C'd UNIVERSITY OF

& LIVERPOOL

Empowering Autonomous
Driving with LLM and VLM

Sithao Wu

Large Language Model

Drive Like a Human: Rethinking Autonomous Driving

Li AD Framework‘

— System 1 System2 —— Training Loop

SYSTEM 1 SYSTEM 2
Vehicle Intuition & instinct Rational thinking

L3 Endto End Model_’ 95% 5%
.. Perceptlon D Control

Unconscious Takes effort
Fast Slow
Associative Logical
Automatic pilot Lazy
Indecisive

L4 Multimodal LLM

Recognition

. : System 1 --End-to-End Model for L3 AD
i General Knowledge | Fast end-to-end response to the surrounding environment.

Sim Reinforcement Learning Model
System 2 --Large Multimodal-Action Model

Evaluation Network Explore and logically think under unknown environments.

Modalities include language, vision, point clouds, canbus

and navigation to solve L4 unknown scenes.
Generative World Model

Towards the goal of driving like a human, we identify three abilities that are necessary:

1 . Reason | ng w—p [nteraction flow
Memory Supervision flow

' ~— Reflection flow
2. Interpretahon eflection flow

Condense | | Retrieve
Observation \ Evaluation
3. Memorization _§ -~ ‘
Environment Agent Expert
Action (b) F«ieedibacrk

this schema includes four modules:
(1) Environment creates a stage that the agent can interact with by the interaction flow;

(2) Agent stands for a driver that can perceive the environment and make decisions utilizing its memory and
learning from expert advice;

(3) Memory allows the agent to accumulate experience and perform actions with it via the reflection flow;

(4) Expert provides advice on agent training and gives feedback when it acts inconsistently, which forms
the supervision flow.

HighwayEnv

Discrete Meta Actions

LANE_LEFT
IDLE
LANE_RIGHT
FASTER
SLOWER

Observation

(a)

b A

Y

L R B B

Perception Tools

Get Available Actions
Get Available Lanes
Get Lane Involved Cars

Agent Prompts

Chain of thoughts
Traffic rules
Decision cautions
System message

GPT-3.5

Thought 1: Since | am encounter such situ, the first thing to do is to
check my available actions.

Act 1: Get_available_actions ('ego"')

Obs 1: [...] The vehicle can do IDLE, FASTER, SLOWER, LANE
CHANGE RIGHT actions. [...]

Thought 2: Now | need to check the status of 'ego’ car.

Act 2: Get_available_lanes ('ego')

Obs 2: [..] The 'ego’ can drive on lane 3 and lane 2. Lane 3 isthe
curent lane and lane 2 isleftlane.l...]

Thought 3: Now | need to check for acceleration action.
Act 3: Get_lane_cars ('lane_3"')
Obs 3: veh ¢ is driving in front of 'ego’ with 10.2m/s. [...]

Thought 4: | have to check if acceleration is safe with veh 6.
Act 4: Is_action_safe (*acc', 'veh_6"')
Obs 4: Acceleration may be conflict with veh 6. [..]

Thought 5: Now | need to check for keep speed action.
Act 5: Get_lane_cars ('lane_2"')
Obs 5: venh 4 is driving in front of 'ego’ with 13.89m/s on lane 2.[..]

Thought 8: [...] | suggest it's safe to keep lane with current speed
Act8: Finish.

Final Answer:
Decision: IDLE

Explanation: Since the last step is ... I suggest...

(b)

ReAct: Synergizing Reasoning and Acting in Language Models
s { (1) Hotspot QA } e { (1d) ReAct (Reason + Act)]———————————————‘\

Question: Aside from the Apple Remote, what other device Thought 1: I need to search Apple Remote and find the
program it was originally designed to interact with.

Act 1: Search[Apple Remote]

Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple .. originally designed to control the

____{ (la) Standard } N { (1c) Act-Only }________\ Front Row media center program ..

can control the program Apple Remote was originally
designed to interact with?

Answer: iPod)(Act 1: Search([Apple Remote] Thought 2: Apple Remote was originally designed to control

_ Obs 1: The Apple Remote is a the Front Row media center program. I need to search Front
remote control .. Row next and find what other device can control it.
/{ (1b) CoT (Reason Only) }\ Act 2: Search[Front Row]
. : Obs 2: Could not find [Front Row]. Similar: ['Front Row

Thought: Let's think step Act 2: Search[Front Row] Seat to Earth', 'Front Row Motorsports',' Front Row

by step. Apple Remote was Obs 2: Could not find [Front e,

originally designed to Row] . Similar:

interact with Apple TV. Thought 3: Front Row is not found. I need to search Front

Apple TV can be controlled Act 3: Search[Front Row Row (software)

by iPhone, iPad, and iPod (e) Act 3: Search[Front Row (software)]

ToUeh. So the answer is Obs 3: Front Row is a Obs 3: Front Row is a discontinued media center software ..

iPh i Pad d iPod $;
trhone, irad, and iFo discontinued media center Thought 4: Front Row (software) is controlled by an Apple
Touch. software .. Remote or the keyboard function keys. So the answer is
keyboard function keys.
Answer: iPhone, iPad, iPod Act 4: Finish (&8)(Act 4: Finish[keyboard function keys] \//
\Touch \ YV L J

TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_hum‘liJ

REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools:
{tool_descs}
Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
(this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin!

Question: {query}"""

Start to slow down and fall behind other vehicles

Frequent and meaningless lane changes

Start accelerating after moving away from other vehicles

(a) (b)

Figure 3: Driving behavior of RL-based and Search-based methods: (a) RL-based agents focus
solely on achieving the final reward, disregarding the intermediate steps. This allows them to take
unconventional actions, such as slowing down to fall behind other vehicles and then driving on an
open road to avoid collisions. (b) Search-based methods make decisions by optimizing objective
functions. They may pursue aggressive behavior by seeking max efficiency while ensuring safety.

GPT-3.5

Thought 1: Ego car is currently in 1ane_3 with a speed of 16.02 and
its last decision was IDLE. [...] We need to check the acailable actions
for the ego car.

Act1: Get_available actions('ego')

Obs 1: [...] The ego car can take IDLE, FASTER, SLOWER, LANE
LEFT actions. [...]

Thought 2: | need to check the safety of the acceleration action with all
the vehicles affected by the decision.

Act2: Is_acc_conflict with('vehd')

Obs 2: Acceleration may be conflict with veh4.

Thought 3: Now | need to check the safety of the idle action with all
the vehicles affected by the decision.

Act3: Is_idle conflict with('veh4')

Obs 3: Keep lane with current speed is safe with veh4.

Thought 8: Next, we need to compare the safety of all the possible
decisions and choose the safest one. We need to check the safety of
the lane change action to 1ane 2 with all the vehicles affected by the
decision.

Act 8: Get_lane_invovled car('lane_2')

Obs 8: vehl is driving on lane_2, and it's driving in front of ego car.

Thought 9: We need to make sure that our lane change actions do not
conflict with veh1.

Act9: Is_lane change_conflict('lane 2','vehl')

Obs 9: Change lane to 1ane_2 is safe with veh1l.

Thought 10: [...] we can choose the lane change action to ‘lane_2" as
the final decision.
Act 10: Finish.

Final Answer:

Decision: LANE LEFT

Explanation: Changing to the left lane "lane 2 is
the safest decision. The idle action is also safe,
but changing lane can provide more flexibility and
avoid potential conflicts with other vehicles.
Acceleration is not safe with the presence of “vehd'.

V

Figure 4: The lane-change decision-making process by GPT-3.5

DILU: A KNOWLEDGE-DRIVEN APPROACH
TO AUTONOMOUS DRIVING WITH LARGE
LLANGUAGE MODELS

———

1 I
1 I
: —> —> :
| O ------ L I
1 RGCQ” . I
1 - ' . A]
! S Act Refloct €2 [Reason | Query '

') ! [I
: .
| |
1 I
I I

_Environment ; _ Driver Agent) _ Memory)

> Continuous Evolution

__

Driver agent continuously evolves to observe the environment, query,
update experiences from the memory module, and make decisions to
control the ego vehicle.

The contributions of our work are summarized as follows:

* To the best of our knowledge, we are the first to leverage knowledge-driven capability
in decision-making for autonomous vehicles from the perspective of how humans drive.
We summarize the knowledge-driven paradigm that involves an interactive environment, a
driver agent, as well as a memory component.

* We propose a novel framework called DiLu which implements the above paradigm to ad-
dress the closed-loop driving tasks. The framework incorporates a Memory Module to
record the experiences, and leverages LLM to facilitate reasoning and reflection processes.

* Extensive experimental results highlight DiLu’s capability to continuously accumulate ex-
perience by interacting with the environment. Moreover, DiLu exhibits stronger gener-
alization ability than RL-based methods and demonstrates the potential to be applied in
practical autonomous driving systems.

= Reasoning Module Memory Module

Observe -‘

Scenario Descriptor Recall

=l

Act

§ Decison Decoder Prompts Generator
i Experience '
Environment P ‘ @ Large Language Models
Sequences
Summarization }] :
& Correction : \Update :
Revised experiences Different types of

Reflection Module

experiences

Specifically, the driver agent utilizes the Reasoning Module to query experiences from the
Memory Module and leverage the common-sense knowledge of the LLM to generate
decisions based on current scenarios.

It then employs the Reflection Module to identify safe and unsafe decisions produced by
the Reasoning Module, subsequently refining them into correct decisions using the
knowledge embedded in the LLM.

These safe or revised decisions are then updated into the Memory Module.

Without few-shot experiences, the out-of-the-box LLMs fail to perform precise reasoning
when tackling the complex closed-loop driving tasks.

Observe i . Vectorize Recall
3| Scenario Descriptor %—) —
Memory Module

(1) encode the scenario by a descriptor;

(2) recall several experience from the Memory
module;

(3) generate the prompt;

(4) feed the prompt into the LLM;

(5) decode the action from the LLM’s response.

Prompt Generator

: System Textual Few-shot Experiences]‘_'_
.| Prompts Description C D0 hanhre

Commem——_ [}

| Lar ge Language Model ...—-—) ;Decision Decode;—)
with Chain-of-Thoughts ‘ | Action
Current Frame Next Frame

Figure 3: Reasoning module. We leverage the LLM’s common-sense knowledge and query the
experiences from Memory module to make decisions based on the scenario observation.

Memory recall: At each decision frame, the agent receives a textual description of the driving
scenario. Before making a decision, the current driving scenario is embedded into a vector, which
serves as the memory key. This key is then clustered and searched to find the closest scenarios (John-
son et al., 2019) in the memory module and their corresponding reasoning processes, or memories.
These recalled memories are provided to the agent in a few-shot format to assist in making accurate

reasoning and decisions for the current scenario.

Decision Sequences Memory Module

Summarization

' ‘w0]
@ 3 Key Frame Sampling }_> Y (w2 Update ﬁ|

‘ vl #2) < ‘
| JR = ! C D1

(|

Safe

" Mistake Correction using LLM

=] ® -
> s Mistake frame
ystem
[#4] Unsafe Prompts |l
“ Correction
initial experience success experience [I:U unsafe experience ' | revised experience

Figure 5: Reflection module. The Reflection module takes recorded decisions from closed-loop
driving tasks as input, it utilizes a summarization and correction module to identify safe and unsafe
decisions, subsequently revising them into correct decisions through the human knowledge embed-
ded in LLM. Finally, these safe or revised decisions are updated into Memory module.

3 Reasoning Output

« 1 should first check if I can accelerate, then idle, finally

| decelerate. I can also try to change lones but with caution.
. = At First, I need to observe the car in front of me on the

' current lane, which is cor 640 . The distance between me
| and car 640 “is 393.69 - 361.18 = 32.51 m, and the

i difference in speed is 25.00 - 25.00 = 0.00 m/s.

. Car 640 'is traveling 32.51 m ohead of me and its speed Is

the some as mine. This distance is safe but my speed s
alreody ot the desired level, so I should not occelerate.

- Since I cannot accelerate, I want to know If I can
maintain my current speed. I should observe car 640 .
1t is traveling 32.51 m ohead of me ond its speed is the
some as mine. This distance is safe, so I con maintain my

current speed.
\ Final Answer: 1dle

Scenario Description .
You are driving on a rood with 4 lanes, and you ore currently '
driving in the rightmost lone. Your current speed is 25.0 m/s, :
occeleration Is 0.0 m/s"2, ond lane position is 361.18 m. '
There are other vehicles driving around you: :
- Vehicle 496 " is driving on the lane to your left and Is ahead of |
you. The speed of It Is 21.2 m/s, occeleration is 0.2 m/s"2, and 1
lane pasition is 372.81 m. ‘

D I .

- Vehicle 640 "is driving on the some lane as you and is chead of , Decode
you. The speed of it Is 25.0 m/s, acceleration Is -0.1m/s*2, ond !
' lane position is 393.69 m. 3 Action: IDLE ’
(a) (b)

Figure 4: (a) The textual scenario description generated by the scenario descriptor, (b) The decision
decoder decodes the action with the output of LLM reasoning.

Visual Language Model

Driving with LLMs: Fusing Object-Level Vector
Modality for Explainable Autonomous Driving

Long Chen* Oleg Sinavski* Jan Hiinermann Alice Karnsund
Andrew James Willmott Danny Birch Daniel Maund Jamie Shotton

Wayve
research@wayve.ai
*equal contributions

13-
O -

Here are my actions:
- Accelerator pedal 0%
@ - Brake pedal 81%
. - steering 31% to the right ¢
M‘ Reason:
| need to slow down and over
Control take the vehicle in front of me

@ route

&% vehicle

- —

L pedestrian

& ego

prompt
embeddmg

Vector
— s Vector-Former

Encoders vector
embedding

LoRA

Figure 1: An overview of the architecture for Driving with LLLMs, demonstrating how object-level
vector input from our driving simulator is employed to predict actions via LLMs

In this paper, we have made the following contributions:

1. Novel object-level multimodal LLLM architecture: We propose a novel architecture
that fuses an object-level vectorized numeric modality into any LLLMs with a two-stage
pretraining and finetuning method.

2. Driving scenario QA task and a dataset: We provide a 160k question-answer pairs dataset
on 10k driving situations with control commands, collected with RL expert driving agents
and an expert LLM-based question answer generator. Additionally, we also outline the
methodology for further data collection.

3. Novel Driving QA (DQA) evaluation and a pretrained baseline: We present a novel way
to evaluate Driving QA performance using the same expert LLM grader. We provide initial
evaluation results and a baseline using our end-to-end multimodal architecture.

' What is your action and why?

Here are my actions: - Accelerator pedal 84% - Brake
pedal 0% - Steering 16% to the right. Reason: Because |
need to maintain my current speed and direction.

' What's the color of the traffic light?

There is no traffic light.

' Can you press the accelerator now? why?

I'm unable to press the accelerator pedal now because
the traffic light ahead is red.

What would you do if the car in front start moving, but the
traffic light is still red?

| would wait for the green signal to start driving.

|im

[

|30

[

Transfer pseudo image to language

1anGen(’Ucara Uped; Vegos Uroute [Orl]) —
¢

(A moving car; Angle in degrees: 1.19; Distance: 9.98m; [My attention: 78%]
A pedestrian; Angle in degrees: -41.90; Distance: 11.94m; [My attention: 22%]
My current speed is 11.96 mph.
There is a traffic light and it is red. It is 12.63m ahead.
The next turn is 58 degrees right in 14.51m.

[Here are my actions:]
[- Accelerator pedal 0%]
[- Brake pedal 80%]

[- Steering straight]
29

In this function, variables vcar, Vped, Vego, aNd Vroute denote vector information corresponding to cars,
pedestrians, ego vehicle, and route, respectively. The optional term o, represents the output from
the RL agent, consisting of additional attention and action labels for guiding the action reasoning
process. Attention labels are collected from RL policy attention layers similar to [41].

This lanGen enables the transformation of vector representations into human-readable language
captions. It crafts a comprehensive narrative of the current driving scenario, which includes of the
agent’s observations, the agent’s current state, and its planned actions. This comprehensive contextual
foundation enables the LLMs to conduct reasoning and construct appropriate responses in a manner
that humans can interpret and understand.

3.3 Driving QA Dataset Labeling

we utilize GPT to generate a Driving QA dataset.

I'm observing 3 cars and 4 g e
pedestrians RFE=promm O O, "What objects are you observing?"
A moving car; Angle..; l
i route Distance..; My attention: 100% : < ; Ay
A moving car; Angle..; “I'm observing three moving car, and four pedestrians. . o o
<% vehicle Distance..; My attention: 20% B 4 [—
I ey A Pedestrian; Angle..; Distance.; ' _, — O O, “Which objects are you paying the most attention to?"
) ped. My attention: 100% —
2 ego lanGen . Here are my actions: ChatGPT “I'm péying the most a.ttentio.n to the pedestrian 6 g
- Accelerator pedal 0% API crossing from left to right, with 100% attention, as they e
- Brake pedal 50% are closer to our vehicle and pose a higher risk
- Steering straight.
pseudo vector caption driving QA data

Figure 2: The illustration of our Driving QA Dataset automatic labelling process

* Question: "What objects are you observing?" Answer: "[’'m observing a moving car, and
two pedestrians. The car is coming from the opposite direction, and the pedestrians are
crossing the street from both the right and left sides."

* Question: "How are you going to drive in this situation and why?" Answer: "Here are my
actions: - Accelerator pedal 0% - Brake pedal 7% - Steering straight. Reason: Because I’'m
maintaining a slow speed due to the pedestrians crossing, and I’m steering straight to keep
our vehicle properly aligned with the road."

* Question: "What are the best tourist spots in London?" Answer: "As an Al Driver, the
question you asked is out of my scope, but I can try to answer it. Some famous tourist spots
in London include the Tower of London, Buckingham Palace, The British Museum, The
Shard, and the London Eye."

Vector Encoder Vector Former LLM with Adaptor

-
-
-
-
-
-
- -
- -

3
1=~ 1
! - _ 1
| S . _ - [—)
| - o R _ - - :
| S~ - - -
route / @ tokens ===p MLP T~ x7 prompt : layer norm :
! 5 embedding | .
: 1 ' feed forward)
! 1]
I
.))
vehicle tokens ﬂl# MLP | self cross ! : layer norm xN 1
I ' ’ att hd att ! . !
| : vector 1 attention 1
pedestrian tokens i MLP \ embedding : :
: , . Q K o v .
: 1 1)
o |)
ego vehicle state —:D MLP 4 .- Seo N t T 1) 1
: o t =~k __V__L__
--" ! 1 \
| - 1
e mw . N .. ‘| a K v :xN:
x32 latents x64 queries 777 LoRA ~ T

1. Vector Representation Pretraining Stage

2. DrivingQA Finetuning Stage

* Vector Encoder: The four input vectors are passed through the Multilayer Perceptron (MLP)
layers. They’re then processed by a cross-attention layer to move them into a latent space.
We add the ego feature to each learned input latent vector to emphasize the ego states.

* Vector Former: This part contains self-attention layers and a cross-attention layer that
work with the latent space and question tokens. This transforms the latent vectors into an
embedding that the LLLM can decode.

 LLM with Adaptor: Here, we inject trainable rank decomposition matrices (LoRA) into
the linear layers of the pretrained LLMs for parameter-efficient finetuning. We utilize
LLaMA-7b [45] as the pretrained LLM for our experiments.

3.4.1 Vector Representation Pre-training

It is important to note that during this pretraining phase, we use only perception structured-
language labels and avoid training on tasks that involve reasoning

3.4.2 Driving QA Finetuning

After the pre-training stage, we integrate the trainable LORA module into the LLM, and optimize the

weights of the Vector Encoder, Vector Former and LoRA module in an end-to-end fashion on the Driving
QA data that we collected in Section 3.3.

LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

We propose Low-Rank Adaptation, or LORA, which freezes the pretrained e
model weights and injects trainable rank decomposition matrices into each o
layer of the Transformer architecture, greatly reducing the number of SR

trainable parameters for downstream tasks

Weights

x————

h=Wox + AWx = Wyox + BAx Figure 1: Our reparametriza-
tion. We only train A and B.

