Security protocols and their analysis.

Security protocols

- A security protocol is a set of rules, adhered to by the
communication parties in order to ensure achieving
various security or privacy goals, such as establishing a

common cryptographic key, a achieving authentication,
etc.

- We have discussed already a few protocols, e.g. Diffie-
Hellman protocol for key exchange.

Example: Needham-Schroeder protocol

- The goal of the protocol is to establish mutual authentication
between two parties A and B in the presence of adversary,
who can

- Intercept messages;

- Delay messages;

- Read and copy messages;

- Generate messages,

But who does not know

. gecret keys of principals, which they share with the authentication server

- A'and B obtain a secret shared key though authentication
server S.

- The protocol uses shared keys encryption/decryption

am-sSchroeder protoco

I: A8, N
2 {_.'“"n'rg., B-: I{ﬂﬁq {j{ﬂﬁ'l fi}h'n.. }f\'ga

3: {I{EEI -*'_1-} -H-Eld -
4: {Ni}x,, b
- .
5: {"h'l []' }-‘F":n:ll

The Neadham-Schroaeder Protocol (with shared keys)

Needham-Schroeder protocol

. Message 1 .rd — S: .r'iL B., ;'I|||'r_|4
-Message 2§ A INg B.Kyp. (Kqp. A,

IKBIKA
- Message 3 4 5B IK l
:1K4AR, A
- Message 4 15 1 ‘KR
.Message 5 D =M INBigp

-Here K4 and kp are keys of A and B shared with S,

resp.
- M4 and np are nonces, introduced by A and B,
resp.
k4B is a secret session key for A and B provided by

S

How It works

» A makes contact with the authentication server S, sending
identities A and B and nonce N4,
* S responds with a message encrypted with the key of A.

The message contains session key K4z (to be used by A and B)
and certificate encrypted with B’s key conveying the session
key and A’s 1dentity;

A sends the certificate to B;

B decrypts the certificates and sends his own nonce encrypted
by the session key to A; (nonce handshake);

* A decrypts the last message and sends modified nonce back to

By the end of the message exchange both A and B share the
secret key and both are assured in the presence of each other.

Correctness of protocols

- Are they correct at all?
- How do we establish correctness?
- We have used semi-formal arguments, like

If a message is encrypted with the public key of Alice, then
only a participant who knows private key of Alice
(presumably Alice herself only) can decrypt it.

- Typically we have considered possible attacks and argued
using the reasoning as above, that attacks are impossible
(under some reasonable assumptions).

- Is that enough”? Are we sure that we have considered all
possible situations of use?

Correctness of protocols. I

- Security protocols are designed to succeed even in the
presence of a malicious agent, often called intruder
(adversary);

- Intruder may have complete or partial control over the
communication network and may have different
computational capabilities;

- The correctness of the protocols depends on the
assumptions on capabilities of possible intruder;

- Assumptions are often left implicit;

- Typically in security we have to deal with numerous non-
trivial assumptions.

The power of formal methods

- What should we do about establishing correctness of
security protocols?

- Apply formal methods!

- Make explicit all the assumptions involved in a protocaol;
- Make a formal model of the protocol (and its execution);

- Apply formal reasoning, which would establish the correctness of the
protocol.

- Two important aspects:

- The correctness is established only for a particular formal model of the
protocol;

- and under explicit assumptions (about capabilities of participants, etc);

Logical representation

- Formal aspects of reasoning is an important part of logic;

- Logical representation and analysis of the security
protocols is a particular successful approach for the
protocols verification;

- Non-classical modal epistemic logics dealing with such
notions as “belief’ and “knowledge” , are more suitable
here than classical logics dealing primarily with “truth”.

Automated verification/analysis

- It is not easy and is error-prone itself to do formal analysis
manually;

- Development of methods for automated or semi-
automated (interactive) validation and verification is
important area, especially in the context of security
protocols;

Different directions

- Model checking (state exploration tools);
specific (NRL Protocol Analyser,etc)
general purpose tools (SMV, SPIN, Mocha, etc)

general purpose tools combined with specific translators
(Casper/FDR, etc)

. Un?ounded model checking for crypto protocols (ProVerif, Tamarin,
etc

- Theorem proving
- Automated (TAPS, etc)
- Interactive (Isabell, PVS, etc)

- Combinations of above techniques:
- Athena, etc

- Others: decision procedures for specific theories, infinite
state model checking,etc

General questions

- How to represent a protocol (system) to be analysed?
- How to express properties to be verified?

Model checking

- A protocol (system executing a protocol) is represented as
a transition system M with finitely many states;

- A property to be analysed is expressed by a formula of a
logic (temporal, modal, etc) f;

- Then verification amounts to checking whether the
formula f is true in M;

- Model checking is done via efficient state exploration
techniques;

-
Model checking

Finite state svslem Erue
or
Property & false with comnterexamph

Nice properties
* Fully automated procedures;

* Very efficient state exploration;
but

Finite state abstraction is not always adequate,
especially for protocols with unbounded number
of participants or unbounded number of rounds.

Attack on Needham-Schroeder protocol

- A particular success of model checking methods in
security protocol verification was discovery of a flaw in NS
protocol based on public key cryptography (Gavin Lowe,
1995-19906);

Original protocol

Message 1. A— I A-E-{A.NA}FH[H]
Message . B— A: BA{N4Nplpr
Messaged. A— B AB{Nglpgm.

Attack on Needham-Schroeder protocol

- A particular success of model checking methods in
security protocol verification was discovery of a flaw in NS
protocol based on public key cryptography (Gavin Lowe,
1995-19906);

- Original protocol Attack

: : Mesgage 1la. A— 1. AT {ANalrig
Mesage 1. A~ B: ABIANubpkiy) Moseage 1h, Iy — B: ABAA N} picn
Message . H—A: BANyNplpwgy Message2b. B— Iy B.A{N4 Nplpicia
Message 3, A= B H.E.{."‘r'-g}p,;f[g]. Message 2a. [T — A: T A{N,4 Npgjpia

Meseage da. A—=1I: AT {Nplexm
Message 3b. [y — B. AB{Nplpkim.

Corrupt participant I impersonates A

Theorem Proving

- A protocol (a system) to be verified is
described by a formula Fs of a logic (classical
first-order, higher-order, modal, temporal, etc);

- A property to be verified is expressed by a
formula P of the same logic;

- Then to establish the required property it is
enough to prove the theorem Fs - P;

Theorem proving

- Potential benefits:

- the systems with unbounded (infinite) number
states can be analysed,;

- But:

- The problems here are, in general, undecidable;

- Procedures are incomplete and of high complexity.

Theorem proving

- What to do?
- Apply automated procedures for fragments of first-order
and higher-order logic
- E.Cohen, TAPS system, Microsoft Research;
- Use interactive theorem proving

- L.Paulson, Cambridge: using Isabell, higher-order inductive
theorem prover for the verification of security protocols;

- J.Bryans, S. Schenider, using interactive theorem prover PVS;

Specialized approaches

- Bruno Blanchet, INRIA: approach based on ideas from
Logic Programming (ProVerif, available online at
http://www.di.ens.fr/~blanchet/crypto-eng.html):

- A protocol is presented as a set of Horn clauses (like a program in
Prolog), defining capabilities of all participants);

- Verification then amounts to checking whether a security breaching
goal can be reached (derived) from the set of clauses;

- If the system detects the goal is unreachable, then the protocol is
correct;

- Standard operational semantics of Prolog is not very useful here due
to undesirable looping;

- Novel operational semantics (search strategy) is defined,;
- Recent versions use pi-calculus as a language for front-end

ProVerif system

Denning-Sacco key distribution protocol
Message |. - A= Bi {{k}ah, } bz

Message 2. B —+ A {sh [ts representation in ProVerif system
(old syntax)

Computation abilities of the attacker:
pencrypt attacker(m) A attacker(pk] — attacker(penaryptim. pk))
pk attackerl sk) — attacker(pki st
pdecrypt attacker! pencryptim. pki sk)) A attacker(sk) — attacker(m)
S attacker(m) A attacker(sk) — attacker(signim. sk))
getmess attackerisign(m. sk)) — attackerim)
checksign removed since implied by getmess
Senarypt attacker(m) A attacker(k) —+ attacker(sencryptim. k)
sdearypt attackerisencrypt(m. k) A attacker k) — attacker(m)

[nitial knowledge of the attacker:

attacker(ph(sk [}, - attacker(ph(sh), attackerta]]
Protocol;

First message: attackerpkix)) — attacker{pencrypt(sign(k[pkiz]], s 4[1), pkiz])
Second message: attacker(penaryptisign(h’, sk a[]), pk(skp[]))) —+ attackerisencrypt(s[], &)

