ran(r) v C ′ are equivalent to ran(r) v C u C ′ and we
can always introduce a range restriction ran(r) v > for each role name r; for Assump-
tion (iii) because {r v s, ran(r) v C, ran(s) v D} is equivalent to {r v s, ran(r) v
C uD, ran(s) v D}; and for Assumption (iv) because, if T |= r v s and T |= s v r
with s 6= r, we can simply substitute r with s in T and q.

Let sub(T) denote the set of all subconcepts of concepts used in T , rol(T) the set
of all role names occurring in T , and obj(A) the set of individual names that occur
in ABox A (we assume that obj(A) is not empty). In this section, we use ranT (r) to
denote the (unique) concept C with ran(r) v C ∈ T , and set

ran(T) := {ranT (r) | r ∈ rol(T)}
NIaux := {xC,D | C ∈ ran(T) and D ∈ sub(T)}.

Now, the canonical model IK of a KB K = (T ,A) is defined; see Figure 8.
IK contains many irrelevant points. We use obj(A)I to denote the set {aI | a ∈

obj(A)}. A path in I is a finite sequence d0r1d1 · · · rndn, n ≥ 0, where d0 ∈ obj(A)I

and, for all i < n, (di, di+1) ∈ rIi+1. We use paths(I) to denote the set of all paths in
I. If p ∈ paths(I), then tail(p) denotes the last element dn in p. The relevant part of
IrK of IK is the restriction of IK to all d such that there is a path in IK with tail d.

The following result can be proved similarly to (Lutz and Wolter 2007).

Theorem 6. Let K = (T ,A) be an ELHr-KB. Then IrK is a model of K, it can be
computed in polynomial time, and for all xC,D ∈ ∆I

r
K , all a ∈ obj(A), and all Cu-

concepts C0:

– xC,D ∈ C
IrK
0 iff K |= C uD v C0 iff T |= C uD v C0;

– K |= C0(a) iff aI
r
K ∈ CI

r
K

0 .

Observe that we can conclude that T |= C v D is decidable in polynomial time, for
ELran,u,u-TBoxes T , EL-concepts C, and Cu-concepts D. This follows from Theo-
rem 6, Proposition 1, and by considering ABoxes of the form A = {A(a)} and adding
an axiomA ≡ C to T : then T |= C v D iff (T ′,A) |= D(a), where T ′ is the resulting
TBox when A ≡ C is added to T .

To deal with ELran,u,u-inclusions instead of just inclusions of the form C v D,
where C is an EL-concept and D an Cu-concept, we consider unravelings of IrK. The
unraveling J of a model I is defined as follows:

∆J := paths(I)
aJ := aI

AJ := {p | tail(p) ∈ AI}
rJ := {(d, e) | d, e ∈ obj(A)I ∧ (d, e) ∈ rI} ∪

{(p, p · se) | p, p · se ∈ ∆J and K |= s v r}

where “·” denotes concatenation. The following result can be proved similarly to results
in (Lutz and Wolter 2007).

Theorem 7. Let K be an ELHr KB and UK the unraveling of IrK. Then UK is a model
of K and

(i) for all p ∈ ∆UK with tail(p) = xC,D, all a ∈ obj(A), and all Cran ∪ Cu,u-
concepts C0:

– p ∈ CUK0 iff K |= C uD v C0 iff T |= C uD v C0;
– K |= C0(a) iff aUK ∈ CUK0 .

(ii) For all k-ary conjunctive queries q and individual names a1, . . . , ak, we have
K |= q[a1, . . . , ak] iff UK |= q[a1, . . . , ak].

We will frequently make use of the following conversion of Cran-concepts C into
ABoxes AC . Consider the following completion rules operating on constraint systems
C consisting of expressions of the form a : C and (a, b) : r.

– if a : C1 u C2 ∈ C, then set C := C ∪ {a : C1, a : C2};
– if a : ∃r.C ∈ C and there does not exists b with (a, b) : r ∈ C, then take a fresh b′

and set C = C ∪ {(a, b′) : r, b′ : C};
– if a : ran(r) ∈ C and there does not exist b with (b, a) : r then take a new b and set
C = C ∪ {(b′, a) : r}.

Denote by CC the closure of C = {aC : C} under the three rules above. Denote by AC
the ABox consisting of all A(a) such that a : A ∈ CC , >(a) such that a : D ∈ CC for
some D, and r(a, b) such that (a, b) : r ∈ CC . Observe that AC can be computed in
polynomial time.

Lemma 1. For all Cran-concepts C and Cran ∪ Cu,u-concepts D:

(T ,AC) |= D(aC) ⇔ T |= C v D.

The model UK can be regarded as a minimal model of a KB K. Let Γ be a set of
Cran-concepts and T an ELHr-TBox. We write

T ∪ Γ |= D

if, for every model I of T and all d ∈ ∆I the following holds: d ∈ DI whenever
for all C ∈ Γ , d ∈ CI (in other words, T |=

d
C∈Γ C v D, if we admit infinite

conjunctions). Using compactness, Lemma 1, and Theorem 7 one can easily prove:

Theorem 8. For all ELHr-TBoxes T and sets of Cran-concepts Γ there exists a model
I of T and d ∈ ∆I such that the following are equivalent, for all Cu,u ∪ Cran-concepts
D:

– T ∪ Γ |= D;
– d ∈ DI .

Proof. Suppose such a model does not exist. By compactness, there exists a finite subset
Γ ′ of Γ and a finite set Ξ of Cran ∪ Cu,u-concepts such that

T |=
l

D∈Γ ′
D v

⊔
F∈Ξ

F,

but
T 6|=

l

D∈Γ ′
D v F,

for any F ∈ Ξ . Consider the ABox AC for C =
d
D∈Γ ′ D. By Theorem 7 and

Lemma 1,
U(T ,AC) 6|= F (aC)

for any F ∈ Ξ . But then
U(T ,AC) 6|=

⊔
F∈Ξ

F (a),

which implies that (T ,AC) 6|=
⊔
F∈Ξ F (a). We obtain

T 6|= C v
⊔
F∈Ξ

F,

and have obtained a contradiction.

We also require the following consequence of Theorem 7:

Theorem 9. Let T be an ELHr-TBox and C a Cran-concept.
(i) If ∃u.D is an Cu,u-concept, then T |= C v ∃u.D iff

– there exists a subconcept (ran(r) u C ′) of C such that there exists a sequence
r′1, . . . , r

′
n such that T |= ∃r.C ′ v ∃r′1. · · · ∃r′n.D or

– there exists a sequence r′1, . . . , r
′
n such that T |= C v ∃r′1. · · · ∃r′n.D.

(ii) If ∃S.D is an Cu,u-concept with S = r1 u · · · u rn, then T |= C v ∃S.D iff there
exists s such that s vT ri for i ≤ n and T |= C v ∃s.D.

B Query answering

We introduce some notation for query answering and discuss the relation to partial
homomorphisms.

Let I be a model of (T ,A) and q(x) = ∃y.q′(x,y) a conjunctive query for x =
x1, . . . , xk. Wlog., we assume that q(x) contains individual names from A only. We
say that a vector a = a1, . . . , ak of members of obj(A) is a π-match of I and q(x) if π
is a mapping assigning to every variable v in x ∪ y an element of ∆I such that

– I |=π q
′(x,y);

– π(xi) = aIi for 1 ≤ i ≤ k.

Clearly, I |= q[a] iff there exists a π such that a is a π-match for I and q(x). Query an-
swering is closely related to the existence of certain homomorphisms between models.
LetΣ be a signature,O a set of individual names, and I1, I2 interpretations. A function
f : ∆I1 → ∆I2 is called a (O,Σ)-homomorphism if

– f(aI1) = f(aI2) for all a ∈ O;
– d ∈ AI1 implies f(d) ∈ AI2 for all A in Σ;
– (d1, d2) ∈ rI1 implies (f(d1), f(d2) ∈ rI2 for all r ∈ Σ.

Now it is well-known (and straightforward to prove) that if there exists a (O,Σ)-
homomorphism from I1 to I2 and I1 |= q[a] for a conjunctive Σ-query q using only
individual names from O and a = a1, . . . , ak from O, then I2 |= q[a]. For the proof
below we slightly refine this by considering partial homomorphisms. We consider such
partial homomorphisms on certain models only, which we introduce first.

Let O be a finite set of individual names and I a model. d ∈ ∆I is called O-named
if there exists a ∈ O with d = aI . A model I is called an O-forest if

(F1) for every d ∈ ∆I which is not O-named, there exists at most one d′ ∈ ∆I such
that (d′, d) ∈

⋃
r∈NR

rI ;
(F2) there are no infinite sequences d0, d1, . . . with (di+1, di) ∈

⋃
r∈NR

rI for all i ≥ 0
such that all di are not O-named.

(F3) if (d, d′) ∈
⋃
r∈NR

rI and d′ is O-named, then d is O-named.

Observe that the model UK is an O-forest for O = obj(A). Clearly, every model can be
turned into an O-forest by unraveling.

A partial function f from an O-forest I to a model I ′ is called an (O,n,Σ)-
homomorphism if

(H1) for all a ∈ O: aI is in the domain of f and f(aI) = aI
′
;

(H2) for all d, d′ in the domain of f and r ∈ Σ: (d, d′) ∈ rI implies (f(d), f(d′)) ∈ rI′ ;
(H3) for all d in the domain of f and A ∈ Σ: d ∈ AI implies f(d) ∈ AI′ ;
(H4) if there does not exist a chain d1, . . . , dm with (di, di+1) ∈

⋃
r∈Σ r

I of length
m ≥ n of not O-named di, then dm is in the domain of f .

Now one can prove the following

Lemma 2. Suppose I is an O-forest, I ′ a model and for every m > 0 there exists
a (O,m,Σ)-homomorphism from I to I ′. Assume as well that I |= q[a] with q a
conjunctive Σ-query using only individual names from O and a = a1, . . . , ak from O.
Then I ′ |= q[a].

Proof. Assume that a is a π-match of I and q(x) = ∃y.q′(x,y) such that a consists
of elements of O. By (F2) and (F3) in the definition of O-forests and (H1) and (H4)
in the definition of partial homomorphisms, there exists m > 0 such that all π(v), v
from x ∪ y, are in the domain of any (O,m,Σ)-homomorphism f . Take a (O,m,Σ)-
homomorphism f . Then a is a π′-match of I ′ and q(x) for π′(v) = f(π(v)).

Finally, we also need some way of constructing (O,m,Σ)-homomorphisms. Let I be
a model. For each d ∈ ∆I and m > 0, let

tm,Σ,uI (d) = {C ∈ CuΣ | rd(C) ≤ m, d ∈ CI},

where rd is the role-depth of C.

Lemma 3. Let Σ be a finite signature. Suppose I is an O-forest and I ′ a model such
that

(in1) tm,Σ,uI (aI) ⊆ tm,Σ,uI′ (aI
′
), for all a ∈ O;

(in2) for all d ∈ ∆I there exists d′ ∈ ∆I′ such that tm,Σ,uI (d) ⊆ tm,Σ,uI′ (d′).

Then there exists a (O,m,Σ)-homomorphism g from I to I ′.

Proof. We construct g by constructing a sequence f0, . . . , fm as follows: the domain
dom(f0) of f0 consists of all aI with a ∈ O and all d ∈ ∆I such that there does not
exist a d′ with (d′, d) ∈

⋃
r∈Σ r

I . For aI with a ∈ O we set f0(aI) = aI
′
. For every

remaining d ∈ dom(f0) choose a d′ according to (in2) and set f0(d) = d′. Observe that
tm,Σ,uI (d) ⊆ tm,Σ,uI′ (f0(d)) for all d ∈ dom(f0).

Now suppose that fn has be constructed and

(in3) tm−n,Σ,uI (d) ⊆ tm−n,Σ,uI′ (fn(d)) for all d ∈ dom(fn);
(in4) for n > 0: d ∈ dom(fn) iff d is notO-named and there exists a sequence d0r

I
1 d1r

I
2 · · · rIndn =

d of which at most d0 is O-named such that ri ∈ Σ and d0 ∈ dom(f0).

To construct fn+1 consider a d ∈ dom(fn) and a not O-named d′ such that (d, d′) ∈⋃
r∈Σ r

I . The domain of fn+1 consists of all such d′. Let R = {r ∈ Σ | (d, d′) ∈ rI}.
Then

∃R.
l

D∈tm−n−1,Σ,u
I (d′)

D ∈ tm−n,Σ,uI (d)

By (in3),
∃R.

l

D∈tm−n−1,Σ,u
I (d′)

D ∈ tm−n,Σ,uI (fn(d))

Thus, we can choose a d′′ with (f(d′), d′′) ∈ rI′ for all r ∈ R and tm−n−1,Σ,u
I (d′) ⊆

tm−n−1,Σ,u
I (d′′) and set fn+1(d′) = d′′. This defines fn+1. Observe that fn+1 is well-

defined by (F1). Observe that fn+1 has the properties (in3) and (in4), by (F3).

Now we set g =
⋃

0≤n≤m fm. It is readily checked that g is as required.

C Proof theory

We prove now two theorems on when a concept inclusion is entailed by an ELHr-
terminology (Theorems 10 and 11) as a direct consequence of the consideration of
possible proofs in a Gentzen-style proof system for ELHr given in Figure 9. This proof
system is a straightforward generalization of the proof system in (Hofmann 2005). It

C v C (AX)
C v > (AXTOP)

C v E
C uD v E (ANDL1)

D v E
C uD v E (ANDL2)

C v E C v D
C v D u E (ANDR)

ran(r) u C v D
∃r.C v ∃r.D (EX)

CA v D
A v D (DEFL)

D v CA
D v A (DEFR)

where A ≡ CA ∈ T

CA v D
A v D (PDEFL)

where A v CA ∈ T

∃r.(C uA) v D
∃r.C v D (RAN)

where ran(r) v A ∈ T

B u ∃r.C v D
∃r.C v D (DOM)

where dom(r) v B ∈ T

A u ran(r) v C
ran(r) v C

(INV)
where ran(r) v A ∈ T

∃r.C v D
∃s.C v D (SUB)

ran(r) v D
ran(s) v D

(INVSUB)
where s v r ∈ T

Fig. 9. Gentzen-style proof system for ELHr-terminologies

operates on sequents of the form C v D, where C,D are Cran-concepts; here the
symbol v is treated as a syntactic separator. A proof (or a derivation) of a sequent
C v D is a finite tree whose nodes are labelled with sequents, whose root is labelled
with C v D, whose terminal nodes (leaves) are labelled with axioms (instances of
AX or AXTOP) and whose internal nodes are always labelled with the conclusion of a
proof rule whose antecedent(s) are the labellings of the children. We use the notation
T ` C v D to indicate that that C v D is derivable from T .

Cut elimination, correctness, and completeness can be proved similarly to (Hof-
mann 2005).

Lemma 4 (Cut elimination). For all ELHr-terminologies T and Cran-concepts C,D,
and E the following holds: If T ` C v D and T ` D v E then T ` C v E.

Lemma 5 (Correctness and completeness). For all ELHr-terminologies T and Cran-
concepts C and D: T |= C v D iff T ` C v D.

Theorem 10. Let T be an ELHr-terminology, A a concept name and ∃r.D an EL-
concept. Assume

T |=
l

1≤i≤l

ran(si) u
l

1≤j≤n

Aj u
l

1≤k≤m

∃rk.Dk v ∃r.D.

Then at least one of the following conditions holds:

(e1) there exists ri such that ri vT r and T |= ran(ri) uDi v D;
(e2) there exists Ai such that T |= Ai v ∃r.D;
(e3) there exists ri such that T |= ∃ri.> v ∃r.D;
(e4) there exists si such that T |= ran(si) v ∃r.D.

Now assume that A is pseudo-primitive and

T |=
l

1≤i≤l

ran(si) u
l

1≤j≤n

Aj u
l

1≤k≤m

∃rk.Dk v A.

Then at least one of the following conditions holds:

(a1) there exists Ai such that T |= Ai v ∃A;
(a2) there exists ri such that T |= ∃ri.> v A;
(a3) there exists si such that T |= ran(si) v A.

Proof. We prove the theorem by induction on the length of proof D of the sequent
l

1≤i≤l

ran(si) u
l

1≤j≤n

Aj u
l

1≤k≤m

∃rk.Dk v ∃r.D.

Notice that if the left-hand side of this sequent is a conjunction (i.e., the l+n+m > 1),
the last rule of D can only be ANDL1 or ANDL2. Then the theorem follows from the
induction hypothesis.

Assume now that the left-hand side of the sequent is not a conjunction. Then, it is
of one of the following forms.

1. ran(si) v ∃r.D,
2. Aj v ∃r.D, or
3. ∃rk.Dk v ∃r.D.

Item 1 corresponds to (e4) and 2 to (e2). It remains to consider sequents of the form
∃rk.Dk v ∃r.D. The last sequent of the proof of ∃rk.Dk v ∃r.D can only be one of
AX, EX, RAN, SUB or DOM. By induction on the proof length it can be shown that one
of the following takes place:

(i) T ` B v ∃r.D, where ∃s.> v B ∈ T and ri vT s. It can be seen that T `
∃s.> v ∃r.D and, by SUB, T ` ∃rk.> v ∃r.D, i.e., (e3).

(ii) T ` ∃r.(C u A1 u · · · u Ap) v ∃r.D where ri vT r and ran(sj) v Aj ∈ T for
1 < j < p, and ri vT s1 vT · · · vT sp v r and the last rule of the proof of
∃r.(C u A1 u · · · u Ap) v ∃r.D is EX, that is, the last sequent of its immediate
subderivation is (ran(r)uCuA1u· · ·uAp) v D. Notice that T ` (ran(r)uC) v
(ran(r)uC uA1 u · · · uAp) and hence, by Lemma 4, T ` (ran(r)uC) v ∃r.D,
i.e., (e1).

The second part of the theorem can be proved similarly.

Theorem 11. Let T be an ELHr-terminology, A a concept name and ∃s.C an EL-
concept. Assume

T |= A v ∃s.C.

Then

1. One of the following holds.
– A ./ ∃r.B ∈ T and one of the following holds
• T |= s v r and T |= ran(s) u B v C. In this case we say that the proof

depth of A wrt. ∃s.C is zero (in symbols, pd∃s.C(A) = 0).
• dom(s) v B ∈ T and T |= B v ∃r.C. We set pd∃s.C(A) = pd∃s.C(B)+

1.
– A ./ B1u · · ·uBn ∈ T and for some i : 1 ≤ i ≤ n we have T |= Bi v ∃r.C.

We set pd∃s.C(A) = min{pd∃s.C(Bj) | T |= Bj v ∃r.C}+ 1.
2. Proof depth wrt. ∃s.C introduced above is well-defined for all B ∈ NC such that
T |= B v ∃s.C.

Proof. The proof of Item 1 is similar to the proof of Theorem 10 and is left to the reader.
Notice that if T |= B v ∃s.C, B v ∃s.C has a finite-size proof and so the proof depth
wrt. ∃s.C is well-defined.

D Relation betweenΣ-interpolants

In this section, we prove the claim that every concept Σ-interpolant is an instance Σ-
interpolant, and every instance Σ-interpolant is a query Σ-interpolant.

Proposition 2. Let T be an ELHr-TBox. Every query Σ-interpolant is a instance Σ-
interpolant and every instance Σ-interpolant is a concept Σ-interpolant.

Proof. Every instanceΣ-interpolant is a conceptΣ-interpolant: for suppose that T ′ is a
instanceΣ-interpolant of T and let α be an ELHr

Σ
-inclusion. If α is of the form r1 v r2

then T |= r1 v r2 iff T ′ |= r1 v r2 because (T ,A) |= r2(a, b) iff (T ′,A) |= r2(a, b)
for A = {r1(a, b)}. If α is of the form C1 v C2, then consider the ABox AC1 from
Lemma 1. Since T ′ is an instance Σ-interpolant, we have

(T ,AC1) |= C2(aC1)⇔ (T ′,AC1) |= C2(aC1).

By Lemma 1, we have

T |= C1 v C2 ⇔ (T ,AC1) |= C2(aC1)

and
T ′ |= C1 v C2 ⇔ (T ′,AC1) |= C2(aC1),

Hence T |= C1 v C2 iff T ′ |= C1 v C2, as required.
It is trivial that every query Σ-interpolant is an instance Σ-interpolant.

E Complexity

In this section, we provide proofs of the complexity results stated in the paper. The only
result which does not follow in a straighforward way from existing results (in (Baader
et al. 2008; Rosati 2007)) is the first part of Proposition 1 stating that subsumption
in ELran,u,u (and, therefore, logical equivalence of ELran,u,u-TBoxes) is in PTIME.
Finally, we prove coNP-hardness of logical equivalence for ELran,t.

Theorem 1. The following problems are PTIME-complete for ELran,u,u-TBoxes T :

– decide whether T |= C v D, where C v D is an ELran,u,u-inclusion;
– decide whether (T ,A) |= C(a), where C is an EL-concept.

Deciding whether (T ,A) |= q(a), where q is a conjunctive query, is NP-complete, and
knowledge base complexity of this problem is PTIME-complete.

Proof. (i) Let T be a ELran,u,u-TBox and C v D a ELran,u,u-inclusion. By Proposi-
tion 1, we may assume that T is a ELHr-TBox. Consider the ABox AC and aC from
Lemma 1 with

T |= C v D ⇔ (T ,AC) |= D(aC).

Clearly, it is sufficient to show that deciding (T ,AC) |= D(aC) is in PTIME. First we
compute a new TBox T ′, a new ABox A′C , and a new Cu-concept D′ such that

(T ,AC) |= D(aC)⇔ (T ′,A′C) |= D′(aC).

To this end, take for every proper conjunction R = r1 u · · · u rm of role names in D a
fresh role name sR. Then define T ′, A′C and D′ recursively as follows:

– D′ is obtained from D by replacing every occurrence of R in D by sR;
– T ′ is obtained from T by adding the role inclusion s v sR to T whenever T |=
s v ri for all i with 1 ≤ i ≤ m;

– A′C is obtained from AC by adding sR(a, b) to AC whenever ri(a, b) ∈ A for all i
with 1 ≤ i ≤ m.

Clearly we have (T ,AC) |= D(aC) whenever (T ′,A′C) |= D′(aC). Conversely, sup-
pose (T ′,A′C) 6|= D′(aC). Then UK′ 6|= D′(aC), whereK′ = (T ′,A′C), by Theorem 7.
Clearly, UK′ is a model of (T ,A). Moreover, (d1, d2) ∈ RUK′ iff (d1, d2) ∈ sUK′R , by
the definition of K′ and UK′ . Thus, UK′ 6|= D(aC) and so (T ,A) 6|= D(aC).

Finally, (T ′,A′C) |= D′(aC) iff a
IrK′
C ∈ D′IrK′ , by Theorem 6, and the latter can be

checked in PTIME.

Instance checking: PTIME-completeness follows from Proposition 1 and the fact that
instance checking in ELHr is in PTIME (Baader et al. 2008).

Conjunctive queries: Again, using Proposition 1, PTIME completeness of knowledge-
base complexity can be proved using the corresponding result for ELH (the extension
of EL with role inclusions) in (Rosati 2007) and a by extending, in a straighforward
way, the polynomial reduction of instance checking in ELHr to instance checking in
ELH from (Baader et al. 2008) to the case of conjunctive queries. NP-completeness
of combined complexity can be proved in the same way using the corresponding result
in (Rosati 2007) and the reduction of (Baader et al. 2008).

Theorem 12. Deciding whether a ELran,t-inclusion follows from a ELran,t-TBox is
coNP-hard. In particular, deciding logical equivalence of ELran,t-TBoxes is coNP-
hard.

Proof. Let ϕ be a propositional formula in conjunctive normal form (CNF). Introduce,
for every propositional variable p of ϕ concept names Ap and A¬p and denote by ϕ∗

the resulting concept when every occuurence of ¬p in ϕ is replaced by A¬p and every
positive occurrence of p is replaced by Ap.

Take a fresh concept name A. Now set T = {C v A}, where

C =
⊔

p∈var(ϕ)

(Ap uA¬p).

Claim. ϕ is is not satisfiable iff T |= ϕ∗ v A.

Suppose ϕ is satisfiable. Let v be a variable assignment such that v(ϕ) = 1. Con-
sider the interpretation I with ∆I = {d} and d ∈ AIp iff v(p) = 1 and d ∈ AI¬p iff
v(p) = 0. Let AI = ∅. Clearly CI = ∅ and so I is a model of T . However, d ∈ (ϕ∗)I

and so I 6|= ϕ∗ v A.
Conversely, suppose T 6|= ϕ∗ v A. Take a model I of T such that d ∈ (ϕ∗)I and

d 6∈ AI . Define a propositional interpretation v by setting v(p) = 1 iff d ∈ AIp . Then
v(ϕ) = 1: note that d 6∈ CI because I is a model of T . Thus d ∈ AI¬p implies d 6∈ AIp .
So v(ϕ) = 1 because d ∈ (ϕ∗)I . Hence ϕ is satisfiable.

F Relation between inseparability relations

In this section, we present a proof of the first main result of this paper, namely:

Theorem 2 Let T1 and T2 be ELran,u,u-TBoxes and Σ an infinite signature. Then the
following holds:

– T1 ≡CΣ T2 iff T1 ≡ran,0
Σ T2;

– T1 ≡iΣ T2 iff T1 ≡ran
Σ T2;

– T1 ≡qΣ T2 iff T1 ≡ran,u,u
Σ T2.

Proof. By Proposition 1, we may assume that T1 and T2 are ELHr-TBoxes. We first
prove the directions from left to right.

(1) Suppose T1 ≡CΣ T2 but T1 6≡ran,0
Σ T2. Without loss of generality, there exists an

ELran,0
Σ -inclusion

α = ran(r) u C v D,

such that T1 |= α but T2 6|= α. Take a model I of T2 with d ∈ (ran(r) u C)I but
d 6∈ DI . Take a d′ ∈ ∆I with (d′, d) ∈ rI . Assume first that the exists a concept name
A in Σ \ sig(T1 ∪ T2). Define a new interpretation I ′ by modifying the interpretation
of A to AI

′
= {d}. Then I ′ is a model of T2 since A does not occur in T2. However,

d′ ∈ (∃r.(C uA))I
′

and d′ 6∈ (∃r.(D uA))I
′
. Hence

T2 6|= ∃r.(C uA) v ∃r.(D uA).

This implies T1 6|= ∃r.(CuA) v ∃r.(DuA), since T1 ≡CΣ T2. But this is a contradiction
since T1 |= α and {α} |= ∃r.(C uA) v ∃r.(D uA).

If there does not exist an A ∈ Σ \ sig(T1 ∪ T2), then take s ∈ Σ \ sig(T1 ∪ T2) and
define a new interpretation by modifying the interpretation of s to sI

′
= {(d, d)}. The

argument is now similar to the one above and left to the reader.

(2) Suppose T1 ≡iΣ T2 but T1 6≡ran
Σ T2. As role inclusions are straighforward to

handle, we assume that there exists an ELran
Σ -inclusion

α = C v D,

such that T1 |= α but T2 6|= α. Take a finite model I of T2 with d ∈ CI and d 6∈ DI .
Construct an ABox A by taking a individual name ad′ for each d′ ∈ ∆I and including
into A the assertion A(ad′) whenever A occurs in C and d′ ∈ AI and r(ad′ , ad′′)
whenever (d′, d′′) ∈ rI and r occurs in C. Then (T2,A) 6|= D(ad). We get (T1,A) 6|=
D(ad). But from this we obtain a contradiction, as we clearly have A |= C(ad) and
T1 |= C v D, and so (T1,A) |= D(ad).

(3) Suppose T1 ≡qΣ T2 but T1 6≡ran,u,u
Σ T2. Without loss of generality, there exists

an ELran,u,u
Σ -inclusion

α = C v D,

such that T1 |= α but T2 6|= α. We may assume that D is an Cu-concept or of the form
D = ∃u.D′, where D′ is an Cu-concept. We consider the latter case, leaving the first
case to the reader. Take a finite model I of T2 with d ∈ CI and d 6∈ DI . Construct an
ABox A by taking an individual name ad′ for each d′ ∈ ∆I and including into A the
assertion A(ad′) whenever A occurs in C and d′ ∈ AI and the assertion r(ad′ , ad′′)
whenever (d′, d′′) ∈ rI and r occurs in C.

We associate a conjunctive query qD with D in the well-known manner. To be pre-
cise, we sketch a definition of qD by recursion. Assume

D′ = A1 u · · · uAn u ∃R1.C1 u · · · ∃Rm.Cm,

where R1, . . . , Rm are conjunctions of role names. Take a variable xD′ and mutually
distinct variable xC1 , . . . , xCm . qD contains

– the conjuncts Ai(xD′) for 1 ≤ i ≤ n;
– r(xD′ , xCj) for every conjunct r of Rj and 1 ≤ j ≤ m.

Add more conjuncts to qD by dealing, recursively, in the same way with C1, . . . , Cm.
At each step fresh variables are used. Let q0 be the resulting conjunction. Now let
qD = ∃xq0, where x is the list of all variables in q0.

Clearly I 6|= qD. Hence (T2,A) 6|= qD. So we obtain (T1,A) 6|= qD. But from this
we obtain a contradiction, as we clearly have A |= C(ad) and {D(ad)} |= qD. So,
from T1 |= C v D, we obtain (T1,A) |= qD.

We now come to the directions from right to left.

(1) T1 ≡ran,0
Σ T2 implies T1 ≡CΣ T2 is trivial because every ELHr-inclusion is an

ELran,0-inclusion.

(2) Assume that T1 ≡ran
Σ T2 but T1 6≡iΣ T2. We may wlog. assume that there exists

a Σ-ABox A such that at least one of the following holds:

– there exists a, b ∈ obj(A) and r ∈ Σ such that (T1,A) |= r(a, b) and (T2,A) 6|=
r(a, b).

– there exists an individual name a ∈ obj(A), and an ELΣ-concept C such that
(T1,A) |= C(a) but (T2,A) 6|= C(a).

In the first case, there exists a role s ∈ Σ such that s(a, b) ∈ A and T1 |= s v r and
T2 6|= s v r. But this contradicts T1 ≡ran

Σ T2.
In the second case, we first prove the following

Lemma 6. Let T be an ELHr-TBox, Σ a signature, and A a Σ-ABox.
For every ELΣ-concept D and a ∈ NI, (T ,A) |= D(a) iff there exists an Cran

Σ -
concept C such that T |= C v D and A |= C(a).

Proof. The direction from right to left is straightforward, so we concentrate on the other
direction.

Let D0 be an ELΣ-concept, a0 ∈ NI, and assume that (T ,A) |= D0(a0). Set, for
every a ∈ ob = obj(A) ∪ {a0},

tA(a) = {C | A |= C(a), C an Cran
Σ -concept}.

We show that T ∪ tA(a0) |= D0. Then, using compactness, we find an Cran
Σ -concept C

such that T |= C v D0 and A |= C(a0), as required.
Assume T ∪ tA(a0) 6|= D0. Take, for every a ∈ ob, a model Ia of T with a point da

such that for all Cran-concepts C: dIa ∈ CIa iff T ∪ tA(a) |= C. Such models exist by
Theorem 8. We may assume that they are mutually disjoint. Take the following union I
of the models Ia:

– ∆I =
⋃
a∈ob∆

Ia ;
– AI =

⋃
a∈obA

Ia , for A ∈ NC;
– rI =

⋃
a∈ob r

Ia ∪ {(da, db) | r′(a, b) ∈ A, r′ vT r}, for r ∈ NR;
– aI = da, for a ∈ ob.

For all Cran-concepts C and all a ∈ ob the following holds for all d ∈ ∆Ia :

d ∈ CIa iff d ∈ CI .

The proof is by induction on the construction ofC. The interesting cases areC = ran(r)
and C = ∃r.D and the direction from right to left.

Assume first that C = ran(r). Let d ∈ CI ∩ ∆Ia . For d 6= da, d ∈ CIa follows
immediately by IH. Assume d = da. Take d′ with (d′, d) ∈ rI . Again, if d′ ∈ ∆Ia ,
then the claim follows immediately from the IH. Now assume d′ 6∈ ∆Ia . Then d′ = b
for some b with r′(b, a) ∈ A and r′ vT r. Then ran(r′) ∈ tA(a). Hence T ∪ tA(a) |=
ran(r) and we obtain d ∈ CIa .

Assume now that C = ∃r.D and d ∈ CI ∩ ∆Ia . For d 6= da, d ∈ CIa follows
immediately by IH. Assume d = da. Take d′ with (d, d′) ∈ rI and d′ ∈ DI . Again,
if d′ ∈ ∆Ia , then the claim follows immediately from the IH. Now assume d′ 6∈ ∆Ia .
Then d′ = b for some b with r′(a, b) ∈ A and r′ vT r. By IH, d′ ∈ DIb . Hence
T ∪ tA(b) |= D. By compactness, there exists a concept E ∈ tA(b) such that T |=
E v D. From A |= E(b) and r′(a, b) ∈ A we obtain A |= ∃r′.E(a). Therefore,
∃r′.E ∈ tA(a). But then T ∪ tA(a) |= ∃r′.D and we obtain da ∈ CIa using r′ vT r.

It follows that I is a model of (T ,A) and I 6|= D0(a0). Hence (T ,A) 6|= D0(a0),
and we have derived a contradiction.

We use this lemma to derive a contradiction: Suppose there exists an a ∈ obj(A) and
an ELΣ-concept C such that (T1,A) |= C(a) and (T2,A) 6|= C(a). Then there exists
an Cran

Σ -concept C ′ such that A |= C ′(a) and T1 |= C ′ v C. Clearly T2 6|= C ′ v C,
because (T2,A) |= C(a) otherwise. But this implies T1 6≡ran

Σ T2.

(3) Assume that T1 ≡ran,u,u
Σ T2 but T1 6≡qΣ T2. We may wlog. assume that there

exists a Σ-ABox A, a Σ-query q(x), and a sequence of individual names a in obj(A)
such that (T1,A) |= q(a) but (T2,A) 6|= q(a).

Let Σ′ = Σ ∩ (sig(T1 ∪ T2) ∪ sig(q)) and consider a model I ′ of (T2,A) with
(T2,A) 6|= q[a]. By Lemma 2, we obtain a contraction from the following

Lemma 7. There exists an obj(A)-forest I which is a model of (T1,A) and such that
for every n > 0 there exists an (obj(A), n,Σ′)-homomorphism fn from I ′ to I.

Proof. Assume I ′ is given. By Theorem 8, for every set Γ of Cran
Σ -concepts there exists

a model IΓ of T1 and d ∈ ∆I such that d ∈ CIΓ iff T1 ∪ Γ |= C, for all Cran ∪ Cu,u-
concepts C. Clearly, from this we obtain for each Γ a ∅-forest model IΓ of T1 and
d ∈ ∆IΓ such that

d ∈ CI ⇔ T ∪ Γ |= C

for all Cu,u-concepts C.
Take, for every a ∈ obj(A) such a model I ′a (with node da) for

Γ = tI′(a) = {C ∈ Cran
Σ | aI

′
∈ CI

′
}

Remove from I ′a all nodes d′ distinct from da from which da is reachable along
⋃
r∈NC

rI
′
a

and call the resulting model Ia. Clearly, Ia is still a model of T1.
Take the following union I of the models Ia:

– ∆I =
⋃
a∈obj(A)∆

Ia ;
– AI =

⋃
a∈obj(A)A

Ia , for A ∈ NC;
– rI =

⋃
a∈obj(A) r

Ia ∪ {(da, db) | r′(a, b) ∈ A, r′ vT1 r}, for r ∈ NR;
– aI = da, for a ∈ obj(A).

We show that I is a model of (T1,A) and that there exist the required (obj(A), n,Σ)-
homomorphisms. First observe the following:

Claim 1. For all Cu-concepts C and d ∈ ∆Ia :

d ∈ CI ⇔ d ∈ CIa

The proof is by induction on the construction of C. The interesting case is C = ∃r1 u
· · · u rm.D and the direction from left to right. Assume that C = ∃r1 u · · · u rm.D and
d ∈ CI ∩∆Ia . For d 6= da, d ∈ CIa follows immediately by IH. Assume d = da. Take
d′ with (d, d′) ∈ rIi for 1 ≤ i ≤ m and d′ ∈ DI . Again, if d′ ∈ ∆Ia , then the claim
follows immediately from the IH. Now assume d′ 6∈ ∆Ia . Then d′ = b for some b with
r′(a, b) ∈ A and r′ vT1 ri for 1 ≤ i ≤ m. By IH, d′ ∈ DIb . Hence T1 ∪ tI′(b) |= D.
By compactness, there exists a concept E ∈ tI′(b) such that T1 |= E v D. We obtain
∃r′.E ∈ tI′(a). But then T1 |= ∃r′.E v ∃r′.D and we obtain da ∈ CIa using
r′ vT1 ri, for 1 ≤ i ≤ m.

Claim 2. For all Cran
Σ -concepts C and d ∈ ∆I :

– if d = da, then d ∈ CI implies T1 ∪ tI′(a) |= C;
– if d ∈ ∆Ia and d 6= da, then d ∈ CI iff d ∈ CIa .

The second claim is trivial. Consider the first claim. Assume first that C = ran(r) and
let d = da. Take d′ with (d′, d) ∈ rI . Then d′ = b for some b with r′(b, a) ∈ A
and r′ vT1 r. Then ran(r′) ∈ tI′(a). Hence T1 ∪ tI′(a) |= ran(r). Now suppose
C = ∃r.D, let d = da, and assume d ∈ CI . Take d′ with (d, d′) ∈ rI and d′ ∈ DI .
If d′ ∈ ∆Ia , then d′ ∈ DIa and T1 ∪ tI′(a) |= ∃r.D follows from the definition.
Now assume d′ 6∈ ∆Ia . Then d′ = b for some b with r′(a, b) ∈ A and r′ vT1 r.
By IH, T1 ∪ tI′(b) |= D. By compactness, there exists a concept E ∈ tI′(b) such that
T1 |= E v D. We obtain ∃r′.E ∈ tI′(a). But then T1 ∪ tI′(a) |= ∃r.D.

Claim 3. For all Cu-concepts C: there exists d ∈ CI iff there exists a ∈ obj(A) such
that T1 ∪ tI′(a) |= ∃u.C.

Suppose CI 6= ∅. Then there exists a ∈ obj(A) such that d ∈ ∆Ia ∩ CI . By
Claim 1, d ∈ CIa , and therefore, T1∪ tI′(a) |= ∃u.C. Conversely, suppose there exists
a ∈ obj(A) such that T1 ∪ tI′(a) |= ∃u.C. Then ∆Ia ∩ CIa 6= ∅. Hence CI 6= ∅, by
Claim 1.

Claim 4. I is an obj(A)-forest and a model of (T1,A).

The first claim is clear by construction. It follows from Claim 1 to 3, that I is a
model of (T1,A): for the role inclusions of T1, this is clear from the definition. Suppose
C1 v C2 ∈ T1 is an ELHr-inclusion. If C1 is an EL-concept, then I |= C1 v C2

follows from Claim 1 and the condition that the Ia are models of T1. If C1 = ran(r),
then I |= C1 v C2 follows from Claim 2, the construction of the Ia, and the condition
that the Ia are models of T1: for suppose d ∈ ran(r)I . If d 6= da for any a, then d ∈ CI2
since the Ia are models of T1. If d = da, there exists r′(b, a) ∈ A with r′ vT1 r. We
have T1 ∪ tI′(a) |= ran(r′), and so T1 ∪ tI′(a) |= ran(r). Hence da ∈ CIa2 .

Claim 5. For every n > 0 there exists an (obj(A), n,Σ′)-homomorphism from I ′ to I.

By Lemma 3, it is sufficient to show (in1) and (in2). For (in1) suppose a ∈ obj(A).
Let C ∈ tn,Σ

′,u
I (aI). By Claim 1, aI ∈ CIa . Hence T1∪ tI′(a) |= C. By compactness

and since T1 ≡ran,u,u
Σ′ T2, T2 ∪ tI′(a) |= C. But then C ∈ tn,Σ

′,u
I′ (aI

′
), as required.

For (in2), let d ∈ ∆I and C =
d
D∈∈tn,Σ

′,u
I (d)

D. By Claim 3, there exists a ∈
obj(A) such that T1 ∪ tI′(a) |= ∃u.C. By compactness and since T1 ≡ran,u,u

Σ′ T2,
T2 ∪ tI′(a) |= ∃u.C. Take d′ ∈ ∆I

′
with d′ ∈ CI

′
. Then C ∈ tn,Σ

′,u
I′ (d′) and so

tn,Σ
′,u

I (d) ⊆ tn,Σ
′,u

I′ (d′), as required.

G ComputingΣ-interpolants

In this section, we give a proof of theorems 3, 4, and 5. The set Atom consists of all
concepts in NC, all concepts of the form ran(r), and all concepts of the form dom(r).
The following lemma is the first main step towards a proof of the theorems. It states that
it is suffient to consider inclusions of a rather simple form only; namely inclusions in
which either a member of Atom is on the left hand side or a concept name on the right
hand side.

Lemma 8. Let T be an ELHr-terminology and Σ a finite signature.
(i) An ELran,0-TBox T ′ is a concept Σ-interpolant for T if sig(T ′) ⊆ Σ, T |= T ′

and T ′ |= α whenever T |= α, for all Σ-assertions of the form

r v s, C ′ v A, D v C,

where C ′ is an Cran,0-concept, D ∈ Atom, and C an EL-concept.
(ii) An ELran-TBox T ′ is a instance Σ-interpolant for T if sig(T ′) ⊆ Σ, T |= T ′

and T ′ |= α whenever T |= α, for all Σ-assertions of the form

r v s, C ′ v A, D v C,

where C ′ is an Cran-concept, D ∈ Atom, and C an EL-concept.
(iii) An ELran,u,u-TBox T ′ is a query Σ-interpolant for T if sig(T ′) ⊆ Σ, T |= T ′

and T ′ |= α whenever T |= α, for all Σ-assertions of the form

r v s, C ′ v A, D v C,

where C ′ is an Cran-concept, D ∈ Atom, and C an Cu,u-concept.

Proof. First recall that it follows from Theorem 2 that it is sufficient to show that T ′
with the properties stated in (i) (respectively, (ii) and (iii)) implies the same ELran,0

Σ
-

inclusions as T (respectively, the same ELran
Σ

-inclusions and the same ELran,u,u
Σ

-inclusions).

We first consider the claim for concept Σ-interpolants. Suppose T |= C1 v C2,
where C1 v C2 is an ELran,0-inclusion with sig(C1 v C2) ∩ Σ = ∅. We prove by
induction on the construction of C2 that T ′ |= C1 v C2.

Case 1. C2 is a concept name. Then this follows immediately from the condition
that T ′ |= C v A whenever T |= C v A, for all ELran,0-inclusions C v A with
sig(C v A) ⊆ Σ.

Case 2. C2 = D1 u D2. Then T |= C1 v D1 and T |= C1 v D2. By IH,
T ′ |= C1 v D1 and T ′ |= C1 v D2. Hence T ′ |= C1 v C2.

Case 3. C2 = ∃r.D. The role-depth rd(C) of an ELran,0-concept C is the number
of nestings of ∃r.D in C. Now, the proof is by induction on the role-depth rd(C1) of
C1. Suppose rd(C1) = 0. Then

C1 = ran(s) uA1 u · · · uAm

By Theorem 10, there exists a conjunct E ∈ Atom of C1 such that T |= E v ∃r.D.
But then T ′ |= E v ∃r.D and so T ′ |= C1 v ∃r.D.

Now assume that rd(C1) = n+ 1. Let

C1 = ran(s) uA1 u · · · uAm u ∃r1.D1 u · · · u ∃rn.Dn.

By Theorem 10 above, there are two possibilities: (i) there exists E ∈ Atom such that
|= C1 v E and T |= E v ∃r.D or (ii) there exists ri with T |= ri v r and

T |= ran(ri) uDi v D

If (i), then T ′ |= E v ∃r.D, and so T ′ |= C1 v ∃r.D. If (ii), then, by IH, T ′ |=
ran(ri) uDi v D. Moreover, we have T ′ |= ri v r. Hence T ′ |= ∃ri.Di v ∃r.D and
we obtain T ′ |= C1 v C2, as required.

Now we consider the claim for instance Σ-interpolants. Suppose T |= C1 v C2,
where C1 v C2 is an ELran-inclusion with sig(C1 v C2) ∩ Σ = ∅. We prove by
induction on the construction of C2 that T ′ |= C1 v C2.

Case 1. C2 is a concept name. Then this follows immediately from the condition
that T ′ |= C v A whenever T |= C v A, for all ELran-inclusions C v A with
sig(C v A) ⊆ Σ.

Case 2. C2 = D1 u D2. Then T |= C1 v D1 and T |= C1 v D2. By IH,
T ′ |= C1 v D1 and T ′ |= C1 v D2. Hence T ′ |= C1 v C2.

Case 3. C2 = ∃r.D. The proof is by induction on the role-depth rd(C1) of C1.
Suppose rd(C1) = 0. Then

C1 = ran(s1) u · · · ran(sl) uA1 u · · · uAm

By Theorem 10, there exists a conjunct E ∈ Atom of C1 such that T |= E v ∃r.D.
But then T ′ |= E v ∃r.D and so T ′ |= C1 v ∃r.D.

Now assume that rd(C1) = n+ 1. Let

C1 = ran(s1) u · · · ran(sl) uA1 u · · · uAm u ∃r1.D1 u · · · u ∃rn.Dn.

By Theorem 10 above, there are two possibilities: (i) there exists E ∈ Atom such that
|= C1 v E and T |= E v ∃r.D or (ii) there exists ri with T |= ri v r and

T |= ran(ri) uDi v D

If (i), then T ′ |= E v ∃r.D. If (ii), then, by IH, T ′ |= ran(ri) u Di v D. Moreover,
we have T ′ |= ri v r. Hence T ′ |= ∃ri.Di v ∃r.D and we obtain T ′ |= C1 v C2, as
required.

Now we consider the claim for query Σ-interpolants. Suppose T |= C1 v C2,
where C1 v C2 is an ELran,u,0-inclusion with sig(C1 v C2) ∩ Σ = ∅. We prove by
induction on the construction of C2 that T ′ |= C1 v C2.

Case 1. C2 is a concept name. Then this follows immediately from the condition
that T ′ |= C v A whenever T |= C v A, for all ELran-inclusions C v A with
sig(C v A) ⊆ Σ.

Case 2. C2 = D1 u D2. Then T |= C1 v D1 and T |= C1 v D2. By IH,
T ′ |= C1 v D1 and T ′ |= C1 v D2. Hence T ′ |= C1 v C2.

Case 3. C2 = ∃R.D, where R = r′1 u · · · u r′k. The proof is by induction on the
role-depth rd(C1) of C1.

By Theorem 9, there exists s such that T |= C1 v ∃s.D and T |= s v r′i for i ≤ k.
Suppose rd(C1) = 0. Then

C1 = ran(s1) u · · · ran(sl) uA1 u · · · uAm

By Theorem 10, there exists a conjunct E ∈ Atom of C1 such that T |= E v ∃s.D.
Therefore, T |= E v ∃R.D. But then T ′ |= E v ∃R.D and so T ′ |= C1 v ∃R.D.

Now assume that rd(C1) = n+ 1. Let

C1 = ran(s1) u · · · ran(sl) uA1 u · · · uAm u ∃r1.D1 u · · · u ∃rn.Dn.

By Theorem 10 above, there are two possibilities: (i) there exists E ∈ Atom such that
|= C1 v E and T |= E v ∃s.D or (ii) there exists ri with T |= ri v s and

T |= ran(ri) uDi v D

If (i), then T |= E v ∃R.D and so T ′ |= E v ∃R.D. If (ii), then by IH, T ′ |= ran(ri)u
Di v D. Moreover, we have T ′ |= ri v r′j for j ≤ k. Hence T ′ |= ∃ri.Di v ∃R.D
and we obtain T ′ |= C1 v C2, as required.

Case 4. C2 = ∃u.D. If T |= C1 v D, then we are done, by IH. Otherwise, by
Theorem 9,

(a) there exists a subconcept ran(r) u C ′ of C1 such that there exists a sequence
r′1, . . . , r

′
n such that T |= ∃r.C ′ v ∃r′1. · · · ∃r′n.D or

(b) there exists a sequence r′1, . . . , r
′
n such that T |= C1 v ∃r′1. · · · ∃r′n.D.

For (a), by Lemma 10, we have

– T |= dom(r) v ∃r′1. · · · ∃r′n.D, or
– T |= r v r′1 and T |= ran(r) u C ′ v ∃r′2. · · · ∃r′n.D.

Observe that, in the second case,

T |= C1 v ∃r′′1 . · · · ∃r′′m.∃r′2. · · · ∃r′n.D

for some roles r′′1 , . . . , r
′′
m, and so we are in case (b). In the first case, T |= dom(r) v

∃u.D and so T ′ |= dom(r) v ∃u.D. Moreover |= C1 v ∃u.dom(r). Hence T ′ |=
C1 v C2, as required.

We now consider (b). Take a non-empty sequence r′1, . . . , r
′
k such that T |= C1 v

∃r′1. · · · ∃r′k.D. Suppose rd(C1) = 0. Then

C1 = ran(s1) u · · · ran(sl) uA1 u · · · uAm

By Theorem 10, there exists a conjunct E ∈ Atom of C1 such that T |= E v ∃u.D.
But then T ′ |= E v ∃u.D and so T ′ |= C1 v ∃u.D.

Now assume that rd(C1) = n+ 1. Let

C1 = ran(s1) u · · · ran(sl) uA1 u · · · uAm u ∃r1.D1 u · · · u ∃rn.Dn.

By Theorem 10 above, there are two possibilities: (i) there exists E ∈ Atom such that
|= C1 v E and T |= E v ∃u.D or (ii) there exists ri with T |= ri v r′1 and

T |= ran(ri) uDi v ∃u.D

If (i), then T ′ |= E v ∃u.D. If (ii), then, by IH, T ′ |= ran(ri) u Di v ∃u.D. Hence
T ′ |= ∃ri.Di v ∃u.D and we obtain T ′ |= C1 v C2, as required.

We start with restating and proving Theorem 4.

Theorem 13. LetΣ be a finite signature and T a normalized ELHr-terminology with-
out Σ-loops.

Then the algorithms computing PΣ(A) and QΣ(A) (in the instance case) in Fig-
ures 3 and 4 terminate for all A ∈ sig(T). Let T iΣ consist of all inclusions, where A, r,
and s range over sig(T) ∩Σ:

– r v s, for all r vT s;
– D v A, for all D ∈ PΣ(A);
– A v D, for all D ∈ QΣ(A);
– ran(r) v D, for all D ∈ QΣ(B) such that ran(r) v B ∈ T and B ∈ Σ;
– dom(r) v D, for all D ∈ QΣ(B) such that dom(r) v B ∈ T and B ∈ Σ.

Then T iΣ is an instance Σ-interpolant of T .

Proof. Termination of the computation of PΣ(A) and QΣ(A) is readily checked and
left to the reader. Moreover, it is straighforward to show that T |= α for every α ∈ T iΣ .
Thus, by Lemma 8, it is sufficient to show for all A ∈ sig(T):

(∗) If T |= D v A for an Cran
Σ

-concept D, then there exists D′ ∈ PΣ(A) such that
T iΣ |= D v D′.
(∗∗) If T |= A v C for ELΣ-concepts C, then

T iΣ |=
l

D∈QΣ(A)

D v C.

We start with the proof of (∗). The proof is by induction on the construction of D.
Suppose T |= D v A.

– D ∈ Atom. Then D ∈ PΣ(A) and so the claim follows from the definition.
– D = D1uD2. Assume first thatA has no definition of the formA ≡ B1u· · ·uBn

in T . Then, by Lemma 10, T |= Di v A for some i = 1, 2. Assume wlog. that
Di = D1. By IH, there exists D′ ∈ PΣ(A) such that T iΣ |= D1 v D′. But then
T iΣ |= D v D′ and the claim follows.
Assume now thatA ≡ B1u· · ·uBn ∈ T . Then T |= D1uD2 v Bi, for allBi. We
may assume that none of theBi has a definition of the formBi ≡ B′1u· · ·B′k in T .
Thus, by Lemma 10, for every i there exists Ei ∈ {D1, D2} with T |= Ei v Bi.
Hence, by IH, for every Bi there exists E′i ∈ PΣ(Bi) with T iΣ |= Ei v E′i. By
definition,

D′ =
l

Bi∈Σ

Bi u
l

Bi∈Σ
E′i ∈ PΣ(A)

Moreover, T iΣ |= D v D′. Thus, the claim is proved.
– Let D = ∃r.D′. Assume first that A ≡ ∃s.A′ ∈ T . Then, by Lemma 10, we have

the following cases:
• T |= r v s and T |= ran(r) uD′ v A′.
• T |= dom(r) v A.

The second case is trivial: we have r 6∈ Σ; so we have dom(r) ∈ PΣ(A) and,
clearly, |= D v dom(r). Consider the first case. Assume first that A′ ∈ Σ. Then
∃r.A′ ∈ PΣ(A). We have T iΣ |= ∃r.D′ v ∃r.A′, and so we are done. Assume
now that A′ ∈ Σ. Then, if A′ has no definition of the form A′ ≡ B1 u · · · u Bn,
then we have (a) T |= ran(r) v A′ or (b) T ′ |= D′ v A′. Let (a) hold. Then
ran(r) ∈ PΣ(A′). Thus, ∃r.> ∈ PΣ(A) and T ′ |= ∃r.D′ v ∃r.>, and we are
done. If (b), then, by IH, there exists D′′ ∈ PΣ(A′) such that T iΣ |= D′ v D′′. But
then ∃r.D′′ ∈ PΣ(A) and T iΣ |= ∃r.D′ v ∃r.D′′, and we are done.
Now let A′ ≡ B1 u · · · u Bn ∈ T . Then, for each Bi, we may assume that T |=
ran(r) v Bi or T |= D′ v Bi, by Lemma 10. Now the proof is similar to the proof
above and left to the reader.
IfA is pseudo-primitive orA ≡ B1u· · ·uBn ∈ T , then the proof is straightforward
and left to the reader.

Proof of (∗∗) The proof is by induction on the construction of C.

Assume C is a concept name and T |= A v C. Then (∗∗) follows immediately
from the definition of QΣ(A).

Assume C = C1 u C2 and T |= A v C. Then T |= A v C1 and T |= A v C2.
By IH,

T iΣ |=
l

D∈QΣ(A)

D v C1, T iΣ |=
l

D∈QΣ(A)

D v C2.

But then
T iΣ |=

l

D∈QΣ(A)

D v C1 u C2,

as required.

Assume C = ∃s.C ′ and T |= A v C. We prove this case by induction on the proof
depth of A. Suppose pd∃s.C′(A) = 0. Then A ./ ∃r.A′ ∈ T for some A′ ∈ NC and
T |= r v s such that T |= ran(r) u A′ v C ′. Since s ∈ Σ, there exists s′ ∈ CΣT (r)
such that r vT s′ and s′ vT s. Take such an s′.

Now QΣ(A) contains ∃s′.E, where

E =
l

B∈Σ, ran(r)vB∈T
ran(s′)vB 6∈T, D∈QΣ(B)

D u
l

D∈QΣ(A′)
A′∈Σ

D u
l

B∈Σ
T |=ran(r)uA′vB

B.

Assume C ′ = A1 u · · · uAk u ∃r1.C1 u · · · ∃rm.Cm. Then

|=
l

B∈Σ,T |=ran(r)uA′vB

B v A1 u · · · uAk

because everyAi is a conjunct of the concept to the left. By considering the last conjunct
of E, it follows that |= E v Ai for all Ai.

For each ∃ri.Ci we have

– (a) T |= ran(r) v ∃ri.Ci or (b) T |= A′ v ∃ri.Ci, by Lemma 10.

Fix an ∃ri.Ci. Assume first that (b) holds. Since ∃ri.Ci is a sub-concept of C, by IH,
T iΣ |=

d
D∈QΣ(A′)D v ∃ri.Ci. It can be easity seen that T iΣ |= E v ∃ri.Ci. Now

assume that (a) holds. By IH and Lemma 10, there exists a conjunct D′ of
l

B∈Σ,ran(r)vB∈T ,D∈QΣ(B)

D u
l

ran(r)vB∈T ,B∈Σ

B

such that T iΣ |= D′ v ∃ri.Ci. Notice, however, that D′ is not necesserily a conjunct of
E. We consider the following cases. If

– ran(r) v D′ ∈ T and D′ ∈ Σ or
– D′ ∈ QΣ(B) with ran(r) v B ∈ T and ran(s′) v B 6∈ T ,

then D′ is a conjunct of E and, therefore, T iΣ |= E v ∃ri.Ci. On the other hand, if
neither Point 1 not Point 2 holds, then there exists B ∈ Σ such that

– ran(s′) v B ∈ T and D′ ∈ QΣ(B).

We have
ran(s′) v

l

D′′∈QΣ(B)

D′′ ∈ T iΣ ,

and, therefore, T iΣ |= ∃s′.> v ∃s.∃ri.Ci.
Summarising we obtain that that T iΣ |= ∃s′.E v ∃s.C ′, as required.

Assume now that pd∃s.C′(A) = n and we proved (∗∗) for allB’s whose proof depth
wrt. ∃s.C ′ is less than n. Then either A ./ B1 u · · · u Bn ∈ T and T |= Bi v ∃s.C ′
such that pd∃s.C′(Bi) < pd∃s.C′(A) or A ./ ∃r.A′ ∈ T and dom(r) v B ∈ T and

T |= B v ∃s.C and pd∃s.C′(B) < pd∃s.C′(A). We consider the second case only and
leave the first to the reader. Notice that, by IH, T iΣ |=

d
D∈QΣ(B)D v C.

If B ∈ Σ, then B ∈ QΣ(A). By definition,

T iΣ |= B v
l

D∈QΣ(B)

D

Thus,
T iΣ |=

l

D∈QΣ(A)

D v C.

If B ∈ Σ and r ∈ Σ, then QΣ(B) ⊆ QΣ(A) and the claim follows by induction. If
B ∈ Σ and r ∈ Σ, then

dom(r) v
l

D∈QΣ(B)

D ∈ T iΣ

and, clearly,
T iΣ |=

l

D∈QΣ(A)

D v ∃r.>.

Thus
T iΣ |=

l

D∈QΣ(A)

D v
l

D∈QΣ(B)

D,

and, by IH,
T iΣ |=

l

D∈QΣ(A)

D v C.

We now restate and show Theorem 3.

Theorem 14. LetΣ be a finite signature and T a normalized ELHr-terminology with-
out Σ-loops. Define T CΣ in the same way as T iΣ except that PΣ(A) is defined using the
algorithm in Figure 2. Then T CΣ is a concept Σ-interpolant of T .

Proof. Clearly, by Lemma 8, the first comments of the proof of Theorem 13 apply to
this case as well. AsQΣ(A) has not changed, it is sufficient to prove for allA ∈ sig(T):

(∗) If T |= D v A for a Cran,0

Σ
-concept D, then there exists D′ ∈ P ′Σ(A) such that

T CΣ |= D v D′.

To prove (∗), we require the following property of PΣ(A):

(A) If ran(r) u C ∈ PΣ(A), s vT r, and s ∈ Σ, then ran(s) u C ∈ PΣ(A).

(A) is easily proved by induction on the construction of PΣ(A). Clearly, (A) holds as
well if we replace PΣ(A) by P ′Σ(A).

Now the proof of (∗) is by induction on the construction of D. The proof is similar
to the proof of (∗) for Theorem 13 and we focus on the new steps.

– D ∈ Atom. Then D ∈ PΣ(A) and so the claim follows from the definition.

– D = D1 uD2. If A has no definition of the form A ≡ B1 u · · · u Bn in T , then
the proof is the same as for Theorem 13 and left to the reader.
Assume now thatA ≡ B1u· · ·uBn ∈ T . Then T |= D1uD2 v Bi, for allBi. We
may assume that none of theBi has a definition of the formBi ≡ B′1u· · ·B′k in T .
Thus, by Lemma 10, for every i there exists Ei ∈ {D1, D2} with T |= Ei v Bi.
Hence, by IH, for every Bi there exists E′i ∈ P ′Σ(Bi) with T CΣ |= Ei v E′i. Recall
that D1 u D2 is a Cran,0-concept. Thus, there is at most one conjunct of the form
ran(r) in D1 u D2 (which might have more than one occurrence). Assume this
conjunct is ran(r) (the case where there is none is simpler and left to the reader).
Let

Γ = {ran(s) | ∃i ≤ n such that ran(s) is a conjunct of E′i}.

As T CΣ |= D1 uD2 v E′i for i ≤ n and by the tree-model property, we obtain that
T |= r v s, for all ran(s) ∈ Γ . As r ∈ Σ, we obtain by (A) that E′′i ∈ P ′Σ(Bi) for
the concept E′′i obtained from Ei by replacing ran(s) by ran(r). Observe that we
still have T CΣ |= Ei v E′′i . But now

D′ =
l

Bi∈Σ

Bi u
l

Bi∈Σ
E′′i ∈ P ′Σ(A)

as the only possible conjunct of the form ran(s) in any E′′i is ran(r). Finally, we
still have T CΣ |= D v D′. Thus, the claim is proved.

– Let D = ∃r.D′. Assume that A ≡ ∃s.A′ ∈ T ; the other cases are left to the reader.
Then, by Lemma 10, we have the following cases:
• T |= r v s and T |= ran(r) uD′ v A′.
• T |= dom(r) v A.

As in the proof of Theorem 13, the second case and the case A′ ∈ Σ are straigh-
forward. Consider the first case under the assumption A′ ∈ Σ. Then, if A′ has no
definition of the form A′ ≡ B1 u · · · u Bn, then we have (a) T |= ran(r) v A′

or (b) T ′ |= D′ v A′. Let (a) hold. Then ran(r) ∈ P ′Σ(A′). Thus, ∃r.> ∈ P ′Σ(A)
and T CΣ |= ∃r.D′ v ∃r.>, and we are done. If (b), then, by IH, there exists
D′′ ∈ P ′Σ(A′) such that T CΣ |= D′ v D′′. As, by definition, D′ does not can-
tain any conjunct of the form ran(r), if follows that D′′ cannot contain any such
conjunct. But then ∃r.D′′ ∈ P ′Σ(A) and T CΣ |= ∃r.D′ v ∃r.D′′, and we are done.
Now let A′ ≡ B1 u · · · u Bn ∈ T . Then, for each Bi, we may assume that T |=
ran(r) v Bi or T |= D′ v Bi, by Lemma 10. Now the proof is similar to the proof
above and left to the reader.

Extend the relation ≺Σ to ≺uΣ by adding (A,B) to ≺Σ if there are A ./ ∃r.A′ ∈ T
such that CΣT (r) = ∅ and ran(r) v B ∈ T . T contains Σ-u-loops if ≺uΣ contains a
cycle.

Now, we extend the notion of a proof depth to Cu-concepts. Let A ∈ NC and C be
a Cu-concept of the form C = ∃S.C1, where S is either a role name or a conjunction
of roles, such that for a ELHr-terminology T we have T |= A v C. By Theorem 9,
whenever ∃(t1u· · ·utl).D is a sub-concept ofC for some ti ∈ NR andD a Cu-concept,
there exists r ∈ NR such that T |= r v ti, 1 ≤ i ≤ l and T |= A v C ′, where C ′

is obtained from C by replacing ∃(t1 u · · · u tl).D with ∃r.D. Let C∗ be the result of

recursive replacing of all expressions of the form ∃(t1 u · · · u tl).D with ∃r.D for an
appropriate r. Then we define pdC(A) = pdC∗(A).

Finally, we restate and proof Theorem 5.

Theorem 15. LetΣ be a finite signature and T a normalized ELHr-terminology with-
out Σ-u-loops. Define T qΣ in the same way as T iΣ with the exception that QΣ(A) is
defined using the algorithm in Figure 5. Then T qΣ is a query Σ-interpolant of T .

Proof. Termination of the computation of PΣ(A) and QΣ(A) is readily checked and
left to the reader. Moreover, it is straighforward to show that T |= α for every α ∈ T qΣ .
Thus, by Lemma 8, it is sufficient to show for all A ∈ sig(T):
(∗) If T |= D v A for a Cran

Σ
-concept D, then there exists D′ ∈ PΣ(A) such that

T qΣ |= D v D′.

(∗∗) If T |= A v C for Cu,u
Σ

-concept C, then

T qΣ |=
l

D∈QΣ(A)

D v C.

The proof of (∗) is the same as the proof of (∗) for Theorem 13, so we consider (∗∗)
only. Again, the proof is similar to (∗∗) for Theorem 13.

The proof is by induction on the construction of C.

Assume C is a concept name and T |= A v C. Then (∗∗) follows immediately
from the definition of QΣ(A).

Assume C = C1 u C2 and T |= A v C. Then T |= A v C1 and T |= A v C2.
By IH,

T qΣ |=
l

D∈QΣ(A)

D v C1, T qΣ |=
l

D∈QΣ(A)

D v C2.

But then
T qΣ |=

l

D∈QΣ(A)

D v C1 u C2,

as required.

Assume C = ∃S.C ′, where S = s′1 u · · · u s′k, and T |= A v C. Notice that we
may assume wlog. that C is a Cu

Σ
-concept. We prove this case by induction on the proof

depth of A wrt. ∃S.C ′.
Assume pd∃S.C′(A) = 0. Then A ./ ∃r.A′ ∈ T for some A ∈ NC and T |= r v S

such that T |= ran(r) uA′ v C ′.
Since s′1, . . . , s

′
k ∈ Σ, for each s′i there exists s′ ∈ CΣT (r) such that r vT s′ and

s′ vT s′i. Let S′ =
d
s′∈CΣT (r) s

′.
Now QΣ(A) contains ∃S′.E, where

E =
l

B∈Σ, ran(r)vB∈T
∀s′∈S′(ran(s′)vB 6∈T), D∈QΣ(B)

D u
l

D∈QΣ(A′)
A′∈Σ

D u
l

B∈Σ
T |=ran(r)uA′vB

B.

Assume C ′ = A1 u · · · uAk u ∃r1.C1 u · · · ∃rm.Cm. Then

|=
l

B∈Σ,T |=ran(r)uA′vB

B v A1 u · · · uAk

because everyAi is a conjunct of the concept to the left. By considering the last conjunct
of E, it follows that |= E v Ai for all Ai.

For each ∃ri.Ci we have

– (a) T |= ran(r) v ∃ri.Ci or (b) T |= A′ v ∃ri.Ci, by Lemma 10.

Fix an ∃ri.Ci. Assume first that (b) holds. IfA′ ∈ Σ, thenA′ is a conjunct of
d
B∈Σ,T |=ran(r)uA′vB B

and, therefore, |= E v ∃ri.Ci. If A′ 6∈ Σ, then by IH,

T |=
l

D∈QΣ(A′)

D v ∃ri.Ci.

By considering the second conjunct ofE, we have |= E v ∃ri.Ci. Now assume that (a)
holds. By IH and Lemma 10, there exists a conjunct D′ of

l

B∈Σ,ran(r)vB∈T ,D∈QΣ(B)

D u
l

ran(r)vB∈T ,B∈Σ

B

such that T qΣ |= D′ v ∃ri.Ci. Similarly to the proof of Theorem 13, we consider the
following cases. If

– ran(r) v D′ ∈ T or
– D′ ∈ QΣ(B) with ran(r) v B ∈ T and ran(s′) v B 6∈ T for all s′ ∈ S′,

then D′ is a conjunct of E and, therefore, T qΣ |= E v ∃ri.Ci. On the other hand, if
neither Point 1 not Point 2 holds, then there exists B ∈ Σ such that

– ran(s′) v B ∈ T for some s′ ∈ S′ and D′ ∈ QΣ(B).

We have
ran(s′) v

l

D′′∈QΣ(B)

D′′ ∈ T qΣ ,

for some s′ ∈ S′ and, therefore, T qΣ |= ∃S′.> v ∃S.∃ri.Ci.
Summarising we obtain that that T qΣ |= ∃S′.E v ∃S.C ′, as required.

The proofs of the case when pd∃S.C′(A) > 0 is exactly the same as in the proof of
Theorem 13 and left to the reader.

Assume C = ∃u.C ′ and T |= A v C. Then, by Theorem 9, there exists r′1, . . . , r
′
n

such that T |= A v ∃r′1 . . . ∃r′n.C ′.
We prove by induction on the sequence length k that whenever T |= A v ∃t1 . . . ∃tkC ′

for someA ∈ NC∩sig(T) and ti ∈ NR∩sig(T) we have T qΣ |=
d
D∈QΣ(A)D v ∃u.C ′.

If k = 0 the claim is trivial. Assume now we proved the claim for all k < n. Let
T |= A v ∃r′1 . . . ∃r′n.C ′. We proceed by induction on the proof depth of A wrt.
∃r′1 . . . ∃r′n.C ′.

Assume pd∃r′1...∃r′n.C′(A) = 0. Then A ./ ∃r.A′ ∈ T for some A ∈ NC and
T |= r v r′1 such that T |= ran(r) uA′ v ∃r′2 . . . ∃r′n.C ′.

Let S′ =
d
s′∈CΣT (r) s

′, if CΣT (r) 6= ∅, or u otherwise. Note that if r′1 ∈ Σ we have
CΣT (r) 6= ∅ and for some s′ ∈ S′ we have T |= s′ v r′1.

Now QΣ(A) contains ∃S′.E, where

E =
l

B∈Σ, ran(r)vB∈T
∀s′∈S′(ran(s′)vB 6∈T), D∈QΣ(B)

D u
l

D∈QΣ(A′)
A′∈Σ

D u
l

B∈Σ
T |=ran(r)uA′vB

B.

Assume first that n ≥ 2. Then we have

– (a) T |= ran(r) v ∃r′2 . . . ∃r′n.C ′ or (b) T |= A′ v ∃r′2 . . . ∃r′n.C ′, by Lemma 10.

Assume first that (b) holds. By IH T qΣ |=
d
D∈QΣ(A′)D v ∃u.C ′. Thus T qΣ |= E v

∃u.C ′. Now assume that (a) holds. By IH and Lemma 10, there exists a conjunct D′ of
l

B∈Σ,ran(r)vB∈T ,D∈QΣ(B)

D u
l

ran(r)vB∈T ,B∈Σ

B

such that T qΣ |= D′ v ∃u.C ′. Again, similarly to the proof of Theorem 13, if

– ran(r) v D′ ∈ T or
– D′ ∈ QΣ(B) with ran(r) v B ∈ T and either S′ = u or ran(s′) v B 6∈ T for all
s′ ∈ S′,

then D′ is a conjunct of E and, therefore, T qΣ |= E v ∃u.C ′. On the other hand, if
neither Point 1 not Point 2 holds, then there exists B ∈ Σ such that

– ran(s′) v B ∈ T for some s′ ∈ S′ and D′ ∈ QΣ(B).

We have
ran(s′) v

l

D′′∈QΣ(B)

D′′ ∈ T qΣ ,

for some s′ ∈ S′ and, therefore, T qΣ |= ∃S′.> v ∃S.∃u.C ′.
Summarising we obtain that that T qΣ |= ∃S′.E v ∃u.C ′, as required.
The case of n = 1 can be proved by combining the reasoning above and the one

needed for proving the case C = ∃s′1 u · · · u s′k.

The proofs of the case when pd∃s.C′(A) > 0 is exactly the same as in the proof of
Theorem 13 and left to the reader.

References

[Baader et al. 2006] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn.
CEL—a polynomial-time reasoner for life science ontologies. In Proceedings of
IJCAR’06: the 3rd International Joint Conference on Automated Reasoning, vol-
ume 4130 of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-
Verlag, 2006.

[Baader et al. 2008] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the
EL-envelope further. In Proceedings of OWLED 2008 DC Workshop on OWL:
Experiences and Directions, 2008.

[Cuenca Grau et al. 2007] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov,
and Ulrike Sattler. Just the right amount: Extracting modules from ontologies. In
Proceedings of WWW 2007: the 16th International World Wide Web Conference,
Banff, Canada, pages 717–727, 2007.

[Eiter and Wang 2008] Thomas Eiter and Kewen Wang. Semantic forgetting in answer
set programming. Artificial Intelligence, 172(14):1644–1672, 2008.

[Eiter et al. 2006] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, Hans
Tompits, and Kewen Wang. Forgetting in managing rules and ontologies. In Web
Intelligence, pages 411–419, 2006.

[Hofmann 2005] Martin Hofmann. Proof-theoretic approach to description-logic. In
Proceedings of LICS’05: the 20th IEEE Symposium on Logic in Computer Sci-
ence, Chicago, IL, USA, pages 229–237, 2005.

[Konev et al. 2008a] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Se-
mantic modularity and module extraction in description logic. In Proceedings
of ECAI’08: the 18th European Conference on Artificial Intelligence, Patras,
Greece, volume 178, pages 55–59, IOS Press, 2008.

[Konev et al. 2008b] Boris Konev, Dirk Walther, and Frank Wolter. The logical dif-
ference problem for description logic terminologies. In Proceedings of IJ-
CAR’08: the 4th International Joint Conference on Automated Reasoning, Syd-
ney, Australia, Lecture Notes in Computer Science, volume 5195, pages 259–
274, Springer, 2008.

[Kontchakov et al. 2008] Roman Kontchakov, Frank Wolter, and Michael Za-
kharyaschev. Can you tell the difference between DL-lite ontologies. In Proceed-
ings of KR’08: the 11th International Conference on Principles of Knowledge
Representation and Reasoning, Sydney, Australia, pages 285–295, AAAI Press,
2008.

[Lang et al. 2003] Jerome Lang, Paolo Liberatore, and Pierre Marquis. Propositional
independence: formula-variable independence and forgetting. Journal of Artifi-
cial Intelligence Research, 18:391–443, 2003.

[Lutz et al. 2007] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative exten-
sions in expressive description logics. In Proceedings of IJCAI’07: the 20th In-
ternational Joint Conference on Artificial Intelligence, Hyderabad, India, pages
453–458, 2007.

[Lutz and Wolter 2007] Carsten Lutz and Frank Wolter. Conservative extensions in the
lightweight description logic EL. In Proceedings of CADE’07: 21st International
Conference on Automated Deduction, Bremen, Germany, Lecture Notes in Com-
puter Science, volume 4603, pages 84–99, 2007.

[Lutz and Wolter 2009] Carsten Lutz and Frank Wolter. Deciding inseparability and
conservative extensions in the description logic EL. To appear in Journal of Sym-
bolic Computation, 2009.

[Reiter and Lin 1994] Raymond Reiter and Fangzhen Lin. Forget it! In Proceedings of
AAAI Fall Symposium on Relevance, pages 154–159, 1994.

[Rosati 2007] Riccardo Rosati. On conjunctive query answering in EL. In Proceed-
ings of DL’07: the 2007 International Workshop on Description Logics, Brixen-
Bressanone, Italy, CEUR Electronic Workshop Proceedings, volume 250, 2007.

[Sioutos et al. 2006] Nicholas Sioutos, Sherri de Coronado, Margaret W. Haber,
Frank W. Hartel, Wen-Ling Shaiu, and Lawrence W. Wright. NCI thesaurus:
a semantic model integrating cancer-related clinical and molecular information.
Journal of Biomedical Informatics, 40(1):30–43, 2006.

[Spackman 2000] Kent A. Spackman. Managing clinical terminology hierarchies using
algorithmic calculation of subsumption: Experience with SNOMED-RT. Journal
of the American Medical Informatics Association, 2000. Fall Symposium Special
Issue.

[Visser 1996] Albert Visser. Uniform interpolation and layered bisimulation. In Gödel
’96 (Brno, 1996), volume 6 of Lecture Notes Logic. Springer Verlag, 1996.

[Wang et al. 2008] Zhe Wang, Kewen Wang, Rodney Topor, and Jeff Z. Pan. Forget-
ting in DL-Lite. In Proceedings of ESWC’08: the 5th European Semantic Web
Conference 2008, 2008.

