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Membership Inference Attacks

» Attack goal: determine whether an individual data example is inside
the training dataset of the target model or not
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Fig. 1: Membership inference attack in the black-box setting. The
attacker queries the target model with a data record and obtains
the model’s prediction on that record. The prediction 1s a vector of
probabilities, one per class, that the record belongs to a certain class.
This prediction vector, along with the label of the target record, is
passed to the attack model, which infers whether the record was in
or out of the target model’s training dataset.

Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learning models[C]//2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 3-18.



Membership Inference Attacks

« under the General Data Protection Regulation (GDPR), MIAs can increase the risks that private personal
information can be inferred from publicly accessible ML models
« First MIA: Shokri et al. proposed the first MI attack for classification models in the context of ML, which

utilized all features of multiple shadow models to train a binary classifier-based attack model in a black-box
scenario
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Shadow Training Attack

* Threat model:
» The adversary has back-box query access to the target model
» The goal is to infer whether input samples were part of its private training set
* Shadow training approach:
» Create several shadow models to substitute the target model
« Each shadow model is trained on a dataset that has a similar distribution as the
private training dataset of the target model
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Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learning models[C]//2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 3-18.



Shadow Training Attack

The output probability vectors from the shadow models are next used as inputs for training attack models (as binary
classifiers) for each class
E.g., the probability vectors for all input images of Brad Pitt from all shadow training sets are labeled with 1
(meaning ‘in’ the training set)
The probability vectors for all input images of Brad Pitt from all shadow test sets are labeled with 0 (meaning ‘out’

or not in the training set)
An attack model is trained on these inputs to perform binary classification (in or out)
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Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learning models[C]//2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 3-18.
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Fig. 7. Overview of the shadow training technique.
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Niu J, Liu P, Zhu X, et al. A survey on membership inference attacks and defenses in Machine Learning[J]. Journal of Information and Intelligence, 2024.



Shadow Training Attack

The table shows the accuracy of a target model on training and testing sets, and the success of the attack for
several models
One can note that the larger the overfitting (difference between the training and testing accuracy), the more
successful the membership inference attack is
Conclusively, overfitting not only reduces the generalization of a model, but also makes the model
more likely to leak sensitive information about the training data
In addition, the attack was more successful for training datasets that are more diverse and have larger
number of classes (e.g., compare Purchase model with 100 classes to Purchase with 2 classes)

Dataset Training Testing Attack
Accuracy  Accuracy  Precision
Adult 0.848 0.842 0.503
MNIST 0.984 0.928 0.517
Location 1.000 0.673 0.678
Purchase (2) 0.999 0.984 0.505
Purchase (10) 0.999 0.866 0.550
Purchase (20) 1.000 0.781 0.590
Purchase (50) 1.000 0.693 0.860
Purchase (100) 0.999 0.659 0.935
TX hospital stays 0.668 0.517 0.657

TABLE II: Accuracy of the Google-trained models and the corre-
sponding attack precision.

Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learning models[C]//2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 3-18.



Threshold-based MIAs

Although NN-based shadow training attacks are a classic form of MIAs, they are less efficient,
especially, we need more shadow models to get good attack performance. Threshold-based MIAs
have been shown to achieve performance close to shadow training attacks and are much simpler.

Given a training set Strain, a test set Stest, and a trained model hO(-). Suppose a data point (x, y)
comes from Strain or Stest with equal probabilities. Then, the membership inference attack
accuracy with a threshold (is calculated as follows

Z(xvy)estrain 1[h0 (aj)y Z C] Z(m,y)EStest 1[h’9 (aj>y < C]
+ ?
| Strain ‘ \ Stest |

Acc(C) = % X

where hO(x)y is the output confidence for label y and 1[-] is the indicator function. Therefore, the goal of
the threshold-based attack model is to find an optimal threshold {optim that maximizes the attack
accuracy,

Coptim — arg mCaX ACC(C)»

and this can be done by enumerating all possible threshold values .



Class-Dependent Thresholds

We infers a sample as a member if the prediction confidence >= threshold, otherwise its
a non-member

Class-dependent thresholds: setting different values of Ty for different labels y
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Song L, Shokri R, Mittal P. Privacy risks of securing machine learning models against adversarial examples[C]//Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2019: 241-257.



Prediction Entropy Thresholds

We infers a sample as a member if the prediction entropy <= threshold, otherwise its a non-member

lenie(F, (%,9)) = 1{— Y F(x)ilog(F (x):) < 4, }.
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Song L, Shokri R, Mittal P. Privacy risks of securing machine learning models against adversarial examples[C]//Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2019: 241-257.



Modified Prediction Entropy

A new metric with following two properties given the ground truth label y:
(1) monotonically decreasing with the prediction probability of the correct label F(x), ;
(2) monotonically increasing with the prediction probability of any incorrect label F(x),,i # y

Mentr(F(x),y) = — (1 — F(x)y)log(F(x)y)
s ;F(x)ilog(l — F(x);).

We infers a sample as a member if the modified prediction entropy <= threshold, otherwise its a non-member
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Song L, Shokri R, Mittal P. Privacy risks of securing machine learning models against adversarial examples[C]//Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2019: 241-257.



Class-dependent threshold

Use the shadow-training technique to learn the threshold value? T y o Or fy:

* (1) first trains a shadow model to simulate the behavior of the target model;

* (2) then obtains the shadow model’s prediction confidence/(modified) entropy values on both shadow
training and shadow test data;

* (3) finally leverages knowledge of membership labels (member vs non-member) of the shadow data to
select the threshold value which achieves the highest accuracy in distinguishing between shadow
training data and shadow test data with the class label y based on the following equation for different

thresholds
Leont(F, (X,y)) = L{F (x)y > Ty }.

lene(F, (%,9)) = 1{= Y F(x);log(F (x);) < %, }.

Ivente (F, (X,y)) = 1{Mentr(F (x),y) <%,}.



Comparison

Using the class-dependent thresholds, we can increase the MIA success by 1%-4%;

The attack based on modified entropy always outperforms the conventional entropy-based attack,
results in highest attack success

MI attacks on the Texas100 classifier trained with AdvReg
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Song L, Shokri R, Mittal P. Privacy risks of securing machine learning models against adversarial examples[C]//Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2019: 241-257.



Target Model’s Sensitivity

The performance of membership inference attack is related to the target model’s sensitivity with regard to training
data.

Definition of the sensitivity:

The sensitivity measure is the influence of one data point on the target model’s performance by computing its
prediction difference, when trained with and without this data point.

Relation to MIAs:
Intuitively, when a training point has a large influence on the target model (high sensitivity), its model prediction is

likely to be different from the model prediction on a test point, and thus the adversary can distinguish its membership
more easily



MIAs and Robustness

Conclusion: 1. the robust models might leak more membership information, due to exhibiting a larger
generalization error, in both the benign or adversarial settings
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(a) Adversarially robust model from Madry et al. [33], with 99% train (b) Naturally undefended model, with 100% train accuracy and 95%
accuracy and 87% test accuracy. E— test accuracy. Around 23% training and test examples have zero loss.

Figure 1: Histogram of CIFAR10 classifiers’ loss values of training data (members) and test data (non-members). We can see
the larger divergence between the loss distribution over members and non-members on the robust model as compared to the
natural model. This shows the privacy risk of securing deep learning models against adversarial examples.

Song L, Shokri R, Mittal P. Privacy risks of securing machine learning models against adversarial examples[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2019: 241-257.



MIAs and Robustness

2. the robust training algorithms might make the model more susceptible to membership inference
attacks, by increasing its sensitivity to its training data
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107" —=— Robust model ¥
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We obtained the Sensitivity metric for 60 Figure 2: Sensitivity analysis of both robust [33] and natu-
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training points by retraining the classifier 6 point id number (sorted by sensitivity) during the retrain-
times ing process, and y-axis denotes the difference in prediction
confidence between the original model and the retrained
model (measuring model sensitivity). The robust model is
more sensitive to the training data compared to the natural

model.
Song L, Shokri R, Mittal P. Privacy risks of securing machine learning models against adversarial examples[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2019: 241-257.



Differential Privacy

A basic introduction: Changing individual training sample in the training set, if the probability of learning
any specific parameter remains roughly the same, this probability is referred to as privacy budget. A smaller
privacy budget corresponds to stronger privacy protection. The intuition is the record of that individual
sample will not be memorized, and its privacy will be respected.

Answer 1
Randomized Answer 2
Algorithm
Answer n ?Z
Answer 1
Randomized Answer 2
Algorithm Adversary
Answer n

http://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html|

The attacker cannot distinguish the answer generated by a random algorithm of all three users and of two users, we
have achieved differential privacy.


http://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

Formal Definition of Exact DP

For two datasets differ in exactly one record, A randomized mechanismM is & -DP, if it satisfies:

Pr(M(z) € S] < e Pr[M(z’) € 5]

E  Privacy parameter/budget. Controls the protection level

Privacy-utility tradeoff: small £ typically leads to lower utility



Approximate DP

A randomized mechanism M is (6, 5)-DP if it satisfies:
PrM(z) € S] < e*Pr[M(z') € S|+ 6

) : the probability of potential deviation from this privacy guarantee (relaxation)

PrlY € §] -4
D’ (Y|Z) = 1
(Y 2) SCSupp(lIP)?g:r[YES]Zé[n Pr|Z € S]
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DP Properties: Sequential Composition

Sequential composition: Applying multiple DP mechanisms to the same dataset
remains DP, while there are some degradation in the guarantees

Ay, ..., A; be a set of ¢ mechanisms where the i-th mechanism satisfies (;,d;)-DP. Sequential composition
states the joint output of the mechanisms, i.e., (Ay,...,As), is (¢/,0’)-DP where ¢’ := ). ¢; and ¢’ := >,

Ponomareva N, Hazimeh H, Kurakin A, et al. How to dp-fy ml: A practical guide to machine learning with differential privacy[J]. Journal of Artificial Intelligence Research, 2023, 77: 1113-1201.



DP Properties: Parallel Composition

Parallel composition. Recall that in sequential composition all mechanisms were applied to the same
dataset. In contrast, parallel composition assumes that the dataset is partitioned into mutually disjoint
subsets, and each mechanism is applied to one unique subset. As before, we denote the set of mechanisms by

Ai, ..., As, where the i-th mechanism satisfies (g;, §;)-DP. Parallel composition guarantees that the combined
mechanism, i.e., (Ai,...,As), is (max; £;, max; d;)-DP. The guarantee here is stronger than that of sequential
composition. Intuitively, this statement holds because in parallel composition the combined mechanism uses
each record once, whereas in sequential composition each record is used multiple times.

Ponomareva N, Hazimeh H, Kurakin A, et al. How to dp-fy ml: A practical guide to machine learning with differential privacy[J]. Journal of Artificial Intelligence Research, 2023, 77: 1113-1201.



DP Properties: Post-processing

Invariance to post-processing. Applying any data-independent transformation to a DP mechanism is
guaranteed to remain differentially private (with the same privacy parameters) Dwork & Roth (2014). This

property has two important implications. First, it is impossible for an attacker to weaken the DP guarantee
by post-processing the mechanism’s output. Second, this property can be used to simplify the design and
analysis of complex DP systems. For example, training a neural network with SGD is essentially a post-

processing of gradients computed at successive iterations. Thus, based on the post-processing property,

differentially private training of a neural network can be achieved by using differentially private gradients in
each iteration; this method will be discussed in more detail in Section 4.2.

Ponomareva N, Hazimeh H, Kurakin A, et al. How to dp-fy ml: A practical guide to machine learning with differential privacy[J]. Journal of Artificial Intelligence Research, 2023, 77: 1113-1201.



Where to Introduce DP

Where to introduce DP

DP at input DP during training DP at prediction level

DP synthetic data Modify training process: Inject noise during inference
Gradient noise injection

it input is DP, ANY model trained on
the data is DP Only THIS model is DP Only the predictions are DP

—

Harder



DP-SGD

DP Training: DP-SGD

Training Data Model Weights Model Weights Updates
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Ponomareva N, Hazimeh H, Kurakin A, et al. How to dp-fy ml: A practical guide to machine learning with differential privacy[J]. Journal of Artificial Intelligence Research, 2023, 77: 1113-1201.



DP-SGD Algorithm

DP-SGD Algorithm

Input: Training data, consisting of features X := {z,,zs....,zxy} and labels Y :=
{y1,92, .-, yn}.
f(z;8) is the model applied to an input x and parameterized by 6.
L(y,1/) is the loss function for label y and prediction 7/'.
SGD hyperparameters: 7 learning rate, 7" number of iterations, B batch size.
DP hyperparameters: C clipping norm, o noise level, 4 (used only for privacy accounting).
Output: f7 final model parameters
0y < randomly initialized values
fort < 1toT do
Randomly sample a batch B; with sampling probability B/N for each data point.
Data are sampled with replacement for each batch.

for : € B; do
gt(xi) < Vo, L(yi, f(xi;60)) > Compute per-example gradient wrt the weights
gt(z;) < gi(x;)/ max(1, u&%'-m‘:) > Clip the per-example gradient
gt — 5(X; at(zi) + N(0, 02C?1)) > Add noise

Oi 41 — 0 — nGy > Gradient descent step

Ponomareva N, Hazimeh H, Kurakin A, et al. How to dp-fy ml: A practical guide to machine learning with differential privacy[J]. Journal of Artificial Intelligence Research, 2023, 77: 1113-1201.



Renyl DP and its Properties

Definition 2 (Rényi Differential Privacy). A randomized mechanism R is
(N, e)-RDP if it satisfies:

I Pr[R(D) = z] At
A—1 log B (D) [(Pr R (D) = I]) ]

Theorem 1. [Composition] A randomized mechanism R consists of k sub mech-

anisms Ri,Ra, ..., Ry, for j € k|, R; satisfies (A €;)-RDP, then R satisfies
k 2117 o) 3 /Y 1] o) e, o) ad 07

(A, >.._1 €i)-RDP with the same order A. [27]

AN
Q)

(2)

Theorem 2. [From RDP to DP] A randomized mechanism R satisfies (N, e)-
RDP, equal to R satisfies (¢ + lof_l{":()“)_pp for any & € (0,1). [27]




Not accessible by adversary I Accessible by adversary

y Data 1 ¥ Teacher1

7

. 9. Data2 e Teacher 2

Sensitive i Aggregate o -
Data é ‘B Data3 |  Teacher3 Teaeher ’ I Sdens e
4 Predicted Incomplete
| Datan »|  Teachern completion | Public Data
P Training = e seee-n P> Prediction —— - — - P Data feeding

Figure 2: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
sensitive data, (2) a student model is trained on public data labeled using the ensemble.

Papernot N, Song S, Mironov |, et al. Scalable private learning with pate[J]. arXiv preprint arXiv:1802.08908, 2018.



Private Voting Count (Teacher Aggregation)in PATE

Confident-GNMax mechanism: M, (z') £ argmax {ny(z') + N (0,0%)} satisfies (\, \/o?)- RDP
k

(1) Sample Filtering. We set a threshold T, if the vote count for a particular label exceeds T (normally >
50% of the teacher classifiers) we retain such samples (queries) while discarding those with a vote
count below the threshold T

(2) Assign Labels. For those samples pass stage one, we reapply GNMax with a smaller o2 to
ensure the results from the majority of teacher classifier ensembles reflect the true labels to

mitigate more potentially noisy labels

Private Voting Count

O ——— -y
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PATE Results

Queries Privacy Accuracy
Dataset | Aggregator answered | bound £ | Student | Baseline
LNMax (Papernot et al., 2017) 100 2.04= 98.0%
MNIST | LNMax (Papernot et al., 2017) 1,000 8.03 98.1% 99.2%
Confident-GNMax _(7=200. ¢, =150. 62=40) __286 1.97 98.5%
LNMax (Papernot et al., 2017) 500 5.04 82.7%
SVHN | LNMax (Papernot et al., 2017) 1,000 8.19 90.7% 92.8%
Confident-GNMax (7=300, 01=200, 02=40) 3,098 4.96 91.6%
Adalh LNMax (Papernot et al., 2017) 500 2.66 83.0% 85.0%
Confident-GNMax (7=300, o, =200, 05=40) 524 1.90 83.7%
LNMax 4,000 4.3 72.4%
Glyph | Confident-GNMax (7T=1000, o1=500, 02=100) 10,762 2.03 75.5% 82.2%
Interactive-GNMax, two rounds 4.341 0.837 73.2%

Table 1: Utility and privacy of the students. The Confident- and Interactive-GNMax aggregators
introduced in Section 4 offer better tradeoffs between privacy (characterized by the value of the
bound ¢) and utility (the accuracy of the student compared to a non-private baseline) than the LNMax
aggregator used by the original PATE proposal on all datasets we evaluated with. For MNIST, Adult,
and SVHN, we use the labels of ensembles of 250 teachers published by Papernot et al. (2017) and
set § = 107° to compute values of ¢ (to the exception of SVHN where § = 107°). All Glyph results
use an ensemble of 5000 teachers and ¢ is computed for § = 1075,

Papernot N, Song S, Mironov |, et al. Scalable private learning with pate[J]. arXiv preprint arXiv:1802.08908, 2018.



Visual Prompt in PATE
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Figure 1. An overview of the proposed Prom-PATE framework.

LiY, Tsai YL, Yu C M, et al. Exploring the benefits of visual prompting in differential privacy[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 5158-5167.



Visual Prompt (Label Mapping) Training

Random Label Mapping Fully Connected Mapping
Source Data Taget Data Source Data Taget Data .
ImageNet CIFAR-10 ImageNet CIFAR-10 Visual Prom pts:

/ Tg =M ©w, + (I — M) ® ZeroPad(z7),

M: binary mask of the same dimension with the source data

Label Mapping:

/|
%

yr = softmax( fy(w2;¥s)).

Randomly Chosen 10 Labels in Advance One or Two Fully Connected Layers

Figure 2. [llustration of different strategies for label mapping. Left:
we follow the convention setting in VP [3] and apply randomly as-
signed label mapping that 1s pre-determined before training. Right:
we simply apply a trainable fully-connected layer for the model to
learn the appropriate mapping as proposed in [2]

fé (LOQ; ) - label mapping function

LiY, Tsai YL, YuC M, et al. Exploring the benefits of visual prompting in differential privacy[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 5158-5167.



Visual Prompt (Label Mapping) Training

Number of re-teachers 100 250 500 1000
‘ 1.095 1.095 1.04 1.019
Queries 1000 1000 1000 1000
Answered Queries 18 46 90 684
Threshold T 430 500 650 500
o1 150 150 150 200
o 50 100 100 50
Accuracy %) + Std 5020+0 8587+0.55 9653+0.74 97.07 + 0.50

Table 6. Effect on different numbers of re-teacher models.

LiY, Tsai YL, Yu C M, et al. Exploring the benefits of visual prompting in differential privacy[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 5158-5167.




Existing Challenges

More Flexible Ways to Find the Optimal 7,

Trade-off between the Training Iteration and Privacy
Budget in the Training-based DP Methods

How to Create Dataset to Replace Public Dataset if No
Public Dataset with Similar Distribution Exists

Evaluation on Visual Prompting-Trained Models



