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Abstract

In this paper we introduce a syntactic characterisation of
finite domains in first-order temporal logics. In addition to
showing that this characterisation is complete with respect
to finite domains, we show that the formulae are still within
a decidable fragment of first-order temporal logic. This al-
lows us to automatically verify certain finite properties of
temporal specifications simply by adding the characteristic
formula to the specification and carrying out verification as
usual.

1 Introduction

First-order languages allow statements about a particular
domain of reference. Since these domains can be arbitrary,
such languages are widely used in the description and anal-
ysis of complex situations. However, the arbitrary nature of
the domain often brings problems. To avoid this, we might
fix our domain of discourse — but this leads to inflexibility.
Thus, we would like to constrain our domain but maintain
its flexibility.

A popular (and viable) solution to this problem is to use
modal operators to describe axioms which effectively limit
the domain of discourse. The best know of these are the
Barcan Formula (BF)

∀x p(x) ⇒ ∀x p(x)

and the Converse Barcan Formula (CBF) [1]

∀x p(x) ⇒ ∀x p(x) .

These axioms effectively provide some limited second-
order expressive power constraining the domains to be ei-
ther (non-strictly) decreasing in size (BF) or (non-strictly)
increasing in size (CBF).

Discrete temporal logic allows us to go further [13, 12].
As can be seen from the fact that a form of arithmetic induc-
tion can be encoded in first-order discrete, linear temporal
logic, i.e.

[(∃x q(x)) ∧ (∀y q(y)⇒ gq(y))] ⇒ [∃z q(z)]

then the combination of ‘ g’ and ‘ ’ gives us quite signif-
icant expressive power.

In this paper we aim to use first-order discrete, lin-
ear temporal logic (FOTL) in order to characterise a fur-
ther important property of domains in first-order languages.
Namely, we wish to characterise the statement “the domain,
D, is of finite size”. The full FOTL language is very pow-
erful (the set of valid statements is not recursively enumer-
able) and so one can easily define a form of finiteness inside
of this logic. Let ψ be the conjunction of the following for-
mulae1:

• ∀x. ¬F (x)

• (∀x. F (x)→ gF (x))

• (∀x, y. ((¬F (x)∧¬F (y)∧ gF (x)∧ g→ x = y)

• ♦ (∀y. gF (y)→ F (y))

It is easy to see that for any temporal model of ψ, there ex-
ists a boundN such that the cardinality of the interpretation
F In of the predicate F in the state (moment of time) n is

1These formulae are taken almost literally from [15], where these have
been used to show non-axiomatisability of fragments of FOTL.



bounded by N . Now, given any FOTL formula φ, one can
relativise quantifiers to F in such a way that φ is finitely
satisfiable if, and only if, its relativisation if satisfiable in
general. The applicability of this reduction is limited. It
reduces a non-enumerable logic to a non-enumerable logic,
and so no complete deductive verification method can be
developed using this approach.

FOTL can be considered as a combination of classical
first-order logic and propositional temporal logic, in other
words classical first order logic is enriched by temporal op-
erators. We can classify forms of the combination depend-
ing on which variety of first-order formulae are placed un-
der temporal operators. The simplest combination is the
case when only closed first-order formulae under tempo-
ral operators are allowed. We call such temporal formulae
grounded. The monodic fragment [8, 15] is the case when
formulae with at most one free variable are allowed under
temporal operators.

We intend to provide a logical characterisation of the
finiteness of a domain, but we aim to do so in a complete
monodic fragment of first-order temporal logic. Notice that
the reduction above destroys monodicity (and, hence, com-
pleteness) and cannot be used. We demonstrate that the
addition of finiteness conditions leads to a complete char-
acterisation of finiteness within monodic first-order tempo-
ral logic. Moreover, we show that w.r.t. finite satisfiability
the monodic fragment is reduced to the grounded fragment.
This will give us a way to automatically assess the truth of
formulae when their domain of discourse is restricted to be
finite using proof tools for the monodic fragment [9]. This
then has many applications, typically in formal verification
where the correctness of a system can be assessed in terms
of finite data, finite storage, or finite processes. A particu-
lar example we have considered previously in [7] uses el-
ements of the domain to represent (distributed) processes.
The important requirement of fault-tolerance is that some
behaviour can be shown to remain correct even under a fi-
nite number of processor failures. It was in this earlier paper
that we first suggested that first-order temporal logic might
be an appropriate tool for describing such finiteness. How-
ever, in [7], we provided only suggestions and included no
completeness or complexity proofs. In the current paper we
prove completeness of this deductive approach to verifica-
tion.

Although decidability of monodic fragments holds also
for the case of semantics where only temporal structures
over finite domains are allowed [8], the proof is model-
theoretic and no practical procedure has been developed.

2 Preliminaries

The language of FOTL is an extension of classical first-
order logic by temporal operators for a discrete linear model

of time (isomorphic to N, that is, the most commonly used
model of time). The signature of FOTL (without equality
and function symbols) consists of a countably infinite set of
variables x0, x1, . . . , a countably infinite set of constants
c0, c1, . . . , a non-empty set of predicate symbols P , P0, . . . ,
each with a fixed arity ≥ 0, the propositional operators >,
¬, ∨, the quantifiers ∃xi and ∀xi, and the temporal oper-
ators (‘always in the future’), ♦ (‘eventually in the fu-
ture’), g(‘at the next moment’), and U (‘until’). The set
of formulae of FOTL is defined as follows: > is a FOTL
formula; if P is an n-ary predicate symbol and t1, . . . , tn
are variables or constants, then P (t1, . . . , tn) is an atomic
FOTL formula; if ϕ and ψ are FOTL formulae, then so are
¬ϕ, ϕ ∨ ψ, ∃xϕ, ∀xϕ, ϕ, ♦ϕ, gϕ, and ϕU ψ. We
also use ⊥, ∧, and ⇒ as additional operators, defined us-
ing >, ¬, and ∨. Free and bound variables of a formula
are defined in the standard way, as well as the notions of
open and closed formulae. Given a formula ϕ, we write
ϕ(x1, . . . , xn) to indicate that all the free variables of ϕ are
among x1, . . . , xn. As usual, a literal is either an atomic
formula or its negation.

Formulae of this logic are interpreted over structures
M = (D, In)n∈N that associate with each element n of
N, representing a moment in time, a first-order structure
Mn = (D, In), where D is a non-empty domain and In
is an interpretation. An assignment a is a function from the
set of variables to D. The application of an assignment to
terms is defined in the standard way, in particular, a(c) = c
for every constant c. The truth relation Mn |=a ϕ is defined
in Fig. 2.

In this paper we assume that the interpretation of con-
stants is rigid, that is, In(c) = Im(c) for all n,m ∈ N.

The set of valid formulae of this logic is not recursively
enumerable. However, the set of valid monodic formu-
lae is known to be finitely axiomatisable [15]. A formula
ϕ of FOTL is called monodic if any subformula of ϕ of
the form gψ, ψ, ♦ψ, or ψ1 U ψ2 contains at most one
free variable. For example, the formulae ∀x ∃yP (x, y)
and ∀x P (x, c) are monodic, while ∀x∀y(P (x, y) ⇒
P (x, y)) is not monodic.
Every monodic temporal formula can be transformed

into an equi-satisfiable normal form, called divided sepa-
rated normal form (DSNF) [10].

Definition 1 A monodic temporal problem P in DSNF is a
quadruple 〈U , I,S, E〉, where

1. the step part S is a finite set of ground step clauses of
the form p⇒ gq, where p and q are propositions, and
non-ground step clauses P (x) ⇒ gQ(x), where P
andQ are unary predicate symbols and x is a variable;

2. the universal part U and the initial part I are finite
sets of first-order formulae; and
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Mn |=a >
Mn |=a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P )
Mn |=a ¬ϕ iff not Mn |=a ϕ
Mn |=a ϕ ∨ ψ iff Mn |=a ϕ or Mn |=a ψ
Mn |=a ∃xϕ iff Mn |=b ϕ for some assignment b that may differ from a only in x
Mn |=a ∀xϕ iff Mn |=b ϕ for every assignment b that may differ from a only in x
Mn |=a gϕ iff Mn+1 |=a ϕ
Mn |=a ♦ϕ iff there exists m ≥ n such that Mm |=a ϕ
Mn |=a ϕ iff for all m ≥ n, Mm |=a ϕ
Mn |=a ϕU ψ iff there exists m ≥ n such that Mm |=a ψ and Mi |=a ϕ for every i, n ≤ i < m

.

Figure 1. Definition of the truth relation Mn |=a ϕ.

3. the eventuality part E is a finite set of formulae of the
form ♦L(x) (a non-ground eventuality clause) and ♦l
(a ground eventuality clause), where l is a proposi-
tional literal and L(x) is a unary non-ground literal
with variable x as its only argument.

With each monodic temporal problem 〈U , I,S, E〉 we asso-
ciate the FOTL formula I∧ U ∧ ∀xS∧ ∀xE .When
we talk about particular properties of a temporal problem
(e.g., satisfiability, validity, logical consequences, etc) we
refer to properties of this associated formula.

Theorem 1 (see [3], Theorem 1) Any monodic first-order
temporal formula can be transformed into an equi-
satisfiable monodic temporal problem in DSNF with at most
a linear increase in the size of the problem. The transfor-
mation also preserves satisfiability over finite domains.

Definition 2 Let P = 〈I,U ,S, E〉 be a monodic temporal
problem. By Pred(P) we denote the set of all (unary) pred-
icates occurring to S ∪ E . By Prop(P) we denote the set of
all propositional symbols occurring to S ∪ E .

3 Characterisation of Finite Satisfiability

In this section we explore properties of temporal prob-
lems and prove that satisfiability over finite domains can
be reduced to general satisfiability. We start with separat-
ing two possible causes of the domain being infinite: the
first-order and inductive. Simply putting a first-order for-
mula without a finite domain model into the universal part
U will, clearly, make any temporal problem unsatisfiable
over finite domains. On the other hand, the temporal for-
mula ∃xP (x) ∧ ∀x(P (x) ⇒ g ¬P (x)) does not
have a finite domain model because of temporal restrictions.
We show that monodic satisfiability over finite domains can
be reduced to monodic satisfiability over arbitrary domains
provided that the first-order component of a monodic tem-
poral problem lies in a class of formulae having the finite
model property.

Definition 3 (Finiteness condition) Let P be a monodic
temporal problem. Let C be the set of constants occurring
in P. Let F(x) be a first-order formula containing at most
one free variable x such that F(x) is built using proposi-
tions from Prop(P), predicate symbols from Pred(P), and
constants from C. The finiteness condition for F(x) is the
following formula

FinF = (∀x(F(x)⇒ g ¬F(x)))⇒ ♦ ∀x¬(F(x)).

Intuitively, a finiteness condition states that if the property
F(x) is such that when it holds on a domain element, it
will never hold on the same element in the future, and the
domain is finite, eventually, there will be no element with
property F .

Definition 4 We say that a class of first-order formulae has
the property F if it has the finite model property, is closed
under conjunctions, and contains all monadic formulae. A
class of first-order temporal monodic formulae is said to
have the property TF if for any its formula ϕ and its DSNF
translation Pϕ = 〈I,U ,S, E〉, I ∪ U belongs to a class of
first-order formulae having the property F.

Theorem 2 Let P be a monodic temporal problem such
that U ∪ I belong to a class of first-order formulae, which
has the property F. Then

1. If P is finitely satisfiable, for any conjunction of
finiteness conditions

∧
Fi

FinFi
the formula (P ∧∧

Fi
FinFi

) is finitely satisfiable.

2. If P does not have a model with a finite domain then
there exist F1,. . . , FM such that (P ∧

∧M
i=1 FinFi) is

(not necessarily finitely) unsatisfiable.

Proof Proved in Section 7. �

It follows from the proof of Theorem 2 that it suffices to
consider finiteness conditions of a specific syntactic form.
It is easy to see that it is possible to enumerate all finiteness
conditions of this syntactic form.
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Corollary 3 Let P be a monodic temporal problem satis-
fying the conditions of Theorem 2. Let FinF1 ,. . . , FinFN

be the set of all finiteness conditions of the syntactic form
from the proof of Theorem 2. Then the following holds: P
does not have a model with a finite domain if, and only if,
(P ∧

∧N
j=1 FinFj

) is (not necessarily finitely) unsatisfiable.

In many practical cases, it suffices, however, to consider a
small number of finiteness conditions.

Example 1 Consider the following temporal problem

I = {a} E = ∅

U =
{
a⇒ ∃xP (x)
∀x¬(P (x) ∧Q(x))

}

S =

 (P (x) ∧ a) ⇒ g(P (x) ∧ ¬a)
(Q(x) ∧ a) ⇒ g(P (x) ∧ ¬a)

(P (x) ∧ ¬a) ⇒ g(Q(x) ∧ a)


It can be seen that P has only infinite models. Consider

Fin =
(

(∀x((P (x) ∧ a)⇒ g ¬(P (x) ∧ a)))⇒
♦ (∀x¬(P (x) ∧ a))

)
.

It can be seen that P ∧ Fin is (generally) unsatisfiable.

We formulate Theorem 2 for monodic temporal problem
since it is easier to impose restrictions on the first-order
component of the problem and because it is possible to
explicitly enumerate all possible finiteness conditions for
a problem. We can extend this result to formulae not in
DSNF using general finiteness condition. Let P(x) be any
monodic temporal formula with at most one free variable x.
Then

(∀x(P(x)⇒ g ¬P(x)))⇒ ♦ ∀x¬(P(x))

is a general finiteness condition for P(x). Notice that P(x)
may include temporal operators.

Corollary 4 Let ϕ belongs to a class of temporal monodic
formulae which has the property TF. Then if ϕ does not
have a model with a finite domain then there exist general
finiteness conditions G1,. . . , GM such that (ϕ ∧

∧M
i=1Gi)

is (not necessarily finitely) unsatisfiable.

Proof (Sketch) Let Pϕ be the DSNF translation of ϕ,
and F1,. . . , FM such that (Pϕ ∧

∧M
i=1 FinFi) is unsatis-

fiable. We show that there exist P1,. . . , PM such that
(ϕ∧

∧M
i=1Gi) is also unsatisfiable, where Gi is the general

finiteness condition for Pi(x). The proof relies on proper-
ties of translation of monodic formulae to DSNF [10]. The
reduction is based on using a renaming technique to substi-
tute non-atomic subformulae and replacing temporal oper-
ators by their fixed point definitions described e.g. in [5].
Thus, whenever Fi(x) contains a predicate or proposition

symbol used to rename ψ, a subformula of ϕ, in the same
position P(x) will have ψ itself. Predicate and proposi-
tional symbols introduced in fixed point definitions also cor-
respond to combinations of temporal subformulae of ϕ. We
only consider here the case of unwinding the eventuality; it
can be seen that all other cases from [10] also go through.
Suppose a subformula of the form ♦L(x) was renamed and
a new predicate name P (x) was introduced. Then the fol-
lowing definition is added to the formula

∀x(P (x)⇒ ♦L(x))

This expression is translated to DSNF with the help of a
new predicate symbol waitforL(x).

∀x
(
((P (x) ∧ ¬L(x)) =⇒ waitforL(x))∧

((waitforL(x) ∧ g¬L(x)) =⇒ gwaitforL(x))∧
♦¬waitforL(x)

)
It can be seen that in any model of Pϕ we have
waitforL(x) is true on an element x if, and only if,
¬L(x) ∧ ♦L(x) is true on x. Therefore, if Fi(x) con-
tains waitforL(x), in the same position P(x) will have
¬L(x) ∧ ♦L(x). �

4 Axiomatisation of monodic logic over finite
domains

Theorem 2 and Corollary 4 show how to reduce satisfi-
ability of monodic formulae over finite domains to satisfia-
bility over all domains. From that one can derive results on
axiomatisation of (fragments of ) monodic temporal logic
over finite domains. For general semantics, i.e of not neces-
sarily finite domains the finite axiomatisation of that logic
is given in [15]. Notice that due to the fact that first-order
predicate logic over finite domains is not recursively ax-
iomatisable [14], there can be no recursive axiomatisation
of monodic temporal logic over finite domains. We show
here that by restricting the language to a class of formulae
having the property TF, and adding to the axiomatisation
from [15] the finiteness principles as an axiom scheme we
get a complete axiomatisation over finite domains.

Hilbert-style axiomatisation Axmon of monodic tempo-
ral logic [15] includes the usual axiom schemata and in-
ference rules for classical first-order logic extended by two
temporal inference rules:

ϕgϕ and
χ→ ¬ψ ∧ gχ
χ→ ¬(ϕU ψ)

.

Theorem 5 Let Axfinmon be the above axiomatisation
Axmon extended by the finiteness axiom scheme

(∀x(ϕ(x)⇒ g ¬ϕ(x)))⇒ ♦ ∀x¬(ϕ(x)).
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For any formula ϕ from a class of monodic temporal formu-
lae, which has the property TF we have that ϕ is valid over
finite domains if and only if ϕ is derivable in Axfinmon.

Proof Soundness is straightforward. To prove complete-
ness assume that a formula ϕ is valid over finite domains.
Then ¬ϕ is unsatisfiable over finite domains. By Corol-
lary 4 there exists general finiteness conditions G1,. . . , GM
such that (¬ϕ ∧

∧M
i=1Gi) is unsatisfiable (over general do-

mains). It follows that
∧M
i=1Gi → ϕ is valid over all do-

mains. By completeness ofAxmon the last formula is deriv-
able in Axmon. Using finiteness axiom scheme and modus
ponens the formula ϕ is derivable in Axfinmon. �

Note that Theorem 2 can be also seen as a variant of Theo-
rem 5 that specifies explicitly which instances of the finite
axiom scheme are needed for proving (see also Corollary 3).

5 Ground Temporal Problems

We show now that monodic temporal problem satisfying
conditions of Theorem 2 can be further reduced, preserv-
ing satisfiability over finite domains, to a monodic temporal
problem in which the step and eventuality parts only contain
propositions.

Definition 5 A temporal problem P is called ground if all
the step clauses and the eventuality clauses of P are ground.
A temporal problem P is called a ground eventuality prob-
lem if all the eventualities of P are ground.

It is known that if the eventuality part of a temporal problem
is ground, the problem can be reduced to a ground problem.

Theorem 6 ([3]) Every ground eventuality monodic tem-
poral problem can be reduced to a satisfiability equivalent
ground monodic problem with an exponential growth in size
of the given problem.

We now consider finite satisfiability.

Theorem 7 (grounding eventualities over finite domains)
Any monodic temporal problem P can be reduced to a
ground-eventuality monodic temporal problem P′ such
that P is finitely satisfiable if, and only if, P′ is finitely
satisfiable. The size of P′ is is linear in the size of P.

Proof [Theorem 7] The reduction is an immediate conse-
quence of the two following lemmas. We use the (past-time)
operator S whose semantics is defined as follows

Mn |=a φS ψ iff there exists a k ∈ N,
such that 0 6 k < n and Mk |=a ψ
and, for all j ∈ N, if k 6 j < n then Mj |=a φ

and which is then eliminated by Lemma 9, following the
approach in [4]. �

Lemma 8 The formula Φ ∧ ∀x♦L(x), where Φ is an
arbitrary temporal formula, is satisfiability equivalent over
finite domains to

Φ ∧ l ∧ (l⇒ ♦ g(∀x(¬l S L(x)) ∧ l)),

where l is a new propositional symbol.

See Appendix for proof of Lemma 8.

Lemma 9 Formula ∀x(A(x) ⇒ B(x)S C(x)) is satis-
fiability equivalent to ∀x¬P (x) ∧

∀x(A(x)⇒ P (x)) ∧
∀x(C(x) ∨ (B(x) ∧ P (x))

 ≡ gP (x)),

where P is a new predicate symbol.

Proof [Lemma 9] Follows straightforwardly from consid-
eration of possible models [4]. �

Theorem 10 Every monodic temporal problem P =
〈I,U ,S, E〉 such that I ∪U belongs to a class of first-order
formulae, which has the property F can be reduced to a
ground monodic problem PG,Fin such that P is finitely satis-
fiable if, and only if, PG,Fin is satisfiable.

Proof Let PFin be the monodic temporal problem guaran-
teed by Theorem 2 for P and PG,Fin the ground monodic
temporal problem guaranteed by Theorems 7 and 6 for PFin.
Suppose P is finitely satisfiable. Then, by Theorem 2, PFin

is finitely satisfiable, and so PG,Fin is finitely satisfiable.
Conversely, suppose PG,Fin is satisfiable. Then, it can be
seen that PFin is satisfiable and, by Theorem 2, P is finitely
satisfiable. �

6 Applications to Formal Verification

In [7] the notion of a general finiteness condition (Def-
inition 3) has been introduced under the name of the finite
clock axiom which is, in fact, a scheme of axioms. The fi-
nite clock axiom was used as an additional proof principle
in deductive verification of parametrised infinite state sys-
tems comprising arbitrary numbers of identical processes.
Such systems has become increasingly important [2]. Prac-
tical problems of an open, distributed nature often fit into
this model, for example robot swarms of arbitrary sizes.

When modelling parametrised systems in temporal logic,
informally, elements of the domain correspond to processes,
and predicates to states of such processes [6]. For ex-
ample idle(x) means that a process x is in the idle state,
♦∀y. agreement(y) means that, eventually, all processes
will be in agreement, while ∃z. inactive(z) means that
there is at least one process that is always inactive. (See [6]
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for further details.) For many protocols, especially when
fault tolerance is concerned, it is essential that the number
of processes is finite. The straightforward generalisation to
infinite numbers of processes makes many protocols incor-
rect.

It was noticed in [7] that every instance of the finite clock
axiom scheme holds in every temporal model with a finite
domain, and that in many cases properties of parametrised
infinite systems can be proved with the help of the axiom.
This was demonstrated in a case study of the FloodSet al-
gorithm for the Consensus problem.

The setting is as follows: There are n processes, each
having an input bit and an output bit. The processes work
synchronously, run the same algorithm and use broadcast-
ing for communication. Any message sent by a non-faulty
process is instantaneously delivered to all other processes.
Some processes may fail and, from that point onward, such
processes do not send any further messages. Note, how-
ever, that the messages sent by a process in the moment of
failure may be delivered to an arbitrary subset of the pro-
cesses. The goal of the algorithm is to eventually reach an
agreement, i.e. to produce an output bit, which would be
the same for all non-faulty processes. It is required also that
if all processes have the same input bit, that bit should be
produced as an output bit.

In [7] it has been shown that a variant of the FloodSet
algorithm with alternative decision rule [11], designed to
solve the Consensus problem in presence of crash failures,
can be specified (naturally) within monodic monadic tem-
poral logic without equality. This variant of the FloodSet
algorithm operates as follows.

• In the first round of computations, every process
broadcasts its input bit.

• In every later round, a process broadcasts any value the
first time it sees it.

• In every round the (tentative) output bit is set to the
minimum value seen so far.

The correctness criterion for this algorithm is that, eventu-
ally, the output bits of all non-faulty processes will be the
same. It is crucial for the correctness of the algorithm that
only a finite number of processes can fail. This can be cap-
tured by an instance of the finite clock axiom,

(∀x(Fail(x)⇒ g ¬Fail(x)))⇒
♦ ∀x¬(Fail(x)),

where the predicate Fail(x) is true if, and only if, the pro-
cess x fails. [7] gives a formal proof of the correctness of
the FloodSet algorithm.

It was an empirical observation in [7] that finiteness con-
ditions help in proving properties of parametrised infinite

state systems. Theorem 5 stipulates completeness of the de-
ductive approach to verification given in [7].

In [7] we have also considered a family of protocols
which terminate after a certain (but unknown) number of
steps. An example of such a protocol is any protocol, where
every process sends only a finite number of messages. It
was shown that the monodic monadic specification of an
eventually stable protocol is satisfiable over finite domains
if, and only if, it is satisfiable over arbitrary domains.

The stabilisation principle for a temporal problem P is
the formula:

Stab = ♦ (∀x
∧

P∈Pred(P)

[P (x) ≡ gP (x)]).

Proposition 11 ([7]) Let P be a monodic monadic tempo-
ral problem. Then P ∧ Stab is satisfiable in a model with
a finite domain if, and only if, P ∧ Stab is satisfiable in a
model with an arbitrary domain.

We give a new proof of the proposition now. Let F(x) be
any first-order formula containing at most one free vari-
able x such that F(x) is built using propositions from
Prop(P), predicate symbols from Pred(P), and constants
from C. Notice that whenever M |= Stab we have M 6|=
∀x(F(x)⇒ g ¬F(x)), and thus M |= FinF . There-

fore, the stabilisation principle implies any finiteness con-
dition, and Proposition 11 is a trivial consequence of Theo-
rem 2.

7 Proof of Theorem 2

Theorem 2 follows from Lemmas 15 and 16 below. First,
we introduce additional concepts. Let P = 〈U , I,S, E〉 be
a monodic temporal problem. A predicate colour γ is a set
of unary literals such that for every P (x) ∈ Pred(P), either
P (x) or ¬P (x) belongs to γ. A propositional colour θ is a
set of propositional literals such that for every p ∈ Prop(P),
either p or ¬p belongs to θ. Let Γ be a set of predicate
colours, θ be a propositional colour, and ρ be a map from the
set of constants, const(P), to Γ. A triple 〈Γ, θ, ρ〉 is called
a colour scheme, and ρ is called a constant distribution. We
write sometime γ ∈ C when γ ∈ Γ and C = 〈Γ, θ, ρ〉.

For every colour scheme C = 〈Γ, θ, ρ〉 let us construct
the formulae FC , AC , BC in the following way. For every
γ ∈ Γ and for every θ, introduce the conjunctions:

Fγ(x) =
∧

L(x)∈γ
L(x); Fθ =

∧
l∈θ

l.

Let

Aγ(x) =
∧
{L(x) | L(x)⇒ gM(x) ∈ S, L(x) ∈ γ},

Bγ(x) =
∧
{M(x) | L(x)⇒ gM(x) ∈ S, L(x) ∈ γ},

Aθ =
∧
{l | l⇒ gm ∈ S, l ∈ θ},

Bθ =
∧
{m | l⇒ gm ∈ S, l ∈ θ}.
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(Recall that there are no two different step clauses with the
same left-hand side.) Now FC , AC , BC are of the following
forms:

FC=
∧
γ∈Γ

∃xFγ(x) ∧ Fθ ∧
∧

c∈const(P )

Fρ(c)(c) ∧ ∀x
∨
γ∈Γ

Fγ(x),

AC=
∧
γ∈Γ

∃xAγ(x) ∧Aθ ∧
∧

c∈const(P )

Aρ(c)(c) ∧ ∀x
∨
γ∈Γ

Aγ(x),

BC=
∧
γ∈Γ

∃xBγ(x) ∧Bθ ∧
∧

c∈const(P )

Bρ(c)(c) ∧ ∀x
∨
γ∈Γ

Bγ(x).

Definition 6 (Behaviour Graph) Now, given a temporal
problem P = 〈U , I,S, E〉 we define a finite directed graph
G as follows. Every vertex of G is a colour scheme C
for P such that U ∪ FC is satisfiable. For each vertex
C = 〈Γ, θ, ρ〉, there is an edge in G to C′ = 〈Γ′, θ′, ρ′〉,
if U ∧FC′ ∧BC is satisfiable. They are the only edges orig-
inating from C. A vertex C is designated as an initial vertex
of G if I ∧ U ∧ FC is satisfiable. The behaviour graph H
of P is the sub-graph of G induced by the set of all vertices
reachable from the initial vertices.

Definition 7 (Path; Path Segment) A path, π, through a
behaviour graph, H , is a function from N to the vertices
of the graph such that for any i ≥ 0 there is an edge
〈π(i), π(i + 1)〉 in H . In the similar way, we define a path
segment as a function from [m,n], m < n, to the vertices
of H with the same property.

Lemma 12 ([3]) Let P1 = 〈U1, I,S, E〉 and P2 =
〈U2, I,S, E〉 be two problems such that U1 ⊆ U2. Then
the behaviour graph of P2 is a sub-graph of the behaviour
graph of P1.

Definition 8 (Suitability) For C = (Γ, θ, ρ) and C′ =
(Γ′, θ′, ρ′), let (C, C′) be an ordered pair of colour schemes
for a temporal problem P. An ordered pair of predicate
colours (γ, γ ′) where γ ∈ Γ, γ ′ ∈ Γ′ is called suitable if
the formula U ∧ ∃x(Fγ ′(x) ∧ Bγ(x)) is satisfiable. Simi-
larly, an ordered pair of propositional colours (θ, θ′) is suit-
able if U ∧ Fθ′ ∧ Bθ is satisfiable, and an ordered pair of
constant distributions (ρ, ρ′) is suitable if, for every c ∈ C,
the pair (ρ(c), ρ′(c)) is suitable.

Note that the satisfiability of ∃x(Fγ ′(x)∧Bγ(x)) implies |=
∀x(Fγ ′(x) ⇒ Bγ(x)) as the conjunction Fγ ′(x) contains
a valuation at x of all predicates occurring in Bγ(x).

Lemma 13 ([3]) Let H be the behaviour graph for the
problem P = 〈U , I,S, E〉 with an edge from a vertex
C = 〈Γ, θ, ρ〉 to a vertex C′ = 〈Γ′, θ′, ρ′〉. Then

1. for every γ ∈ Γ there exists a γ ′ ∈ Γ′ such that the
pair (γ, γ ′) is suitable;

2. for every γ ′ ∈ Γ′ there exists a γ ∈ Γ such that the
pair (γ, γ ′) is suitable;

3. the pair of propositional colours (θ, θ′) is suitable;

4. the pair of constant distributions (ρ, ρ′) is suitable.

Definition 9 (Run/E-Run) Let π be a path through a be-
haviour graph H of a temporal problem P, and π(i) =
(Γi, θi, ρi). By a run in π we mean a function r(n) from
N to

⋃
i∈N Γi such that for every n ∈ N, r(n) ∈ Γn and

the pair (r(n), r(n+ 1)) is suitable. In the similar way, we
define a run segment as a function from [m,n], m < n, to⋃
i∈N Γi with the same property. A run r is called an e-run

if ∀i ≥ 0∀♦L(x) ∈ E∃j > i(L(x) ∈ r(j))2.
Let π be a path, the set of all runs in π is denoted byR(π),
and the set of all e-runs in π is denoted by Re(π). If π is
clear, we may omit it.

Let H be the behaviour graph for a temporal problem
P = 〈U , I,S, E〉 and π = C0, . . . , Cn, . . . be a path in H
where Ci = 〈Γi, θi, ρi〉. Let G0 = I ∪ {FCo

} and Gn =
FCn
∧ BCn−1 for n ≥ 1. According to the definition of a

behaviour graph, the set U ∪ {Gn} is satisfiable for every
n ≥ 0.

The following lemma can be proved similarly to
Lemma 27 in [8].

Lemma 14 Let U ∪ I belong to a class of first-order for-
mulae, which has the property F. Then there exists a num-
ber N such that for every k > N and every n ≥ 0, if
the set U ∪ {Gn} is satisfiable then there exists a model
Mn = 〈D, In〉 of U ∪ {Gn} such that for every γ ∈ Γn the
set D(n,γ) = {a ∈ D |Mn |= Fγ(a)} is of cardinality k.

Let π be a path through H consisting of an initial seg-
ment and a looping part, π = π1(π2)∗, for some π1 and
π2. By Rfe (π) we denote the set of e-runs such that for
every r ∈ Rfe (π) and every i ≥ 0 we have r(l1 + i) =
r(l1 + l2 + i), where l1 and l2 are lengths of π1 and π2,
resp.

Lemma 15 Let P be a monodic temporal problem such that
U ∪ I belong to a class of first-order formulae, which has
the property F. Let H be the behaviour graph for P. Then
P is finitely satisfiable if, and only if, there exists a path
π = π1(π2)∗ through H such that the following conditions
hold.

(a) π(0) is an initial vertex of H;

(b) for every colour scheme C = π(i), i ≥ 0, and every
ground eventuality literal ♦l ∈ E there exists a colour
scheme C′ = π(j), j > i, such that l ∈ θ′;

(c) for every colour scheme C = π(i), i ≥ 0 and every
predicate colour γ from the colour scheme there exists
an e-run r ∈ Rfe (π) such that r(i) = γ;

2To make the presentation compact, we abuse the notation by allowing
the use of logical symbols at meta-level.
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(d) for every constant c ∈ L, the function rc(n) defined by
rc(n) = ρn(c), where ρn is the constant distribution
from π(n), is an e-run in π; and

See Appendix for proof of Lemma 15.

Example 2 Consider the following temporal problem.

I = {∃xP (x) ∧ ∃y¬P (y)}, U = ∅, E = {♦P (x)}

S =


(P (x) ∧ a) ⇒ g(¬P (x) ∧ ¬a)

(¬P (x) ∧ a) ⇒ g(P (x) ∧ ¬a)
(P (x) ∧ ¬a) ⇒ g(P (x) ∧ a)

(¬P (x) ∧ ¬a) ⇒ g(¬P (x) ∧ a)


In this example, the behaviour graph contains two nodes,
C1 = 〈(P,¬P ), a〉 C2 = 〈(P,¬P ),¬a〉.

Clearly, in this example we have a model with a finite do-
main, but we have to consider paths segments of the length
4 when cycling (C1, C2, C1, C2)∗ in order to extract a finite
domain model.

Lemma 16 Let P be a monodic temporal problem such that
U ∪ I belong to a class of first-order formulae, which has
the property F. Let CS be the set of colour schemes, and let
Fin be the following formula.∧
C ∈ CS
γ ∈ C

(
(∀x((FC ∧ Fγ(x))⇒ g ¬(FC ∧ Fγ(x))))⇒

♦ ∀x¬(FC∧Fγ(x))
)
.

Let (P ∧ Fin) be satisfiable. Then there exists a path
through the behaviour graph for P satisfying the conditions
of Lemma 15.

See Appendix for proof of Lemma 16.

8 Concluding Remarks

In this paper we have characterised reasoning over fi-
nite domains in monodic fragments of first-order temporal
logic. It has turned out that intuitive finiteness principles
are sufficient to get a complete characterisation. On the one
hand, presented results continue the modal logic tradition
on capturing natural properties of the domains by appropri-
ate axioms/proof principles, on the other hand they provide
a foundation for deductive verification of parametrised sys-
tems with finite resources. The future work includes au-
tomation of proof search for monodic temporal logic with
finiteness principles. The main issue to be addressed here
is how to search efficiently for appropriate instances of the
finiteness condition. The development of specialised proof
systems, e.g the extensions of resolution-based calculi [3]
looks as a promising next step. Axiomatisation of reason-
ing in finite for other fragments of FOTL is also of interest.

For non-recursively axiomatisable fragments, including full
FOTL one may ask whether suitable finiteness principles
would be enough to establish the relative completeness.
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A Proofs of Lemmas 8, 15, and 16

Proof [Lemma 8] Let us reformulate the given problem in
a two-sorted temporal language with variables over N for
the temporal sort, i.e. Φ ∧ ∀x∀n∃m(n ≤ m ∧ L(m,x)),
meaning that for all x, L(x) is satisfied infinitely often. This
problem is satisfiability equivalent over finite domains to the
following (this can be easily checked by considering possi-
ble models):

Φ ∧ ∀n∃m(m > n ∧ ∀x∃k(n ≤ k < m ∧ L(k, x))) (1)

which states, informally, that for each moment of time, n,
there is a moment m > n, such that for all x the eventuality
♦L(x) is satisfied “after n and before m” (there are only
finitely many elements in a domain).

We prove, that given a model for (1), it is possible to find
a model for

Φ ∧ l ∧ (l⇒ ♦ g(∀x(¬l S L(x)) ∧ l)), (2)

and vice versa. First, consider a model M = 〈D, I〉 for (1).
We construct a model M′ = 〈D, I ′〉 for (2) by extending M
with a new proposition l and defining its value as follows.
Formula (1) states that for each moment of time n there
exists a future moment m when a certain property holds,
defining thus a moment m for each n. Let us construct a
sequence of times defined by (1) starting from 0, i.e. m0 =
0, m1 = m(0), . . . , mi+1 = m(mi); and let us define l
in M′ as True at those times and as False everywhere else.
Note that for every element d of the domain D and for all
i ≥ 0, there exists a moment k : mi ≤ k < mi+1 such
that L(d, k). Therefore, Mmi+1 |= ∀x(¬l S L(x)); hence,
Mmi

|= ♦ g(∀x(¬l S L(x)) ∧ l), making (2) True in M′.
We show that any model for (2), M, is also a model for

(1). It is enough to show that for infinitely many n’s there
exists anm such thatm > n∧∀x∃k(n ≤ k < m∧L(x, k))
holds. Let mi be the sequence of all moments when l is
True (there are infinitely many of these). We show that for
all i ≥ 0, n = mi, and m = mi+1, the formula ∀x∃k(n ≤
k < m∧L(x, k)) is true in M. Indeed, Mn |= l, Mm |= l;
by semantics of the operator “S ”, Mm |= ∀x(¬l S L(x))
means that Mm |= ∀x∃k(n ≤ k < m ∧ L(x, k)). �

Proof [Lemma 15]
Following [8] let N be the number supplied by

Lemma 14. Let us define a domain D = {〈r, k〉 | r ∈
Rfe , k < N}. Then for every n ∈ N we have

D =
⋃

γ∈Γn

D(n,γ), where D(n,γ) = {〈r, k〉 | r(n) =

γ} and
∣∣D(n,γ)

∣∣ = N .
Hence, by Lemma 14, for every n ∈ N there exists an L-
structure Mn = 〈D, In〉 satisfying U ∪ {Gn} such that
D(n,γ) = {〈r, k〉 ∈ D | Mn |= Fγ(〈r, k〉)}. More-
over, we can suppose that cIn = 〈rc, 0〉 for every constant

c ∈ const(P). A potential first order temporal model is
M = 〈D, I〉, where I(n) = In for all n ∈ N. To be con-
vinced of this we have to check validity of step and even-
tuality clauses. (Recall that satisfiability of I and U in M0

is implied by satisfiability of G0 in M0 and definition of a
behaviour graph.)

Let ∀x(Pi(x) ⇒ gRi(x)) be an arbitrary step
clause; we show that it is true in M. Namely, we show that
for every n ≥ 0 and every 〈r, k〉 ∈ D, if Mn |= Pi(〈r, k〉)
then Mn+1 |= Ri(〈r, k〉). Suppose r(n) = γ ∈ Γn
and r(n + 1) = γ ′ ∈ Γ′, where (γ, γ ′) is a suitable
pair in accordance with the definition of a run. It fol-
lows that 〈r, k〉 ∈ D(n,γ) and 〈r, k〉 ∈ D(n+1,γ ′), in other
words Mn |= Fγ(〈r, k〉) and Mn+1 |= Fγ ′(〈r, k〉). Since
Mn |= Pi(〈r, k〉) then Pi(x) ∈ γ. It follows that Ri(x)
is a conjunctive member of Bγ(x). Since the pair (γ, γ ′) is
suitable, it follows that the conjunction ∃x(Fγ ′(x)∧Bγ(x))
is satisfiable and, moreover, |= ∀x(Fγ ′(x) ⇒ Bγ(x)). To-
gether with Mn+1 |= Fγ ′(〈r, k〉) this implies that Mn+1 |=
Ri(〈r, k〉). Propositional step clauses are treated in a simi-
lar way.

Let ( ∀x)♦L(x) be an arbitrary eventuality clause.
We show that for every n ≥ 0 and every 〈r, k〉 ∈ D,
r ∈ Re, k < Na, there exists m > n such that Mm |=
L(〈r, k〉). Since r is an e-run, there exists C′ = π(m) for
some m > n such that r(m) = γ ′ ∈ Γ′ and L(x) ∈ γ ′. It
follows that 〈r, k〉 ∈ D(m,γ ′), that is Mm |= Fγ ′(〈r, k〉).
In particular, Mm |= L(〈r, k〉). Propositional eventuality
clauses are considered in a similar way. �

Proof [Lemma 16] Let temporal problem PF =
〈IF,UF,SF, EF〉 be the result of the normal form transfor-
mation for (P∧ Fin). One can prove that there exists a path
πF = π1(π2)∗ through HF, the behaviour graph for PF,
such that the following conditions hold.

(a) πF(0) is an initial vertex of HF;

(b) for every colour scheme C = πF(i), i ≥ 0, and every
ground eventuality literal ♦l ∈ EF there exists a colour
scheme C′ = πF(j), j > i, such that l ∈ θ′;

(c) for every colour scheme C = πF(i), i ≥ 0 and every
predicate colour γ from the colour scheme there exists
an e-run r ∈ Re(πF) such that r(i) = γ;

(d) for every constant c ∈ L, the function rc(n) defined by
rc(n) = ρn(c), where ρn is the constant distribution
from πF(n), is an e-run in πF.

By Lemma ? from [3], there exists a model M for PF with a
domain D such that πF(i) = (ΓMi , θ

M
i , ρ

M
i ), where ΓMi =

{γi(a) | a ∈ D}, ρ
M
i (c) = γi(cI),

γi(a) = {P | P ∈ Pred(P), M |= P (a)}∪
{¬P | P ∈ Pred(P), M 6|= P (a)}
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and
θMi = {p | p ∈ Prop(P), M |= p}∪

{¬p | p ∈ Prop(P), M 6|= p}.

Furthermore, for every a ∈ D, ra(i) = γi(a) is a e-run in
πF; and for every e-run r′ in πF there exists b ∈ D such that
r′(i) = γi(b).

Let γ be a predicate colour for PF. By γ|P we denote
the predicate colour for P obtained from γ by removing any
literals P , ¬P such that P ∈ Pred(PF) but P /∈ Pred(P)
(that is, removing symbols originating from the translation
of Fin). Similarly, θ|P is obtained from a propositional
colour for PF by removing all propositional symbols origi-
nating from Fin. For a colour scheme C for PF, by C|P we
denote the colour scheme for P obtained by removing sym-
bols originating from Fin. Clearly, πF|P is a path in H , the
behaviour graph for P, and all the conditions of Lemma 15,
except possibly (c), are satisfied. We show that condition
(c) is also satisfied.

Consider the set of runs R = {r ∈
Re(πF) such that r(l1 + i)|P = r(l1 + l2 +
i)|P, where l1 and l2 are lengths of π1 and π2, resp}. It
can be seen that R|P = Rfe (πF|P). Notice that if for every
i ≥ l1 and every predicate colour γ ∈ π(i) there exists
an e-run r ∈ R such that r(i)|P = γ|P, (that is, property
(c) holds for the looping part of πF|P), there exists an
e-run r ∈ R such that (r(i))|P = γ|P for all i < l1 and
γ|P ∈ (πF(i))|P (that is, property (c) holds for the initial
segment of πF|P).

Assume now that for some i ≥ l1 and some γ ∈ πF(i)
there exists no e-run r ∈ R such that (r(i))|P = γ|P. Then
for any run r ∈ Re(πF) such that (r(i))|P = γ|P we have
r(i+l2) 6= r(i). But then there exist a ∈ D such that Mi |=
Fγ(a) and for all j > i, Mj 6|= F ∧ Fγ(a). Since M is a
model for PF, Mi |= ♦ ∀x¬(F ∧ Fγ(x)) contradicting
Mi+k·l2 |= F for every k ≥ 0. �
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