
Assignment 1

Due: 2:00pm, Monday 14th November 2016
This assignment counts for 25% of your final grade.

For this assignment you are being asked to design, implement and document a
simple card game in the Java programming language. You are advised that in
order to accomplish this assignment correctly you should use the techniques
regarding class structure, object usage and data structures that have been
taught to you during the lectures.

The first round of the game starts with all players having the same number of
cards in their deck, and the cards are facing down (i.e. not visible to the
players); all cards have a number of attributes, each attribute having a value
from 0 up to 9 (inclusive).

Every player picks up a card from the top of his/her deck and looks at it.

The nominated first player then chooses an attribute, say Attribute i, to “play
with”; all the players compare the values of this Attribute i on the cards they
have picked up.

The player with the highest value wins the round, collects the cards that the
other players had picked up and puts them (together with his/her card) facing
down at the bottom of his/her deck.

The next round starts with every player picking up the card on top of his/her
deck and looking at it, and the winner of the previous round choosing the
attribute they wish to play with.

The game continues in the same fashion for an unlimited number of rounds
until only one player, the winner, has cards left in their deck.

BACKGROUND: THE CARD GAME

CardGame is intended to be an application that simulates the above described
card game with the following features:

 In the simplest form, there is one human player (the user of the
application) and one computer player.

 The user is prompted to enter his/her name.
 After entering their name, the user is then prompted to select the type

of computer player they wish to play against. The options are:
 a predictable computer, i.e., one that always chooses the same

attribute in every round in which they play first, or
 a random computer, i.e., one that randomly (uniformly at

random) chooses one of the available attributes in every round in
which they play first.

 After the players have been initialized, the game starts and the screen
shows the names of the players and the number of cards in each
player’s deck.

 Then, the name of the player who plays first in the current round (i.e.,
current player) is shown on the screen, followed by the card at the top
of their deck. If the current player is human, then there is a prompt on
the screen for them to choose which attribute they wish to play with on
the current round.

 After the attribute is selected, the winner is declared and shown on the
screen, and the game moves on to the next round.
Note: if you have ties in a round, simply choose as the winner the player
who is closest to the first player that was entered in the game.

 This continues until there is only one player left with cards in their deck,
and all other players have 0 cards.

TO DO

Implement the CardGame functionality in Java (Needed for a pass):

Implement the card game outlined above; using objects and good class
structure, create objects for the card, attribute player, game and of course the
main class/method.

IMPORTANT: It is not necessary for this game to include any graphical output
in the form of a GUI. The only output required is to the console/terminal as this
is intended to be a text based game.

Card Class: This class should hold the attributes and any other properties of a
card in the deck.

Attribute Class: This class should hold the name and value of the attribute;
having it as a class will allow you to dynamically create as many attributes as
you want for the cards in a deck. This could be useful if for example you
wanted to give your user a choice of decks to play with, Bands or Cars for
example, where the number of attributes that a card in each deck has might
differ (e.g., for a Band you might want to have attributes such as “popularity”,
whereas for Cars you might want to have attributes such as “speed” or
“price”).

Player Class: This class should make the correct use of collections to hold a
player’s deck. It will also contain information about the player, for example the
type of the player (human or computer). It might be useful to also have
methods in this class that can perform operations on any collections it might
make use of, for example adding or removing cards from the player’s deck.

Extension of Classes: You should create classes that extend some of the ones
above where appropriate. For example, you could extend the player class to
create classes specifically for a human player or different types of computer
players.

Game Class: You should create a class that initialises the game and contains all
of the logic for the game itself.

Main Class: You should have a Main Class with a Main Method that will
instantiate the game. It is good practice to have nothing else present here as it
allows you to create attributes and functions that are not static and therefore
allow for the correct use of multiple instances.

Must make use of:

 Data Structures, e.g. Queues

 Custom Objects, e.g. Card

 Object Inheritance, e.g., HumanPlayer class extends Player class.

 Take human input from the keyboard.

Document your Java Implementation (Needed for a pass):

Each class, method, field and constructor in your Java implementation should
have a javadoc comment, even if its scope is private. You should use @param
and @return tags where appropriate.

MORE BONUS CONTENT FOR A REALLY ADVANCED GAME (Needed for > 80%)

 You can allow the game to have multiple human and multiple computer
players.

 You can set up some intelligence to the computer player(s):
 A Smart Computer will be able to select the highest valued

attribute on their card if it was their turn to select an attribute first.
 A Predictable Computer will always select, say, the 1st attribute on

their card if it was their turn to select an attribute first.

In this case, you should print a command on the console to ask the
user what type they want each computer player to be, i.e., random,
smart or predictable.

Submission

You should submit files, as described below, through the departmental on-line
submission system (click here). Please do not zip or archive your files; upload
them separately, and make sure the names of the files are the same as those
given below. Please also do not include package declarations in your Java files.

1. A file, Attribute.java, containing your Java implementation for the card
attributes.

2. A file, Card.java, containing your Java implementation for the cards of
the game.

3. A file, Player.java, containing your Java implementation for the players
of the game.

4. A file, Human.java, containing your Java implementation for the human
player(s) of the game.

5. A file, RandomComputer.java, containing your Java implementation for
the random computer player type.

6. A file, Game.java, containing your Java implementation for the game
simulation.

7. A file, Main.java, containing your main method (this should only be a
very small piece of code that creates a new object of type Game and
invokes the method that runs the game).

8. If you have any other .java files, please also upload them; however, if
you follow the description outlined above, you shouldn’t need more
than the 7 .java files described in this list (You may have more if you
deliver the bonus content). All files should have complete Javadoc
comments.

https://sam.csc.liv.ac.uk/COMP/Submissions.pl?strModule=COMP213

MARKING

This assignment contributes 25% of your final grade for this module, and will
be marked according to how far the following requirements are met:

 The Java code should be laid out according to a consistent format, and it
should contain clear comments

 The Java code should correctly implement the functionality set out
above.

 The javadoc documentation should be full (one document comment for
each class and each method of each class), clear and informative.

A first-class solution (70+%) will meet all these requirements fully; a 2.I
solution (60-69%) will meet most but perhaps not all of these requirements
(e.g., the code may not quite implement all the desired functionality, or may
lack comments, or have an untidy layout); a 2.II solution (50-59%) will have
some more serious faults (e.g., the code may fall some way short of all the
desired functionality, or may contain syntactic errors); a third-class (40-49%)
solution will have serious faults, though it should still show that a decent
attempt was made (e.g., code that falls further short of being functional -
though it still shouldn't be too far away). A solution getting a failing grade will
simply be bad. Failure to hand in a solution will get a zero grade.

It might be possible to gain a higher mark - i.e., move above the 80% threshold
by showing some originality and/or creativity - by thinking about what extra
functionality might usefully extend these basic requirements, but I'd
recommend you think about this only if you're satisfied that the work you've
done on the basic requirements is above the 70% threshold that you meet by
turning in work of a very high standard. In other words, if you don't do a good
job on the basic required elements, you're unlikely to improve your marks by
spending effort on implementing functionality that isn't asked for. Note that
"originality" and "creativity" could include very clear comments or other
indications of thinking clearly about the problem; showing reading outside the
lecture notes, developing a neat class hierarchy; etc.

Notes

Javadoc is covered in Lecture 11.

