
Implementing ANGELIC Designs Using
Logiak

Katie Atkinson, Trevor Bench-Capon

Department of Computer Science, The University of Liverpool, UK

Tom Routen, Alejandro Sánchez

Things Prime GmbH, Basel, Switzerland. routen@mangologic.com

Stuart Whittle, Rob Williams and Catriona Wolfenden

Weightmans LLP, Liverpool, UK

Abstract. ANGELIC is a methodology for encapsulating knowledge of a
body of case law. As part of system development, the ability to rapidly

produce a working implementation from the design, is important for

verification and refinement. Logiak is a system intended to support the
development of logic programs by domain experts, and so provides an

excellent environment for the rapid realisation of ANGELIC designs.

We have used Logiak to realise ANGELIC designs, using both Boolean
factors and factors with magnitude. We illustrate the process with both

a Boolean example (Noise Induced Hearing Loss) and an example using

factors with magnitude (US Trade Secrets based on CATO).

1. Introduction

The ANGELIC methodology for designing systems intended to encapsulate case
law was described in [2]. In partnership with the UK law firm, Weightmans, this
methodology was used to build a substantial application designed to support de-
cisions as to whether or not claims for compensation for Noise Induced Hearing
Loss (NIHL) should be contested [3]. The process of implementing the design in
these projects was, however, not entirely satisfactory: the translation to Prolog,
although fairly mechanical, required considerable effort and resulted in a stylisti-
cally poor program. Moreover, a custom built interface had to be produced from
scratch. To address these problems we explored the use of a target implementa-
tion platform, Logiak, which would enable rapid and convenient realisation of the
design, and supply a user interface as part of the package.

Logiak has now been used to implement two ANGELIC designs. First we
re-implemented the design for NIHL of [3]. Then as part of the exploration of
extending ANGELIC to handle factors with magnitude we re-implemented the
design described in [9] and [11] which added magnitudes to the well known US



Trade Secrets program CATO [4]. Since using Prolog to implement magnitudes
posed significant problems in controlling unification and backtracking in [9], the
ease of realisation of the CATO program in Logiak was especially encouraging.

The paper is structured as follows. Section 2 describes the ANGELIC design
documentation, as used in the work with Logiak. Section 3 describes Logiak and
its features, and its suitability for the realsiation of ANGELIC designs. Section
4 discusses the implementation of NIHL in Logiak. Section 5 describes the im-
plementation of CATO using factors with magnitude in Logiak. Section 6 offers
some discussion and concluding remarks.

2. ANGELIC

The ANGELIC methodology was described in [2]. It is designed to encapsulate
the knowledge relating to a body of case law, to be used in factor based reasoning
systems. Factor based reasoning is a well established approach to reasoning with
legal cases, with its origins in HYPO [5] and CATO [4]. More recently the under-
lying precedential reasoning involved has been formalised [14]. For the history of
the development of this style of reasoning see [8]. The methodology is based on
traditional knowledge elicitation techniques, drawing the information from a vari-
ety documents (statutes, cases, commentaries, and training materials), under the
guidance of a domain expert, who provides an introductory framework, advises on
interpretation and validates the output. The most distinctive feature is the way in
which the elicited knowledge is presented. This is in the form of a tree of factors,
with the overall decision at the root, and with the base level factors, input by the
user on the basis of the facts of the case, at the leaves. As one rises up the tree,
factors become increasingly abstract and, as the root is approached, they become
issues. This structure is very similar to the abstract factor hierarchy of CATO [4].
However, each node also has a set of acceptance conditions which state precisely
how the children relate to the parent node. This feature enables the structure
to be interpreted as an Abstract Dialectical Framework (ADF) [12]. Thus the
design document provides both the advantages of a hierarchical structure, and a
fine grained, domain relevant, partitioning of the knowledge base, while having
the formal properties of the ADF. A fuller description of the stages can be found
in [3], and examples of the design structures for the US Trade Secrets domain,
the wild animals domain of [7] and the Automobile exception to the US Fourth
Amendment can be found in [2].

Some adaptations were made to provide what was needed for Logiak, most
notably the association of questions with each of the base level factors to support
the provision of an interface. More changes were made to enable ANGELIC to
accommodate factors with magnitude, as described in section 5.1. The most sig-
nificant of these was the use of a 2-regular ADF [6], and the use of stereotypical
patterns as the acceptance conditions, described in section 5.

3. Logiak

Logiak, produced by Things Prime GmbH, is a system with two main aspects.



• Firstly, it is a “no code” environment within which it is possible to create
systems, including mobile systems, by configuration only.

• Secondly, as its name suggests, it is a system concerned to facilitate the
representation of complex decision logic.

The design of Logiak has been influenced by its deployment in projects which
use mobile technology to support often poorly-trained health workers in under-
resourced settings to nevertheless follow best practice in diagnostic and treatment
logic1.

Diagnosis and treatment logic can be very complex logic indeed and, while
the WHO’s recent Digital Health Guideline2 affirms the use of decision support
software to improve the quality of care provided, at the same time it remarks on
“the importance of ensuring the validity of the underlying information, such as
the algorithms and decision-logic”.

The challenge of ensuring correctness in the implementation of complex logic
is one of the main reasons why we are focussed on having a “no code” approach.
We think it essential that the logic implemented is made transparent to domain
experts (whether they be doctors or lawyers), both for verification and for expla-
nation of the outputs.

3.1. Declarative/Procedural

Implementing logic which can be executed is a challenge. Logic programming (e.g.
with Prolog) is the ambitious effort to permit the use of predicate logic alone to
be sufficient to achieve a complex executable system, but the exclusion of explicit
procedural control proves in reality to be a real problem for projects and can lead
to some compromised Prolog. Implementations based on ANGELIC exhibit this
need to introduce procedural aspects into the Prolog both in [2] and, to an even
greater extent, in [9]. Also, not all “logic” one wants to implement is declarative:
sometimes one needs to describe procedures.

Logiak permits explicit representation of both procedural and declarative
logic and clearly separates the two. In Logiak, one defines “processes” in two
parts: “nodes” and “conditions”.

The “nodes” are sequential and each represents either an interaction with the
user (e.g. asking the user a question and obtaining input) or a background action
(e.g. updating a variable or updating the database).

A Process is therefore a sequence of such nodes executed one after the other.
However, the execution can be affected by the specification of “preconditions”
for nodes or groups of nodes (if a precondition is not true, the node is not exe-
cuted). Such conditions are defined purely declaratively, either in terms of values

1Two examples of global health projects using Logiak: Médicine sans Frontières

use Logiak to create and maintain their pediatric care decision support system
eCARE-ped (see https://vimeo.com/msfch/review/301565776/2962c6151e), and it
forms the basis of an emergency transport system in Tanzania and Lesotho (see
https://www.vodafone.com/content/index/media/vodafone-groupreleases/2016/maternal-
health-tanzania.html)

2https://www.who.int/reproductivehealth/publications/digital-interventions-health-system-

strengthening/en/



of variables or responses from the user. Additionally, and importantly, one can
define “meta-conditions” – i.e. conditions can be logical combinations of other
conditions.

Experience has shown that the clean separation of the declarative from the
procedural means that it is straightforward for domain experts to become fluent
in specifying the fundamental logic of a Process.

3.2. Logiak and ANGELIC

Addressing the same problem (representing complex decision logic) from differ-
ent directions, we observe that perhaps not entirely surprisingly the Logiak and
Angelic representations have close structural similarities. These similarities, as
we shall show, made it remarkably straightforward to use Logiak to activate AN-
GELIC designs into functioning systems.

4. Noise Induced Hearing Loss (NIHL)

Hearing loss induced by noise to which workers are subjected as part of their
employment is widespread and it is possible for workers to make claims for com-
pensation against negligent employers. Weightmans act for employers and their
insurance companies by advising on whether claims should be settled or con-
tested. The NIHL application was implemented in Logiak as a proof of concept
of the compatibility of ANGELIC and Logiak, and to demonstrate the interface
produced from Logiak.

Table 1. Selected nodes from NIHL design document

ID Factor Children Conditions Description

20 Breach of Duty

26 Employee told of

Risks

27 Methods to

reduce noise

28 Protection zone

29 Health

surveillance

30 Risk assessment

REJECT IF

Employee told of

Risks

AND

Methods to

reduce noise

AND

Protection zone

AND

Health

Surveillance

AND

Risk assessment

ACCEPT otherwise

The employer did not

follow the code of

practice is some

respect.

28 Protection zone Base Level Q6 Yes

Employer provides

methods to identify

areas where noise

level are high



4.1. Design

The design document used in the NIHL application was essentially the same as
that produced in [3]. The only difference was that the base level factors were
now associated with a question to be posed to the user. A set of questions and
possible responses, taken from the check-list document used in the elicitation and
the interface designed for [3] were supplied. This is so that the interface can also
be generated from the document. The rows for the node BreachOfDuty and one
of its base level children are shown in Table 1. Question 6, used to give a value
to Protection zone, was Did the employer fix protection zones? Yes/No.

This design was then realised using Logiak as described in the next section.

4.2. Realisation

It is not an exaggeration to say that, the task of taking the ANGELIC specification
of NIHL and using Logiak to create a functioning interactive system was largely
a matter of (simply) transcribing the design document elements.

The first kind of transcription is to take the questions associated with base
level factors and enter them into a Logiak Process, thus creating a user dialogue
(see Figure 1).

Figure 1. Questions within a Process

The second (and more interesting) “transcription” relates to the logic: one
defines the conditions in Logiak, in a way which closely mirrors the acceptance
conditions defined in the ANGELIC specification. In Logiak, one can define con-
ditions of various types. The simplest are those defined on the basis of user re-
sponses to questions, and so correspond directly to ANGELIC “base level factors”.
For example, for the yes/no question “Did the employer fix protection zones?”
in Figure 1, we define a condition named “Protection Zone” which is true if and
only if the user responded affirmatively to said question (Figure 2).

On the basis of these conditions corresponding to ANGELIC “base level fac-
tors”, in Logiak we can define “meta conditions” which are logical combinations
of other conditions. For example, for the ANGELIC “Breach of Duty” conditions,
we defined a Logiak meta-condition “No breach of duty” as shown in Figure 3,
which is true if all base conditions relating to employer duties are satisfied and



Figure 2. Defining a condition on the basis of user input

false otherwise. We then defined a meta-condition “Breach of Duty” which is true
if the “No breach of duty” is false.

This indicates that the only aspect of implementing a system in Logiak based
on ANGELIC which is not effectively transcribing the ANGELIC methodology
output in a one-to-one manner, is in mapping the accept-reject logic of ANGELIC
into declarative logic. ANGELIC makes use of defaults, for example, whereas in
Logiak all conditions must be explicit. In practice, this poses little difficulty.

Figure 3. A ”meta-condition” definition in Logiak

After these two kinds of “transcription” from ANGELIC, one has defined an
interactive process in Logiak which can be delivered either on the web or as a
mobile app without any further programming. Users can respond to the questions
defined and Logiak will compute the logic dictated by the conditions and feedback
to the user can be tailored on the basis of the logical outcomes. It can also be
combined with other processes and embedded into a data handling application
which can retain data on cases for processing over time.

Within the Logiak environment, one can interact with a process defined to
check and debug the logic as portrayed in Figure 4. The interface that will be
seen by end users is shown in the left hand pane. If desired, the question shown
to users can be accompanied by explanatory text and pictures.



Figure 4. Executing the Process in the debugger

5. CATO with Magnitudes

The CATO application was somewhat more ambitious than the NIHL application,
in that it used factors with magnitude as well as Boolean factors. The need for
some factors to have magnitude has become widely recognised in AI and Law
[10], [16] and [15]. In particular the need for magnitudes in CATO was discussed
in [6].

5.1. Design

In order to explore the suitability of ANGELIC to adapt to factors with magni-
tude, the Boolean design used in [2] was rewritten with some of the base level fac-
tors given magnitudes. This involved some changes to the original design, in order
that the truth conditions could be written so as to accommodate non-Boolean
factors. One change was to rewrite the original ADF of [2] as a 2-regular ADF
(given in full in [1]) in which every parent node has exactly two children. This
faciltates implementation by making the treatment of nodes more uniform. This
design was implemented in Prolog [9], but the code was extremely procedural
and rather laborious to construct because a fine grain level of control had to be
imposed.

What this exercise did achieve, however, was the identification of a limited
number of patterns. Building on [9], some twelve patterns were identified for the
current exercise:

And: Node = Min(child1,child2)
Or: Node = Max(child1,child2)
Sum: Node = weight(val(child1)) * degree(child1)
+ weight(val(child2)) * degree(child2)
Difference: Node = weight(val(child1)) * degree(child1)
- weight(val(child2)) * degree(child2))
Exception1: If degree(child1) > threshold(val(child1)) then node = 1
else node = degree(child2).



Table 2. Abstract Factors in CATO application

Parent Type Value Child 1 Child 2 Condition Pattern

Known Boolean LM Limitations KnownOutside ThresholdException

IllegalMethods Boolean QM Criminal Dubious Or

Table 3. Base Level Factors in CATO application

Factor Type Question Pattern

AgreedNotToDisclose Boolean
Did the defendant agree

not to disclose?
QueryTheUser1

SecurityMeasures Magnitude

On a scale of 0-10, how strong

were the security measures

taken by the plaintiff?

QueryTheUser3 (10)

Exception2: If degree(child1) > threshold(val(child1)) then node = 0
else node = degree(child2).
ThresholdException1: If degree(child1) > threshold(value(child1)) then
node = 0 else if degree(child2) > threshold(value(child2)) then node =1
else node = 0,
ThresholdException2: If degree(child1) > threshold(value(child1)) then
node = 1 else if degree(child2) > threshold(value(child2)) then node = 0
else node = 1.
ThresholdOr: If degree(child1) > threshold(value(child1)) then
node = 1 else if degree(child2) > threshold(value(child2)) then node = 1
else node = 0.
QueryTheUser1: If yes Node = 1 else if no Node = 0
QueryTheUser2: If yes Node = 0 else if no Node = 1
QueryTheUser3(M): User inputs a number N. Node = N/M

Instead of acceptance conditions, each node is now associated with one of
these twelve patterns, showing how the parent relates to its children. The base
level factors are associated with a question and one of the Query the User pat-
terns. Note that the patterns require the specification of weights and thresholds.
Rather than specifying these for each individual factor, we specify the weights and
thresholds for values, and so each factor needs to be associated with a value. We
use the five values identified for CATO in [13], and associate them with factors
as in [1]. The weights and thresholds can be set to reflect the relative importance
of the values: the more important values are associated with higher weights to in-
crease their importance in the weighted sum pattern, and more important values
are associated with lower thresholds so that a lesser degree of satisfaction may
still have an impact. In fact, we used equal weights and thresholds in this project.
Effects of varying the weights and thresholds are discussed in [11].

Example nodes for abstract factors are shown in Table 2, and example base
level factors are shown in Table 3.

5.2. Realisation

Within Logiak, a Process can contain not only interactions, such as the questions
to the user as described above, but also actions. Actions are Process steps which



happen in the background without user interaction and can include, for example,

the creation and updating of variables.

Conditions can be defined on the values of such variables, just as they can

be defined on user responses, so the implementation of reasoning with factors can

also be achieved in the Logiak environment.

Actions which update numerical variables can use an expression language and

the task of reflecting ANGELIC’s use of factors became effectively the inclusion of

variable update actions using expressions which implement the patterns described

in the previous section.

Where ANGELIC has Or: Node = Max(child1,child2), in Logiak expression

language, we can update a variable using an expression of the form (CONDITION

? VALUE-IF-TRUE : VALUE-IF-FALSE), where the condition compares values

for child1 and child2, so Or is written (child1 > child2 ? child1 : child2).

In illustration, Figure 5 shows a concrete example Action node with an expres-

sion which implements pattern “Exception 1” to update the value of a variable,

questionable-means (a factor in CATO and a node in the ANGELIC design):

Figure 5. Variable update action implementing Exception1 pattern

Implementing the ANGELIC ADF with factors with magnitude therefore

significantly increased the number of nodes in the Logiak Process and hence

the complexity of the implementation. The 2-regular ADF, however, meant that

although the result was a Process with many nodes, its production was in fact

the quasi-mechanical application of patterns.

We should note that the implementation in Logiak could be made even simpler

by a direct association of a magnitude with each Condition, where Conditions

represent ANGELIC factors, allied with the implementation of the “patterns”

above, not as explicitly constructed expressions but as system operators alongside

the normal “OR” and “AND” etc. This would shift a lot of the complexity once

again away from the Process to be hidden from the implementer, which would be

once again more in line with the “no code” ethos of the system (since a Process

with many variables and variable updates begins to be something challenging for

non-programmers to manage).



6. Discussion and Concluding Remarks

Both implementations were evaluated against the applications produced in [3] and
[9]. They were run using the same test data and produced fully correct results. The
close structural correspondence between Logiak and ANGELIC greatly facilitated
the verification of the implementation against the design. Moreover the discipline
imposed by the implementation meant that any imperfections and unclarities
could be detected and resolved. The CATO exercise threw up 15, mostly minor,
queries, leading to a better design. Moreover, the immediate availability of a
user interface meant that end users could be involved in evaluation. Weightmans
provided positive feedback on the NIHL application

The ability to rapidly turn the design into a useable application greatly en-
hances the development process, by identifying problems at early stage so that
the design can be refined, and by enabling end users and domain experts to par-
ticipate in the process using the interface which is part of the Logiak package.
Further, implementation in Logiak means that it is unnecessary to develop a sep-
arate user interface, which required a substantial additional effort for NIHL [3].
The ability to provide a straightforward way of implementing the ANGELIC de-
signs is an important addition to the methodology, greatly increasing its practical
usability.

References

[1] L Al-Abdulkarim, K Atkinson, and T Bench-Capon. Factors, issues and values: Revisiting

reasoning with cases. In Proceedings of the 15th ICAIL, pages 3–12. ACM, 2015.

[2] L Al-Abdulkarim, K Atkinson, and T Bench-Capon. A methodology for designing systems
to reason with legal cases using ADFs. AI and Law, 24(1):1–49, 2016.

[3] L Al-Abdulkarim, K Atkinson, T Bench-Capon, S Whittle, R Williams, and C Wolfenden.
Noise induced hearing loss: Building an application using the angelic methodology. Argu-

ment & Computation, 10(1):5–22, 2019.

[4] V. Aleven. Teaching case-based argumentation through a model and examples. PhD thesis,
University of Pittsburgh, 1997.

[5] K Ashley. Modeling legal arguments: Reasoning with cases and hypotheticals. MIT press,

Cambridge, Mass., 1990.
[6] K Atkinson and T Bench-Capon. Dimensions and values for reasoning with legal cases.

Tech Report ULCS 17-004, Department of Computer Science, U of Liverpool, 2017.

[7] Katie Atkinson. Introduction to special issue on modelling Popov v. Hayashi. Artificial
Intelligence and Law, 20(1):1–14, 2012.

[8] T Bench-Capon. HYPO’s legacy: introduction to the virtual special issue. Artificial

Intelligence and Law, 25(2):205–250, 2017.
[9] T Bench-Capon and K Atkinson. Implementing factors with magnitude. In Proceedings

of COMMA 2018, pages 449–450, 2018.

[10] T Bench-Capon and E Rissland. Back to the future: Dimensions revisited. In Proceedings
of JURIX 2001, pages 41–52. IOS Press, 2001.

[11] Trevor Bench-Capon and Katie Atkinson. Lessons from implementing factors with mag-
nitude. In Proceedings of JURIX 2018, pages 11–20, 2018.

[12] G Brewka, S Ellmauthaler, H Strass, J Wallner, and P Woltran. Abstract dialectical

frameworks revisited. In Proceedings of the Twenty-Third IJCAI, pages 803–809. AAAI
Press, 2013.

[13] A Chorley and T Bench-Capon. An empirical investigation of reasoning with legal cases

through theory construction and application. AI and Law, 13(3):323–371, 2005.



[14] J Horty and T Bench-Capon. A factor-based definition of precedential constraint. AI and

Law, 20(2):181–214, 2012.
[15] John Horty. Reasoning with dimensions and magnitudes. Artificial Intelligence and Law,

pages 1–37, 2019.

[16] Adam Rigoni. Representing dimensions within the reason model of precedent. Artificial
Intelligence and Law, 26(1):1–22, 2018.


