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Abstract 

 
Magnetic resonance imaging (MRI) of the brain, followed by automated 
segmentation of the Corpus Callosum in midsagittal sections has important 
applications in neurology and neurocognitive research since the size and shape of the 
Corpus Callosum are shown to be correlated to sex, age, neurodegenerative diseases 
and various lateralized behaviour in people. The segmenting of the Corpus Callosum 
is regarded as a critical step in image mining frameworks to classify the brain MR 
images. In the example presented here a test collection of 76 brain MRI images 
representing musician and non-musician is used. Two algorithms, based on 
established work, for segmenting the Corpus Callosum in brain MR images, are 
presented and evaluated; based on this evaluation a new algorithm is also proposed. 
The segmentation algorithm operates by first extracting regions satisfying the 
statistical characteristics (gray level distributions) of the Corpus Callosum that have 
relatively high intensity values. This is then processed using graph analysis and 
classification procedures. Test using the musician data set have provided promising 
results.  
 

 
1 Introduction 
Discovering knowledge from data stored in alphanumeric databases, such as relational 
databases, has been the focal point of much work in data mining. However, with advances in 
secondary storage capacity, coupled with a relatively low storage cost, more and more non-
standard data is being accumulated. One category of “non-standard” data is image data 
(others include free text, video, sound, etc). There is currently a very substantial collection of 
image data that can be mined to discover new and valuable knowledge. The central research 
issue in image mining is how to preprocess image sets so that they can be represented in a 
form that supports the application of data mining algorithms. A common representation is 
that of feature vectors were each image is represented as vector. Typically each vector 
represents some subset of feature values taken from some global set of features. A trivial 
example is where images are represented as primitive shape and colour pairs. Thus the global 
set of tuples might be: 
 

{{blue square}, {red square}, {yellow square}, {blue circle}, {red circle}, {yellow 
circle}} 
 
which may be used to describe a set of images: 
 



{{blue square}, {red square}, {red circle}} 
{{red square}, {yellow square} {blue circle}, {yellow circle}} 
{(red box}, {red circle}, {yellow circle}} 

 
However, before this can be done it is first necessary to identify the image objects of interest 
(i.e. the squares and circles in the above example). A common approach to achieving this is 
known as “segmentation”. Segmentation is the process of finding regions in an image 
(usually referred to as objects) that share some common attributes (i.e. they are homogenous 
in some sense).  
  
The process of image segmentation can be helped/enhanced for many applications if there is 
some application dependent domain knowledge that can be used in the process. In the context 
of the work described here the author’s are interested in MRI “brain scans’, and in 
particularly a specific feature within these scans called the Corpus Callosum. An example 
image is given in Figure 1. The Corpus Callosum is of interest t to researchers for a number 
of reasons: 
 

1. The size and shape of the Corpus Callosum are shown to be correlated to sex, 
age, neurodegenerative diseases (such as epilepsy) and various lateralized 
behaviour in people. 

2. It is conjectured that the size and shape of the Corpus Callosum reflects certain 
human characteristics (such as a mathematical or musical ability).  

3. It is a very distinctive feature in MRI brain scans. 
 

 
 

Figure 1: Corpus Callosum in a midsagittal brain MR image. 
 
Several studies indicate that the size and shape of the Corpus Callosum in human brains are 
correlated to sex [1, 2, 3], age [3, 4], brain growth and degeneration [5, 6], handedness [7] 
and various types of brain dysfunction [8, 9, 10, 11, 12]. In order to find such correlations in 
living brains, Magnetic Resonance Imaging (MRI) is regarded as the best method to obtain 
cross-sectional area and shape information about the Corpus Callosum. In addition, MRI is 
fast and safe, without any radiation exposure to the subject such as with x-ray CT. Since 
manual tracing of Corpus Callosum in MRI data is time consuming, operator dependent, and 
does not directly give quantitative measures of cross-sectional areas or shape, there is a need 



for automated and robust methods for localization, delineation and shape description of the 
Corpus Callosum. 
 
With reference to Figure 1 the authors are interested in building classifiers from existing sets 
of “training” images that can then be applied to “unseen data”, for example to predict 
epilepsy. The building of classifiers from tabular data is well understood and many examples 
can be found in the literature. Typical technologies that can be used to build classifiers 
include Decision Trees (Quinlan 1993) [13], Support Vector Machines (Vapnick 1997) [14], 
Classification Association Rule Mining (Coenen et al 2007) [15], etc. The process for 
building classifiers is therefore not an issue. However, in the context of image classification, 
as noted above, the issue is how to identify the relevant features within the image set to be 
included in the classifier construction. Thus, with respect to the particular application of 
interest here, the issue is how to detach the Corpus Callosum region from the rest of the 
image. From the above one approach is to adopt a form of image segmentation. A large 
number of segmentation techniques have been reported in the literature [16-23]. This paper 
reports on several of these in the context of the specific application of interest to the authors: 
the segmentation of MRI scans to identify the Corpus Callosum region (object) so that it can 
be further processed and used as input to classification generators. 
 
The paper is organized as follows. Section 2 gives a brief overview of image mining, and 
Section 3 gives a generic discussion of image segmentation. Two segmentation algorithms 
are described in details in sections 4 and 5. A new segmentation algorithm is presented in 
section 6. Experiments and results are illustrated in section 7. This report is concluded in 
section 8. 
 
 
2 Image Mining 
 
Advances in image acquisition and storage technology have led to great growth in very large 
and detailed image databases [24]. A huge amount of image data is generated in our daily life 
and each field, such as medical image (CT images, ECT images and MR images etc), satellite 
images and all kinds of digital photographs. These images involve a great number of useful 
and implicit information that is difficult for users to discover. Image mining can 
automatically discover this implicit information and patterns from this high volume of 
images. Image mining is more than just an extension of data mining to image domain; it can 
be viewed as an interdisciplinary endeavor that draws upon computer vision, image 
processing, image retrieval, machine learning, artificial intelligence, database and data 
mining, etc. Research in image mining can be broadly classified into two main directions. 
The first direction involves domain-specific applications where the focus is to extract the 
most relevant image features into a form suitable for data mining [25, 26, 27]. The second 
direction involves general applications where the focus is to generate image patterns that 
maybe helpful in the understanding of the interaction between high level human perceptions 
of images and low level image features [28, 29, 30]. Data mining in medical images belongs 
to the first direction. There are two kinds of frameworks used to characterize image mining 
systems: function-driven versus information-driven. The first focuses on the functionalities of 
different component modules to organize image mining systems while the latter is designed 
as a hierarchical structure with special emphasis on the information needs at various levels in 
the hierarchy. Zhang et al. [31] proposes an information-driven framework that aims to 
highlight the role of information at various levels of representation. There are four levels of 



information, starting from the lowest Pixel Level, the Object Level, the Semantic Concept 
Level, and finally to the highest Pattern and Knowledge Level.  
 
 
3 Segmentation Algorithms 
 
Image segmentation is, arguably, the most important component in the medical image mining 
process; it is certainly the start point. Segmentation is concerned with the automated division 
of images into non-overlapping regions. There are characteristic artifacts of medical images 
called partial-volume effects which make the segmentation task complicated, examples area 
shadows and signal dropout due to the orientation dependence of acquisition that can result in 
missing boundaries [32]. Partial-volume effects are artifacts that occur where multiple tissue 
types contribute to a single pixel, resulting in a blurring of intensity across boundaries. 
Partial-volume effects are common in medical images, particularly for 3-D CT and MRI data, 
in which the resolution is not isotropic and, in many cases, is quite poor along one axis of the 
image. Further complications arise as the contrast between areas of interest is often low. A 
major difficulty that is specific to the segmentation of MR images is the intensity 
inhomogeneity artifact [32, 33, 34], which causes a shading effect to appear over the image. 
The artifact can significantly degrade the performance of methods that assume that the 
intensity value of a tissue class is constant over the image.  
 
Three image segmentation algorithms suitable for application to brain MR images to extract 
the Corpus Callosum segment form these images are described in the following subsections: 
 

1. Normalized Cuts algorithm 
2. Spectral Segmentation with multiscale graph decomposition 
3. Modified Spectral Segmentation  
 

The first two are established approaches reported in the literature, the third is a new approach. 
Each is discussed in the three following sections. 
 
 
4. Normalized Cuts Algorithm 
 
Shi and Malik (1997) [35] proposed the Normalized Cuts algorithm to address the image 
segmentation problem. Broadly the algorithm is founded on Graph Theory. This algorithm is 
described in details in this section.  
 
The normalized cuts algorithm treats each image pixel as a node in a graph, and addresses the 
segmentation problem in terms of graph partitioning [36]. More formally the set of points in 
an arbitrary feature space are represented as a weighted undirected graph G = (V, E), where 
the nodes or vertices (V) of the graph are the points in the feature space; and the edges (E) 
represent the connections between each node to each other node. The weight of each edge 
linking nodes i and j, w(i, j), is a function of the similarity between nodes i and j. For the 
segmentation (grouping) process we seek to partition the set of vertices into disjoint subsets 
V1; V2; . . . ; Vm, where by some measure the similarity among the vertices in a set Vi is high 
and, across different sets Vi, Vj the similarity is low. This means that the Normalized Cuts 
algorithm measures both the total dissimilarity between the different groups as well as the 
total similarity within the groups.  
 



 
(a)  

(b) 
 

Figure 2: Example Graph representation of a 5x4 pixel image, (a) two equally sized 
segments (partitions) A and B, (b) two unequally size segments (partitions) A and B.  

  
 
4.1. Fundamental Concepts 
 
Any graph G = (V, E) can be partitioned into two disjoint sets, A, B, provided |V| is greater 
than 1. The degree of dissimilarity between any two sets A and B (the cut value) can be 
computed as the sum of all the weightings between every node in A and every node in B, 
thus: 
 

 
 
where w(u, v) is the similarity between node u and v. The optimal bipartitioning of a graph is 
the one that minimizes this cut value. To find the minimum cut is a complex problem whose 
solution requires the comparison of every possible partition. Given N nodes the potential 
number of partitions is: 
 

 

 
(The notation  is taken from the field of combinatronics and means the number of 
different combinations of size r that exist in a set of N items.)  
 
Finding the minimum cut is a well-studied problem and there exist efficient algorithms for 
solving it. Wu and Leahy [35], for example, proposed a clustering method based on the 
minimum cut criterion. However, the minimum cut criteria favors cutting small sets of 
isolated nodes in the graph, and can give a bad segmentation. This is because, using equation 
(1), the cut value will tend to increases with the number of edges crossing between the two 
partitioned segments. If the two segments are the same size (have the same number of nodes) 
they will be related by more edges than if they are unequally sized. This is illustrated in 
Figures 2(a) and (b). In Figure 2(a) partitions A and B have 10 vertices each and 
consequently there will be 100 (10x10) edges crossing between the partitions; however, in 
Figure 2(b) partition A has 19 vertices while partition B has only one vertex, consequently 
there are only 19 edges crossing between the partitions. Assuming the edge weights are 
inversely proportional to the distance between nodes any cut that partitions out individual 
nodes will have a smaller cut value than cuts that partition larger groupings of nodes.  
 



To avoid this unnatural bias for partitioning out small sets of points, Shi and Malik (1997) 
proposed a new measure of disassociation, the normalized cut (Ncut). Given a partition of 
nodes of a graph, V, into two sets A and B, let x be an  dimensional indicator vector, 

xi = 1 if node i is in A and -1, otherwise. Let  be the total connection from 

node i to all other nodes. With the definitions x and d, we can rewrite Ncut(A,B) as:  
 

 
where  is the total connection from nodes in A to all nodes in the 

graph and assoc(B, V) is similarly defined. 
 
Let  be the edge weightings connecting node i to all other nodes j. Also let 

D be an N×N diagonal matrix with d on its diagonal, where d = [d(1), d(2), …, d(N)] and W 
be an N × N symmetric matrix with W(i, j) = w(i, j) (i.e. each entry in the matrix holds the 
weighting for the edge linking the nodes i and j).  
 

 

 

And 1 be an N × 1 vector of all ones. Using the fact  and are indicator vectors 

for  and , respectively, we can rewrite 4[Ncut(x)] as: 
 

 

 
 
Let 
 

 

and 



 
 
we can then further expand the above equation as: 

 

 

 
Dropping the last constant term, which in this case equals 0, we get: 

 

 

 

Letting  and since , the equation becomes: 

 

 

 

 

where : 

 

 

 

 

Setting  it is easy to see that: 



 
 

Putting every thing together we have:  
 

 
 
The above expression is the Rayleigh quotient [25]. If y is relaxed to take real values, the 
above equation can be minimized by solving the generalized eigenvalue system, 
 

 
 
Interestingly the second smallest eigenvector y gives the solution of the normalized cut 
problem. 
 
4.2 Algorithm 
 
Given an image sequence I. Construct a weighted graph G = (V,E) whose each node is each 
pixel of the image I. Let N be the number of nodes (pixels), i.e., |V|. 
 
Step 1 
 
Construct an N × N symmetric similarity matrix W as: 
 

 
 
where X(i) is the spatial location of node i, i.e., the coordinates in the original image I, and 
F(i) is a feature vector defined as: 
 
• F(i) = 1 for segmenting point sets, 
• F(i) = I(i), the intensity value, for segmenting brightness (gray scale) images, 
 
Let be the total connection from node i to all other nodes.  

Construct an N × N diagonal matrix D with d on its diagonal. 
 
Step 2 
 
Solve a generalized eigensystem: 
 



 
 
and get an eigenvector with the second smallest eigenvalue.  
 
Step 3 
 
Use the eigenvector to bipartition the graph. In the ideal case, the eigenvector should only 
take on two discrete values, and the signs tell us exactly how to partition the 
graph . 
 
However, y is relaxed to take real values; therefore, we need to choose a splitting point. There 
are several ways such as 
 

• Take 0 
• Take median 
• Search a splitting point which results in that Ncut(A, B) is minimized. 

 
The splitting point which minimizes Ncut value also minimizes 
 

 
 

where y = (1 + x) − b(1 − x) , b = k/(1 − k),  

 
where x is an N dimensional indicator vector, xi = 1 if node i is in A and -1, otherwise. 
 
To find the minimal Ncut, we need to try different values of splitting points. The optimal 
splitting point is generally around the mean value of the obtained eigenvector.  
 
Step 4 
 
Repeat bipartition recursively. Stop if Ncut value is larger than a pre-specified threshold 
value (Large Ncut value means that there is no clear partition point any more). Furthermore, 
stop if the total number of nodes in the partition (Area) is smaller than a pre-specified 
threshold value. 
 
 
5. Spectral Segmentation with Multiscale Graph Decomposition  
 
Cour and Shi (2005) [37] proposed a multiscale spectral image segmentation algorithm. This 
algorithm works on multiple scales of the image in parallel, without iteration, to capture both 
coarse and fine level details. The Normalized Cut graph partitioning framework of image 
segmentation is used (see above). They demonstrate that large image graphs can be 



compressed into multiple scales capturing image structure at increasingly large 
neighborhoods. This segmentation algorithm works simultaneously across the graph scales, 
with an inter-scale constraint to ensure communication and consistency between the 
segmentations at each scale. This algorithm is described in details in this section.  
 
5.1. Fundamental Concepts 
 
Given an image I, a graph G = (V, E, W) is constructed with the pixels represented by the 
graph nodes V, and the pixels within a distance V ≤ Gr are connected by a graph edge E. The 
weight W(i, j) measures the likelihood of pixel i and j being in the same cluster. Partitioning 
of this graph represents the image segmentation [35,37].  
 
Assigning weights to graph edges 
The pair-wise pixel affinity graph determines the segmentation accuracy. Therefore, as 
recommended in [37] two simple local grouping cues are used which are the intensity and 
contours.  

Grey Level Intensity: neighboring pixels with close intensity are most likely to be in the 
same region. 

 

Where Xi and Ii represent pixel location and intensity. 

Connecting pixels considering only intensity and location usually gives bad segmentation due 
to the texture that is present in the brain MR images. Therefore the principal image contours 
(edges) are also considered for the segmentation of brain MR images. 

Dominant Contours: the image edges are considered useful when the neighboring regions 
have the same cutter. The affinity between two pixels is calculated by measuring the image 
edges between them. 

 

Where line(i, j) is a straight line joining pixels i and j and Edge(x) is the edge strength at 
location(x). 

The two cues are combined in this work in the form: 

 
 
With larger Gr, the objects with faint contours pop out more clearly, but the graph affinity 
matrix becomes denser. A larger graph radius Gr generally makes segmentation better. Long 
range graph connections facilitate propagation of local grouping cues across larger image 
regions. This effect allows us to better detect objects with faint contours in a cluttered 
background.  



 
5.2. Decomposition of graph into multiple scales 
 
The graph links can be separated into different scales according to their underlying spatial 
separation: 

 
 
where Ws contains affinity between pixels with certain spatial separation range:  
 

 
 
only if : 

 where . 

 
The representative pixels can be determined at graph scale Ws as follows. For the first graph 
scale W1 every pixel as graph node is taken, and connect pixels within r distance apart by a 
graph edge. For the second graph scale W2, there are no short graph connections; pixels at 
distance 2r + 1 apart in the original image grid are sampled as representative nodes. Applying 
this procedure recursively, at scale s, representative pixels at (2r + 1)s-1 distance apart on the 
original image grid are sampled , as shown in Fig. 3.The representative pixels in each scale 
will be denoted by Is, and denote as a compressed affinity matrix with connections 
between the representative pixels in Is. The different scales of the graph are defined on 
different layers of the image pyramid, each a sub-sample of the original image. 
 
As Fig. 4 illustrates, such a small number of connections can have virtually the same effect as 
a large fully connected graph. With a maximal graph connection radius Gr, the affinity matrix 
WFull probably doesn’t fit in memory. It can be decomposed into short-range and long range 
connections: WFull = W1+W2, and compress W2 with a low-rank approximation: 

. can be computed either directly on a sub-sampled image, or by 

sampling values from W1. The interpolation matrix C1,2 from scale 2 to scale 1 will be 
introduced later on to couple segmentations at each scale. 

 
Figure 3: 1D view of multiple-scale graph decomposition with r = 1. Large radius graphs 

can be decomposed into different scales, each containing connections with specific range of 



spatial separation: W=W1+W2+:::+WS. At larger scales, the graph weights vary slowly in a 
neighborhood, we can sample them using representative pixels at (2r + 1)s-1 distance apart. 

 
 

 
Figure 4: Example of multiscale graph compression. 

 
 
5.3. Parallel segmentation across scales 
 
Let be the partitioning matrix at scale s, Xs(i,k) =1 iff graph node  
belongs to partition k. The multiscale partition matrix X and the block diagonal multiscale 
affinity matrix W are formed as follows: 
 

 

 
Direct partitioning of graph W gives the trivial segmentation, grouping all the nodes in a 
given scale as one segment. For multiscale segmentation, the segmentation costs should 
ensure propagation across the different scales to reach a consistent segmentation at all scales. 
At the finest graph scale, the segmentation should take into account graph links at all coarser 
levels. The cross-scale consistency is simple: the coarse-scale segmentation (Xs+1) should be 
locally an average of the fine-scale segmentation (Xs). This is done by constraining the 
multiscale partitioning vector X to verify: for all node i in layer Is+1, . 

The neighborhood Ni specifies the projection of  on the finer layer Is, and is simply 
defined on a regularly spaced grid of size , the sampling factor. Then, the cross-
scale interpolation matrix Cs,s+1 between nodes in layer Is and those in coarser layer Is+1 can be 
defined as: 
  



 

 
and the cross-scale segmentation constraint matrix C can be defined as: 
 

 

 
Where the cross-scale segmentation constraint equation:  
 

 
 
With this constraint, the segmentation is forced to propagate across the scales to reach a 
consistent segmentation at all scales. 
 
The segmentation criterion can be defined as the constrained multiscale Normalized Cut: 

 

Subject to ,  where  

Finding the optimal Ncut graph partitioning is NP hard. A spectral graph partitioning 
technique allows us to solve this problem using a continuous space solution by computing the 
K eigenvectors corresponding to the K largest eigenvalues in: 
 

 
 
Using Lagrange multipliers [37], the constrained Ncut optimization amounts to find 
eigenvectors of  

 
 

 
where  

 
 

and  
 

Interestingly the first K eigenvectors give the solution of the constrained multiscale 
Normalized Cut. 



 
5.4. Algorithm 
 
Step 1 
 
Given image I, for s=1..S (S = #scales): 
 

a) sample pixels from Is-1 on a regular grid, where is the sampling factor. 

b) compute constraint sampling neighborhood of i. 

c) compute affinity on Is with small radius r, using image edges at scale s. 
 
Step 2 
 
Compute W, C from  as in (12), (14) 

 
 
Step 3 
 
Compute Q using (20), compute , the first K eigenvectors of . 
 
 
Step 4 
 

Compute and discretize to compute the closest possible to a binary vector X. 
  
 
6. Modified Spectral Segmentation Algorithm 
 
The main contribution of this report is a modification of the spectral segmentation with 
multiscale graph decomposition method to improve its performance when applied to 
specifically to brain MR images. The modified algorithm consists of a series of operations. 
The Corpus Callosum, which is located at the center of the brain, is considered as white 
matter tissue. Although one can visually recognize the outline of the Corpus Callosum in Fig. 
1, portions of its boundary are indistinct, which can make it difficult to develop an automated 
segmentation algorithm based on edge information alone. A problem with applying 
segmentation is that, quite often, variation within the Corpus Callosum can be comparable or 
exceed the difference between the Corpus Callosum and the surrounding tissues. In addition, 
parts of the boundary between the Corpus Callosum and surrounding tissue are indistinct and 
thus very difficult to define due to similar gray levels, particularly on the top portion of the 
Corpus Callosum and between the Corpus Callosum and the fornix which is not part of the 
Corpus Callosum. 



 
6.1. Fundamental Concepts 
 
Fig. 5 shows pixel values histogram of the Corpus Callosum derived from 30 MR images. 
The number of gray levels of all the images used in this report is 256. It can be seen that the 
Corpus Callosum has relatively high intensity values. In addition, the distribution of intensity 
values of the Corpus Callosum follows the normal distribution. All global regions and 
neighborhood regions follow Normal distribution. This is because for most medical images, 
the noise can be assumed to follow Normal distribution. 
 

 

Figure 5: Histogram of the pixel grayscale values of the Corpus Callosum. 
 
Fig. 6 shows that the Corpus Callosum pixel values follow the normal distribution with mean 

160.2 and standard deviation S = 20.25.  

 

Figure 6: Probability plot of the Corpus Callosum pixel values. 



 
Fig. 7 shows that with threshold interval ( ), we can barely recognize the Corpus 
Callosum. With threshold interval ( ), a relatively distinct callosal shape is evident 
with few other non-adjacent structures. With threshold interval ( ), the Corpus 
Callosum is clearly defined, although more other non-adjacent structure are visible. With 
threshold interval wider than ( ), the Corpus Callosum starts to be connected to 
surrounding tissues. Although the threshold values may be different depending on individual 
images, this property of high intensity values of the Corpus Callosum can be exploited to 
yield a segmentation algorithm that is efficient across images. Therefore, we choose the 

 interval for applying to MR images as a threshold interval to extract the Corpus 
Callosum and the objects with the same intensity values. 
 

 

Figure 7: Thresholding with various threshold intervals. (a) the image obtained by applying 
a  threshold interval, (b) the image obtained by applying a  threshold 

interval, (c) the image obtained by applying a  threshold interval, . (d) the image 
obtained by applying a wider threshold interval than  interval. 

(a)  (b) 

(c)  (d) 



 
6.2. Algorithm 
 
Step 1 
 
Given image I, Apply  threshold interval for image I to exclude the pixel 
values which are outside this interval. 
 
Step 2 
Apply Spectral Segmentation with Multiscale Graph Decomposition algorithm described in 
section 5 to the output image from step 1. 
 
 
7. Experiments and Results 
 
We applied the proposed procedure to find the Corpus Callosum in medsagittal brain MR 
images (256 by 256, 256 gray levels). The Normalized Cuts algorithm generates poor 
segmentation with almost all 76 MR images. The proposed algorithm was tested on 76 
subjects and we obtained generally satisfactory results. In some cases, the fornix is connected 
to the Corpus Callosum. The fornix appears as a tail-like protrusion descending from the mid 
of bottom boundary of the Corpus Callosum. Quite often, it has almost the same gray level as 
the Corpus Callosum and is very difficult to separate based solely on gray levels.  
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Figure 8: The results obtained by the spectral multiscale segmentation algorithm and the 
proposed algorithm. 
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Figure 9: The results obtained by the spectral multiscale segmentation algorithm and the 
proposed algorithm. 

 

 

Figs. 8-10 show some of the results with the Corpus Callosum found by the spectral 
segmentation with multiscale graph decomposition algorithm and the proposed algorithm 
highlighted. As can be seen, the proposed algorithm gives better results than spectral 
multiscale algorithm. Out of 76 images, the proposed algorithm was able to find the Corpus 
Callosum reasonably accurately as in (Figs. 10h, 10i, 11g, and 11h). Out of 76 MR, 38 
images where the Corpus Callosum was reasonably accurately segmented, images also 
included the fornix as in (Figs. 9g, 9h, 9i, 10g, 11i). 
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Figure 10: The results obtained by the spectral multiscale segmentation algorithm and the 
proposed algorithm. 

 
8. Conclusion 
 
We propose an automatic algorithm that segments the Corpus Callosum from midsagittal 
brain MR images. The algorithm utilizes thresholding and spectral segmentation with 
multiscale graph decomposition. The boundary between the Corpus Callosum and 
surrounding tissues can be difficult to detect and, in some cases, artifacts are included in the 
segmented Corpus Callosum. To remove such artifacts, a thresholding technique is proposed. 
Experiments showed that the technique can be successfully applied to a wide range of MR 
images. Once the Corpus Callosum is segmented from surrounding tissues, it can be used as a 
reliable landmark to find other brain structures, help segment the brain from the surrounding 
tissues, and also can be used in classification of images across individuals according to its 
size and shape within image mining framework. Results obtained so far look promising but 
we need to improve several aspects in our research effort. We need to make post processing 
procedure applied to some resulted CC segments to remove the fornix which is not part of the 
Corpus Callosum. We also try to find another ultimate segmentation algorithm which extracts 
efficiently the Corpus Callosum. 
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