Computing over encrypted data:
homomorphic encryption and CryptDB

-
Homomorphic encryption

Encryption Enc is called homomorphic with respect to an
operation * if

Enc(x™y) = Enc(X)*Enc(y).

That is given encrypted forms of x and y, in order to
compute encrypted form of x*y one does not need to
decrypt Enc(x) and Enc(y)

Computations over encrypted values!

Partial vs Fully homomorphic schemes

Partially homomorphic encryption: with respect just to
one operation;

RSA (unpadded) is homomorphic with respect to
multiplication. Why?

Fully homomorphic schemes:

With respect to multiplication and addition
Allow to perform arbitrary computations
Existence is by no means obvious

e
Breakthrough: FHE is possible!

Craig Gentry: first fully homomorphic encryption
scheme is announced by IBM on June 25, 2009.

The scheme is impractical for many applications:

ciphertext size and computation time increase sharply as one
increases the security level. Key’s size is also an issue.

Recent developments

New more efficient schemes and implementations
since 2010, key size is reduced at least to 600Kb
(~2016)

HELIb is an open source implementation (2013, new
version 2018)) (C++)

More implementations available, including in R and
Python;

Still more work is needed to make it practical;

New library SEAL made available by Microsoft in 2018
(a new version a few days ago!)

Potential applications

- Computations on not entirely trusted services (e.g. in the
cloud) :
Encrypt your computational task and send it to a remote server;

The server computes over encrypted data and returns an
encrypted result;

Decrypt result;
- Pipeline processing without revealing intermediate data;

-
CryptDB

- Similar idea in data processing:

To query encrypted SQL database without decrypting;
Selected fields can be encrypted,;
Practical working prototype system: CryptDB,

Raluca Ada Popa et al, MIT (2011-..):
http://css.csail.mit.edu/cryptdb/

Low overhead: reducing throughput 15-25%

Onion-layered SQL-aware encryption

RND: no functionality RND: no functionality
SEARCH HOM: add DET: Equality selection OPE: Order
Text value int value Any value Any value
Onion Search Onion Add Onion Eq Onion Ord

- All data in CrypDB can be encrypted using several layers
of encryption;
- Each layer may “release” some information about encrypted value

.
Querying in CryptDB

RND: no functionality RND: no functionality
SEARCH HOM: add DET: Equality selection : Order
[Text value] [int value] Ny ¥arue

Onion Search Onion Add Onion Eq Onion Ord

- Before querying, depending on a query :
- some values in the query are encrypted;

- encryption layers in the database are adjusted (both sieps are
done by a proxy)

- After the query execution: encrypted results are returned
- The proxy decrypts them and returns to the client the final result

Developments here in the Department

- In two PhD projects:

- CryptDB-like approach to graph DBs (Neo4j);
- CryptDB-like approach do document-based DBs (MongoDB).

