# Indexing $(n, s)$-combinations 

Paul E. Dunne

February 24, 2015


#### Abstract

In this paper, a method to index an ordered set of length $s$ from a set of $n$ different integers (that are not necessarily in sequence order), is detailed. Additionally the inverse method is given, that converts an index into an ordered set.


## 1 Converting an Ordered Set into an Index

Given $(\underline{n}, s)$ with $1 \leq s \leq|\underline{n}|=n$, and an ordered set $\underline{C}=\left\langle c_{1}, c_{2}, \ldots, c_{s}\right\rangle$ of $s$ elements from an ordered set $\underline{n}=\left\{a g_{1}, a g_{2}, a g_{3}, \ldots, a g_{n}\right\}$, where $c_{i}<c_{i+1}$ for each $1 \leq i<s$ and $a g_{j}<a g_{j+1}$ for each $1 \leq j<|\underline{n}|$, we can define:

$$
\underline{C}=\left\langle c_{1}, c_{2}, \ldots, c_{s}\right\rangle \text { where } c_{i}=j \text { if } c_{i}=a g_{j}
$$

Additionally we can define a bijective mapping:

$$
\operatorname{posn}(\underline{C}, \underline{n}, s) \leftrightarrow\left[1,2, \ldots,\binom{n}{s}\right]
$$

In this mapping $\operatorname{posn}(\underline{C}, \underline{n}, s)$ is the index of $\underline{C}$ under the lexicographic ordering of $s$-tuples from $\left\{a g_{1}, a g_{2}, a g_{3} \ldots, a g_{n}\right\}$. That is the ordering $<_{l e x}$ under which

$$
\left\langle c_{1}, c_{2}, \ldots, c_{s}\right\rangle<_{l e x}\left\langle d_{1}, \ldots, d_{s}\right\rangle \text { if }\left\{\begin{array}{l}
c_{1}<d_{1} \text { or } \\
c_{1}=d_{1} \text { and }\left\langle c_{1}, c_{2}, \ldots, c_{s}\right\rangle<_{l e x}\left\langle d_{2}, \ldots, d_{s}\right\rangle
\end{array}\right.
$$

To map $\underline{C}=\left\langle c_{1}, c_{2}, \ldots, c_{s}\right\rangle$ to its correct position we simply extend the observation that if $c_{1}=1$ then under lexicographic ordering, $\underline{C}$ must be among the first $\binom{n-1}{s-1}$ elements. In general, if $c_{1}=m$, then $\underline{C}$ occurs after all choices in which $c_{1}<m$, so that

$$
\sum_{r=1}^{m-1}\binom{n-r}{s-1}<\operatorname{posn}(\underline{C}, n, s) \leq \sum_{r=1}^{m}\binom{n-r}{s-1}
$$

In total, noting that $\operatorname{posn}\left(\left\langle a g_{i}\right\rangle, \underline{n}, 1\right)=i$, we obtain

$$
\operatorname{posn}\left(\left\langle c_{1}, c_{2}, \ldots, c_{s}\right\rangle, \underline{n}, s\right)=\sum_{i=1}^{s} \sum_{r=1}^{c_{i}-\left(\sum_{j=1}^{i-1} c_{j}\right)-1}\binom{n-\left(\sum_{j=1}^{i-1} c_{j}\right)-r}{s-i}
$$

## 2 Converting an Index into an Ordered Set

To compute $\operatorname{posn}^{-1}(m, \underline{n}, s)$, that is the $s$-tuple occurring at position $m$ within the lexicographic ordering, the process is, in effect, "reversed".

Given $(m, \underline{n}, s)$ :

1. Find the maximum value, $t$, for which

$$
m>\sum_{r=1}^{t-1}\binom{n-r}{s-1}
$$

2. $c_{1}:=t$;
3. 

$$
\left\langle d_{1}, \ldots, d_{s-1}\right\rangle:=\operatorname{posn}^{-1}\left(m-\sum_{r=1}^{c_{1}-1}\binom{n-r}{s-1}, n-c_{1}, s-1\right)
$$

4. $\underline{e}=\left\langle e_{1}, e_{2}, \ldots, e_{s}\right\rangle=\left\langle c_{1}, d_{1}+c_{1}, \ldots, d_{s-1}+c_{1}\right\rangle$
5. return $\left\langle a g_{e_{1}}, a g_{e_{2}}, \ldots, a g_{e_{s}}\right\rangle$
