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Agenda (10+10 minutes)

* Part 1: The Reliability Assessment Model (RAM)

* For DL classifiers
e Operational Profile (OP) info and Robustness evidence.
* Uncovers inherent challenges of modelling reliability for DL software

» AlSafety21-workshop@I1JCAI-21 (best paper award)
* https://arxiv.org/pdf/2106.01258.pdf

* Part 2: The big-picture’’---An assurance case framework
* Probabilistic safety arguments based on the RAM

» System-level safety requirements -> ML component level requirements
* A chain of safety analysis methods: HAZOP, FTA, etc.

* Challenges for assuring LES/autonomous systems
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PART 1---The Gist of the RAM

* A Reliability Assessment Model (RAM) for DL classifiers
* First RAM for DL software that explicitly considers the Operational Profile (OP)
Info and Robustness evidence.
* Why OP and robustness evidence matter?
e Software reliability is a user-centric property [20].
* DL is known to be unrobust.

* Qutput: reliability claims on pmi, e.g., confidence bounds, mean,
variance

e pmi: probability of misclassification per random input (e.g., image)
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 delivered software reliability—a user centric property [20]
* model the end-users’ behaviours — OP [21]

» defined by a probabilistic metric
* pmi: probability of misclassification per random input

A= / I{m causes a misclassification } (as)Op(:I;) dz (1)
zeX

* DL robustness
* Prediction of the DL model is invariant against small perturbations.
* Probabilistic robustness definition [26,27]

Rm (77’ y) = ZI{M(:B) predicts label y } (33) X Op(x | i ’T]) 2)

rTEN

I . National
I I I Oceanography
= I ADELARD Centre

@ UUUUUUUUUUUU HERIOT
ORCA HUB

LIVERPOOL @JWATT




26. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to as-
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T h e R A I\/l ( 28. Yang, Y.Y., Rashtchian, C., Zhang, H., Salakhutdinov, R., Chaudhuri, K.: A Closer

Omlttlﬂg deta”S, cf. the Pa per) Look at Accuracy vs. Robustness. In: Neur[PS’20. Vancouver, Canada (2020)

* Step 1: Partition the input space LR » ;;.% .
i i R R, Tk ;‘;ﬁ”’ Ve gk
* Rule: cell size < r-separation [28] e A % AE

) ) ) o AR R < <N

* Assumption: datapoints in a cell has one ground truth label B Bl

* Step 2: Approximation the OP S QEET
* Estimate the PDF over the input domain
» Kernel Density Estimation (KDE)

Step 3: Cell robustness (to GTL) evaluation
* 3rd party robustness estimators, e.g., [26,27]

 Step 4: “Assemble” cell-wise estimates

m

A= Z OpiAi 4)
i=1
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Experiments

e 5 Datasets + AUV case study:
* 3 synthesized 2D datasets

* Scalability issues by “the curse of dimensionality”
* input pixel space -> latent feature space

* sample k cells-> estimators for weighted-average
 Efficient (multivariate) KDE and robustness estimators
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Figure 3: Synthetic datasets DS-1 (lhs) and DS-2 (rhs) representing
relatively sparse and dense training data respectively.

e Testing accuracy, average cell (un)robustness, our reliability claims;
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Part 1---Discussion

* Discussions on 6 assumptions of our RAM.
 Application specific knowledge/evidence to justify.

* Some inherent difficulties of assessing reliability for DL:
* How to accurately build the OP in the high-dimensional input space with relatively
sparse data? (domain expert knowledge + generative models)
How to build an accurate oracle?
* e.g., by leveraging the existing human-labels in the training dataset?

What is the local distribution (conditional OP) over a small input region?
* (random noise? Or natural variations of physical conditions?)

* How to efficiently evaluate the robustness of a small region given AEs are rare events?

* How to sample small regions from a large population (high-dimensional space) in an
unbiased, uncertainty informed and efficient way?
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Part 1---Conclusion

* A conceptualized equation:

DL reliability = generalisability X robustness.

 How well it generalises to a new data-point, according to the future OP.
* How good the local robustness is, around that new data-point.

* Our RAM advances in this research direction
* First RAM for DL software that considers the OP and robustness evidence.
* Compromised/practical solutions for scalability issues (for high-dimensional data)
* Revealed inherent difficulties of DL reliability assessment
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Part2---The Overall Assurance Framework

el o Sy dosrtn * Acceptably safe
* satisfying all safety requirements (SRs)

acceptably safe. environments

Alist of Substitution: //s ;usfy-lrn:sg?mp“;\\ . |
e e A * SRs are derived from safety/hazards analysis

SIF - HAZOP
Reaquiemens agfiton and * Domain specific standards (missing for ML!)

TLC2
The system S meets all
safety requirments R.

r validation ,l’ . . . .
e — « SRs are validated by regulation principles

Decomposition:

By both time split and nature split SubC3

Safety andshlllagglils analysis Quantitaéi;/:vze:if:rt]y taroet L A LA R P’ G A L E’ etc

TLC3
S meets quantitative
safety targets in R
initially.

Safety
SubC5 SubC4

* From system-level quantitative risk to
e | B e [ = component-level reliability requirements
e ...next slide...

TLSCZ \ O Supporting content of this work

System iti
>y Decomposition: / Quantitative Fault
?Jgg:gﬁg::’t iee:n:f By functionalities of <«—{  Tree Analysis (FTA) )
components \
components

/\ . sufflcernt//// ........................ @ Main focus o f this work‘9 ° O u r m a i n fOC u S

SubC6 SubC7 . o .
Quantitative requirments on Quantitative requirments on The wholseu;g:edure of * re | I a b I I Ity Cl a I m S O n | OW_l eve | D L_CO m po n e ntS
all other functionalities of the DL-based object detection conducting FTA.
components are satisfied. component are satisfied.
P UNIVERSITY OF RIOT

I . National
I I I Oceanography
= l ADELARD Centre

ORCA HUB




Safety Targets: System-level -> ML-Component level

* The chain of 3 safety analysis methods +2 loops

* HAZOP

* Given properties, identify hazards with causes, consequences, mitigations (potentially new properties)

* Hazard scenarios modeling

* link the hazard causes to their consequences by a chain of intermediate events

. FTA

* Expanding/combining the event-chains into tree structures.

* Basic events (BEs): misclassifications, wrong bounding
box, H/W failure events.

* Top events (TEs): violation of system-level properties,
e.g., fail to keep the safe distance to the asset.

e To answer (by iterations of what if calculations):

Given a tolerable/acceptable TE probability, what’s the
most practical combinations of BE probabilities?
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Probabilities of TEs and BEs?

* What is the tolerable/acceptable top-event (TE) probability?
* (TE: violation of system-level properties)
* Out the scope of an assurance framework;
* (missing now, but eventually will be) Given by regulators/domain-standards?

* Refer to human performance seems to be the trend...

* AVs (human drivers’ metric on fatality per mile)
e Cancer diagnostic (human doctors’ successful rate)

 How to demonstrate the basic-event (BE) probabilities are satisfied?
* (BE: failure of component-level functionalities)
* Our RAM is one way to demo. the probability of the BE on misclassification.
* Bespoke RAMs are needed for each functionalities of ML components.
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Present the RAM as Probabilistic Safety Arguments

SubC11-C1
The pmi<Preq with 1-a
confidence level.

£

y the four main steps ofj RAM

Decomposition: Description of the
B
the RAM

SubC11-C5
Assembling individual estimates
of cells/norm-balls is efficient
and effective.

SubC11-C4
Local robustness estimation of
cells/norm-balls is accurate.

SubC11-C3
Approximation of the Opertional
Profile is sufficiently accurate.

SubC11-C2
Determination of cells/norm-
balls is rigorous.

* Main steps:
 Partition the whole input space into small “cells”;
* Approximate the OP of cells;
* Evaluate the robustness (w.r.t. the ground truth label) of cells;
* weighted average on the robustness of a population of cells, based on limited samples
from the population (weights are their OPs).
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SubC11-C2
Determination of cells/norm-
balls is rigorous.

Concretion:
The determination depends on the
two model parameters r and .

SubC11-SC2
The r-separation distance
can be estimated from
the existing dataset.

SubC11-C2.1
Estimation of ris
accurate.

Substitution:
The existing dataset for more Calculation
and more collected data 1

E1
The minimum distance between
any two data-points of different
labels in the existing dataset.

SubC11-C2.3
The r-separation distance is

continuously updated as more
labelled data is collected

Description of the
RAM

SubC11-SC1
The r-separation
property holds for

the given application

SubC11-C2.2
Choice of € is correct.

Evidence Incorporation

f

E2
€<r

SubC11-C3
Approximation of the Opertional
Profile (OP) is accurate.

SubC11-SC3
The OP approximation is

essentially an unsupervised
learning problem

5 ”
By the learning process

SubC11-C3.2
The OP estimator is
chosen correctly.

SubC11-C3.1
The (compressed) operational
dataset is representative of the
future OP.

Substitution:
(i) Distribution of features for the
operalional datasel; () domain_

SubC11-SC4
No loss of feature-
wise information by
data

of similar products for the future OP

E3
The distribution of
features conforms to
domain knowldege,
historical data, etc.

SubC11-C4
Local robustness estimation of
cells/orm-balls is accurate,

Decomposition:
By different types of
cells/norm-balls

Robustness to the
ground truth label is
called astuteness.

SubC11-C4.1
Astuteness evaluation of
normal cells/norm-ball is
accurate.

SubC11-C4.2
Astuteness evaluation of
empty cells is accurate.

5
By the inputs to the estimator
and the estimator itself

SubC11-C4.4
The local robustness.
estimator is reliable

SubC11-5C6
Alocal distritbuti

(conditional OP) of inputs
inside the given cell is given

SubC11-C4.5

The ground truth label of a
given normal cellinorm-ball

is determined correctly. determined correctly,

SubC11-C3.3
The OP estimator is
sufficiently trained
and tuned.

SubC11-SC5
The future OP can be
extracted from domain experts
and historical/opertional data
of similar products

E4
Cross-boundary cells'
astuten
conservatively set to 0.

ess is

SubC11-SC7
‘The cellinorm-ball
should have a single
ground truth label

The ground truth label
of a given empty cell is

E6
Evaluation evidence
on the estimator.

E5

The cellinorm-ball
contains human-
labelled data-points.

E7
Voting results based on
classifications of
samples from the cell

SubC11-C5

The m number of cells
in total, or n number of
norm-balls as the
sample frame

and effective.

Decomposition:
By efficiency and
effectiveness

SubC11-C5.1

Assembling individual estimates
of cells/norm-balls is efficient

P
learning process

3 types of cells defined by the
"low-dimentional" version of the
RAM, and 1 type of norm-ball in

the "high-dimentional” version

SubC11-5C8

in any cell

SubC11-C5.2

The ML model is better
than a classifier doing
random classifications

The propogated and compound

Estimate the number of k

A giﬁr&lislling cells/norm-balls is efficient in estimation errors from individual k
9 terms of the given budget cells/norm-balls is quantified and small
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Part 2---Discussion

* Similar assurance case frameworks are emerging

e Complement others from quantitative aspects
* e.g., allocating quantitative safety targets, supporting reliability claims stated in some measure.

e Complete?

e “Vertically”, it is "end-to-end” (from the very top claim to evidence, chain of methods)
e “Horizontally”, it is incomplete with undeveloped claims (RAMs for other ML func.)

» System-level quantitative safety targets? Esp. the AUV case study...

* lack of statistical data due to the novel applications of AUVs.
 Human divers doing similar underwater tasks?

* Highly depends on domain-knowledge/engineering-experience
 HAZOP, hazards scenarios modeling, FTA
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Thank youl!
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e xingyu.zhao@liverpool.ac.uk
* https://x-y-zhao.github.io/

e Please refer to our SOLITUDE
project website for more
technical details, source code,
DL models, datasets and
publications.
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