Steganography
What to protect

<table>
<thead>
<tr>
<th>Level</th>
<th>What to protect</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Existence of message</td>
<td>Steganography</td>
</tr>
<tr>
<td>2</td>
<td>Metadata of message</td>
<td>Privacy-enhancing technologies</td>
</tr>
<tr>
<td>1</td>
<td>Content of message</td>
<td>Encryption</td>
</tr>
<tr>
<td>0</td>
<td>Nothing</td>
<td>None</td>
</tr>
</tbody>
</table>

Table by I.A. Goldberg

Metadata of message here is: the sender, the recipient, the time the message was sent, or the length of the message, etc
Steganography and information hiding

- **Steganography**, derived from “covered writing” in Greek
- It includes the methods of secure communications that conceal the **very existence** of the message

- Examples (non-digital): invisible ink, microdots, etc
Steganography in digital world

[Diagram with labeled nodes: Cover Object, Stego Object, Untrusted Channel, Stego Object, Stego Object, Stego Key, Message m]

Picture by C. Shoemaker
Digital watermarking

- Digital watermarking:
 - aim is to embed an amount of information that could not be removed or altered without making the cover object entirely unusable
 - adds additional requirement of **robustness** as compared with steganography
 - Can be used for copyright protection
Texts as cover objects

- Text as a cover object:

 - Apparently neutral's protest is thoroughly discounted and ignored. Isman hard hit. Blockade issue affects pretext for embargo on by products, ejecting suets and vegetable oils.

 - (Real example of the text sent by a spy in WWII)
Texts as cover objects

• Text as a cover object:

 • Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit. Blockade issue affects pretext for embargo on by products, ejecting suets and vegetable oils

 • Taking the second letter in each word gives the message: Pershing sails from NY June 1
Images as cover objects

• LSB (Least Significant Bit) substitution method:
 • Least significant bits used to store characteristics of particular pixels of an image (cover object) are modified to store a message
 • Colours and lightness of pixels of obtained image may differ slightly from original cover image, but both images looks identically to human eye.
• Easy to implement, but not too robust methods
• Transformations of images may easily destroy the message (watermark)
Images as cover objects

Watermarked image (LSB substitution) Watermark recovered

Note: watermark is embedded as the image, not the plain text to improve robustness
Advantages and disadvantages of LSB

• **Advantages of LSB**
 - easy to implement
 - has high capacity

• **Disadvantages of LSB**
 - is not robust
 - message is easy to detect:
 - A message insertion introduces distortion to the statistical properties of image which never naturally appear

•
Stochastic modulation method

• **Simple variant:**
 • Before embedding a message a randomly chosen pixels are altered by changing their intensities (= a number between 0 and 255) by +1 or –1;
 • For a parameter p in $[0;1]$ a pixel intensity is increased/decreased by 1 with probability p; it is left unchanged with probability $1-2p$;
 • Then LSB method is used
 • Provide more protection against detection of the message
Stochastic modulation method

• Improved method (J.Fridrich, M.Goljan):
• The idea:
• take a cover image and add a “noise” modulated by a message bits
• “noise” actually means pseudo-noise here, that is a sequence of pseudo-random values, which can be generated deterministically given a secret initial value (key)
• If initial value (key) is known then generation of pseudo-noise can be repeated (used for extraction of the message)
Stochastic modulation

- Simple implementation;
- High capacity;
- Low embedding and extraction complexity
- Embedding noise can have arbitrary characteristics and may approximate the noise of a given device => high security
Transform space algorithms

- **Jsteg** algorithm (D.Upham) uses specifics of JPEG image format
- For each colour component JPEG image format uses *discrete cosine transform* (DCT)
- DCT is used by JPEG to transform consecutive 8 by 8 pixel blocks of the image to 64 DCT coefficients each:

\[
F(u,v) = \frac{1}{4} C(u) C(v) \left[\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cos \left(\frac{(2x+1)u\pi}{16} \right) \cos \left(\frac{(2y+1)v\pi}{16} \right) \right],
\]

- where \(C(x) = \frac{1}{\sqrt{2}} \) if \(x = 0 \) and \(C(x) = 1 \) otherwise
Transform space algorithms

• JPEG: after quantization DCT coefficients are stored;
• Jsteg algorithm:
 • Replace sequentially the least-significant bit of discrete cosine transform coefficients with the message data
• Gives better protection (as many others TS algorithms) against visual attacks
Audio (video) files as cover objects

- LBS can be used, but it introduces a significant noise to audio data;
- A message may be encoded in audio signal *phase*, replacing original phase with a reference phase representing a hidden message; more difficult to implement;
- Spread spectrum method: encoded data spread across the maximum range of frequencies; difficult to detect hidden message;
- Video objects (files, streams) can be used for hiding information as well;
Network packets as cover objects

- Steganography within TCP/IP:
 - Insert data within TCP and IP protocol headers
 - IP identifier, TCP initial sequence number, least significant bit of TCP timestamp, IP flags.
 - Relatively easy to detect naive embedding by anomaly detection in TCP/IP fields
- One can prevent easy detection by taking into account the properties of concrete implementations of TCP/IP (Murdoch, Lewis, 2005)
- HTML steganography
Redundancy

- Steganography is applicable to any data objects that contain redundancy;
- Redundancy is used to hide the presence of the embedded message;
- On the other hand redundancy may be removed during data compression;
- One may combine data compression and message embedding: MP3stego by F.Petitcolas.