
ROS-AIL Integration

Louise Dennis

November 5, 2014

This technical report outlines the integration of the Robot Operating System
(ROS) [4] with the Agent Interface Layer (AIL) toolkit [3]. It assumes some
familiarity with the AIL, ROS and ROSJava.

1 The EASS variant of Gwendolen

The EASS variant of the Gwendolen programming language was developed
as part of the EPSRC project Engineering Autonomous Space Software and is
included in the MCAPL distribution which includes the AIL. A key aspect of
this language variant is the existence of an abstraction engine that communicates
with the agent via a set of shared beliefs. The use of the abstraction engine is
important in mediating between sensors and agent percepts and so this language
variant is recommended for developing agents that form a component of an a
autonomous system. The integration of the AIL and ROS was therefore done
as an integration of the EASS Gwendolen variant. The key aspects of this
variant can be found in [1] while Gwendolen is described in [2]. It may be
possible to make the integration more generic in future.

As originally developed, the EASS language variant was intended to interface
to a MatLab simulation. Adapting this set-up to handle communication with
the Robot Operating System has involved some restructuring of the way EASS
agents interact with environments. In particular, there is now a more generic
class structure which allows a unified support not just for ROS and MatLab but
also for interfacing to NXT Mindstorms Robots running leJOS and, potentially,
to other platforms.

2 EASS Environments

An EASS environment is a subclass of the more general AIL environment sup-
ported by the toolkit. These environments are specified as Java interfaces. AIL
environments are required to supply methods for executing actions, adding and
removing percepts from the environment and returning a set of percepts to
an agent. EASS environments extend this with additional methods supported
the addition of abstraction engines and managing shared beliefs. EASS envi-
ronments also implement the MCAPLJobber interface from the larger MCAPL

1

University of Liverpool Technical Report ULCS-14-004

«interface»
org.ros.node.AbstractNodeMain

EASSNode

-agent_file_path:String
-env:EASSROSEnvironment
-cNode:ConnectedNode

+newSubscriber(String, String):<T> Subscriber<T>
+newPublisher(String, String):<T> Publisher<T>
+setConnectedNode(ConnectedNode):void
+onStart(ConnectedNode):void
+initialise():void
+addPerceptToEnv(Predicate):void

EASSROSEnvironment

-node: AbstractNodeMain

+setROSNode(AbstractNodeMain):void
+getROSNode():AbstractNodeMain

eass.mas.ros

«interface»
ail.mas.AILEnv

+executeAction(String, Action):Unifier
+addPercept(Literal):void
+removePercept(Predicate):bool
+getPercepts(String):Set<Predicate>

«interface»
EASSEnv

+addAbstractionEngine(String, Strin):void
+eachrun: void
+addSharedBelief(String, Literal): void
+removeSharedBelief(String, Literal):bool
+notifySharedListeners(String):void

«interace»
ajpf.MCAPLJobber

+do_job():void

DefaultEASSEnvironment

-agSharedBeliefs: Map<String, ArrayList<Literal> >
-abstractionenginelist: ArrayList<String>

eass.mas

Figure 1: Class Diagram for ROS Support

framework. This requires that environments implement a do job method which
is called by the scheduler. This embodies the implicit assumption that au-
tonomous system environments have behaviours which are outside the explicit
control of the agents.

3 The ROS classes

The integration with the Robot Operating System is handled as a sub-package,
eass.mas.ros, of eass.mas. Two classes are provided. eass.mas.ros.EASSNode
is an extension of the ROSJava class AbstractNodeMain and embodies an idea
of a node which is part of an EASS environment. In particular it provides
a method onStart that handles the creation of an EASS multi-agent system
from a program file when the node is created from within ROS. It also pro-
vides a method addPerceptToEnv which supports adding new percepts to the
environment. The assumption is that EASSNode will be subclassed for specific
applications which will receive ROS messages and convert them into predicates
which can then be added to the environment.

eass.mas.rosEASSROSEnvironment is similarly provided as a starting point
for building environment for ROS based agents. It extends DefaultEASSEnvironment
and adds methods for attaching a ROS Node (e.g., an EASSNode) to the envi-
ronment.

The class structure for the ROS classes is shown in figure 1. In this figure
dotted arrows indicate either the implementation of an interface or a sub-class
relationship (as appropriate) while the package structure is show by included
classes and interfaces in packages.

University of Liverpool Technical Report ULCS-14-004

4 Installing the MCAPL ROS integration

At present the integration with ROS is not part of the main distribution of
the MCAPL project. This is largely because ROS and JavaPathfinder (the
model-checker that underpins MCAPL) expect different code structures and
build environments and so the some of the integration is not entirely seamless.

The MCAPL project code is stored in a git repository on sourceforge as
detailed at mcapl.sourceforge.net. The ROS integration can be found on a
branch called rasl. We recommend installing the master branch first and then
switching to the rasl branch once the master branch is successfully installed.

5 An Example

In the MCAPL source code there is a directory src/examples/eass/ros/pubsub.
This provides an implementation of a simple publisher and subscriber which
show how EASSNode and EASSROSEnvironment can be extended to provide spe-
cific nodes for some system. Simple EASS agents either publish or echo mes-
sages. The results of agent actions are encoded in the standard AIL fashion
in executeAction for PubSubEnvironment. This code gets the associated ROS
node and publishes the message to a topic. Similarly ExampleSubscriber uses
the initialise method to set up a listener on a topic and convert messages to
percepts which are then added to the environment.

5.1 Installing and Running EASS agents as ROS Nodes

To run the example you will need an installation of ROS hydro (including the
rosjava packages) and a build of the rasl branch of the MCAPL project.1

Make sure you have set the environment variable AJPF HOME to point to the
mcapl directory.

You will need to create a rosjava package in your ROS workspace e.g.,

mkdir -p rosjava/src

cd rosjava/src

catkin_create_rosjava_pkg eass

cd eass

1The MCAPL distribution comes with Eclipse project files. In order to view the ROS
integration classes in Eclipse you will need to edit the project build path to to include some
rosjava jar files. The version numbers on these files depend upon your ROS version and change
regularly so this has to be customised to your build. The files are:

• control msgs in org/ros/rosjava messages

• geometry msgs in org/ros/rosjava messages

• std msgs in org/ros/rosjava messages

• message generation in org/ros/rosjava bootstrap

• rosjava in /org/ros/rosjava core

Once these are linked the MCAPL project should display without too much red!.

University of Liverpool Technical Report ULCS-14-004

To run the publisher subscriber example you need to create a ROS project
for it in a ROS workspace e.g.,

catkin_create_rosjava_project eass_pubsub

Then you need to copy build.gradle from the MCAPL pubsub directory
into eass pubsub

cp $AJPF_HOME/src/examples/eass/ros/pubsub/build.gradle .

Create a location for the example’s java files and copy them there.

mkdir -p src/main/java/eass/ros/pubsub

cp $AJPF_HOME/src/examples/eass/ros/pubsub/*.java src/main/java/eass/ros/pubsub/.

And lastly build the application using gradle.

../gradlew installApp

To run the application you need to start a ROS core, roscore.
Then run the publisher and subscriber (you will need a separate terminal

window for each one)

./build/install/eass_pubsub/bin/eass_pubsub eass.ros.pubsub.ExamplePublisher

./build/install/eass_pubsub/bin/eass_pubsub eass.ros.pubsub.ExampleSubscriber

You should then be able to view the publisher publishing the message hello

and the subscriber echoing the message when it is received.

References

[1] L. A. Dennis, M. Fisher, N. Lincoln, A. Lisitsa, and S. M. Veres. Declar-
ative Abstractions for Agent Based Hybrid Control Systems. In Proc. 8th
Int. Workshop on Declarative Agent Languages and Technologies (DALT),
volume 6619 of LNCS, pages 96–111. Springer, 2010.

[2] Louise A. Dennis and Berndt Farwer. Gwendolen: A BDI Language for
Verifiable Agents. In Workshop on Logic and the Simulation of Interaction
and Reasoning. AISB, 2008.

[3] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H. Bor-
dini. Model Checking Agent Programming Languages. Automated Software
Engineering, 19(1):5–63, 2012.

[4] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an Open-source
Robot Operating System. In ICRA Workshop on Open Source Software,
2009.

