RSA algorithm
RSA Public-Key Encryption Algorithm

- One of the first, and probably best known public-key scheme;
- It was developed in 1977 by R.Rivest, A.Shamir and L. Adleman;
- RSA is a block cipher in which the plaintext and ciphertext are \textbf{integers} between 0 and \textbf{n-1}, where
 - n is some number;
- Every integer can be represented, of course, as a sequence of bits;
Encryption and decryption in RSA

- Encryption

\[C = M^e \mod n \]

- Decryption

\[M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n \]

Here \(M \) is a block of a plaintext, \(C \) is a block of a ciphertext and \(e \) and \(d \) are some numbers. Sender and receiver know \(n \) and \(e \). Only the receiver knows the value of \(d \).
Private and Public keys in RSA

- Public key $KU = \{e, n\}$;
- Private key $KR = \{d, n\}$;

Requirements:
- It is possible to find values e, d, n such that
 \[M^{ed} = M \mod n \text{ for all } M < k \]
- It is easy to calculate M^e and C^d modulo n
- It is difficult to determine d given e and n
Key generation

- Select two prime numbers \(p \) and \(q \);
- Calculate \(n = p \times q \);
- Calculate \(\phi(n) = (p-1)(q-1) \);
- Select integer \(e \) less than \(\phi(n) \) and relatively prime with \(\phi(n) \);
- Calculate \(d \) such that \(de \mod \phi(n) = 1 \);
- Public key \(KU = \{e, n\} \);
- Private key \(KR = \{d, n\} \);
Fermat – Euler Theorem

• Correctness of RSA can be proved by using Fermat-Euler theorem:

\[x^{p-1} = 1 \mod p \]

Where \(p \) is a prime number and \(x \neq 0 \mod p \)
Chinese Remainder Theorem

For relatively prime p and q and any x and y

\[
x = y \mod p
\]
\[
x = y \mod q
\]

Implies

\[
x = y \mod pq
\]
Example

- Select two prime numbers, \(p = 17 \), \(q = 11 \);
- Calculate \(n = pq = 187 \);
- Calculate \(\phi(n) = 16 \times 10 = 160 \);
- Select \(e \) less than 160 and relatively prime with 160, for example 7;
- Determine \(d \) such that \(de \mod 160 = 1 \) and \(d < 160 \). The correct value is \(d = 23 \), indeed \(23 \times 7 = 161 = 1 \mod 160 \);
- Thus \(KU = \{7, 187\} \) and \(KR = \{23, 187\} \) in that case.
Encryption and decryption

Let a plaintext be $M = 88$; then encryption with a key $\{7, 187\}$ and decryption with a key $\{23, 187\}$ go as follows:

Encryption:
- $88 \mod 187 = 11$
- $KU = 7, 187$

Decryption:
- $11 \mod 187 = 88$
- $KR = 23, 187$
How to break RSA

• **Brute-force approach**: try all possible private keys of the size n. Too many of them even for moderate size of n;

• **More specific approach**: given a number n, try to find its two prime factors p and q; Knowing these would allow us to find a private key easily.
Security of RSA

• Relies upon complexity of factoring problem:

 • Nobody knows how to factor the big numbers in the reasonable time (say, in the time polynomial in the size of (binary representation of) the number;

 • On the other hand nobody has shown that the fast factoring is impossible;
RSA challenge

• RSA Laboratories to promote investigations in security of RSA put a challenge to factor big numbers. Least number, not yet factored in that challenge is

• RSA-232 =
 1009881397871923546909564894309468582818233821955573955141120516
 2058310213385285453743661097571543636649133800849170651699217015
 2473329438927028023438096090980497644054071120196541074755382494
 867277137407501157718230539834060616 2079

• 768 bits, or 232 decimal digits
RSA challenge, very recent news

RSA-230 =

17969491597941066732916128449573246156367561808012600070888918835531726
46034149093349337224786865075523085586419992922181443668472287405206525
79374956943483892631711525225256544109808191706117425097024407180103648
316382 88518852689 =

45284503580104920266124397391201667589112460474937000400739567592615903
97 2500336993576945071935230000343088601688589

X

39681326231509575885323944390498873417695339666219578294269660840930495
16 953598120833228447171744337427374763106901

230 decimal digits (762 bits)

(S. Gross et al, Noblis Inc., August, 2018)
How to break RSA (cont.)

• Common factors attack (2012):
 due to insufficiently good random number generators used in key generation, some amount of keys used in the wild have common divisors - you can then factorized them using ECD (Euclid Common Divisor algorithm)

• Shor’s factorization algorithm for quantum computers (near future?)