Diffie-Hellman key exchange
Key Exchange

• We have seen already how public-key cryptography may be used for public key distribution;
• Public-key cryptography may be used also for key exchange:
 • Two parties (users) execute some algorithm (protocol) and get a common secret key;
 • The key may be used for subsequent encryption of messages;
Diffie-Hellman Key Exchange

- Most known algorithm for key exchange is Diffie-Hellman algorithm (1976);
- The purpose of the algorithm is exchange of a secret key (not encryption);
- DH algorithm is considered as a public-key algorithm because:
 - Users to generate the same secret key rely on publicly known information + some private information;
 - In principle, it is possible to generate a key knowing only public information, but it is computationally expensive;
Discrete logarithms

• Security of DH algorithm relies upon difficulty of computing discrete logarithms;

• Primitive root of a prime number p: a number a such that all numbers
 $a \mod p, a^2 \mod p, \ldots, a^{p-1} \mod p$ are different;

• For any number b less than p and a primitive root a of p the discrete logarithm (index) of b for the base $a \mod p$ is the number i such that

\[b = a^i \mod p \quad 0 \leq i \leq (p - 1) \]
Discrete logarithms

- Notation: \(\text{ind}_{a,p}(b) \)
- Key facts:
 - It is relatively easy calculate exponentials modulo a prime, that is given \(a, i, p \) calculate \(a^i \mod p \)
 - It is very difficult and for large primes infeasible to calculate discrete algorithms, that is given \(b, a, p \) find \(i \) such that

\[
b = a^i \mod p
\]
Diffie-Hellman key exchange

• Two publicly known numbers:
 • prime number \(q \)
 • primitive root \(\alpha \) of \(q \)
• Let \(A \) and \(B \) wish to exchange a key, then they do the following:
 • \(A \) selects a random integer \(X_A < q \) and keeps it in secret
 • \(B \) selects a random integer \(X_B < q \) and keeps it in secret
 • \(A \) computes \(Y_A = \alpha^{X_A} \mod q \) and sends it to \(B \)
 • \(B \) computes \(Y_B = \alpha^{X_B} \mod q \) and sends it to \(A \)
The secret key

- Both A and B is now able to calculate common secret key:
 - A calculates \(K = (Y_B)^{X_A} \mod q \)
 - B calculates \(K = (Y_A)^{X_B} \mod q \)

- These calculations give identical results and \(K \) is the common secret key.
Deffie-Hellman Key Exchange

User A

Generate random $X_A < q$
Calculate $Y_A = X_A \mod q$
Calculate $K = (Y_B)^{X_A} \mod q$

User B

Generate random $X_B < q$
Calculate $Y_B = X_B \mod q$
Calculate $K = (Y_A)^{X_B} \mod q$
How to break HD key exchange?

• An attacker knows q, a, Y_A, Y_B
• How can (s)he calculate K?
• Straightforward way is to find out X_A, or X_B and repeat calculations of A or B;
• However this includes calculations of discrete logarithms: $X_B = ind_{e, q}(Y_B)$ which is infeasible for large q;
• No essentially better passive attacks are known.
Example

- For $q = 7$ check that 2 is not a primitive root of 7 and 3 is a primitive root of 7;
- Let $q = 7$ and $a = 3$ is publicly known numbers in DH algorithm;
- Let $X_A = 4$ and $X_B = 3$ be private keys of A and B, respectively;
- Then Y_A=
 - Y_B= $3^4 \mod 7 = 4$
- Common secret $3^3 \mod 7 = 6$

$$K = 6^4 \mod 7 = 4^3 \mod 7 = 1$$