
Security protocols and their analysis.

Security protocols
• A security protocol is a set of rules, adhered to by the

communication parties in order to ensure achieving
various security or privacy goals, such as establishing a
common cryptographic key, a achieving authentication,
etc.

• We have discussed already a few protocols, e.g. Diffie-
Hellman protocol for key exchange.

Example: Needham-Schroeder protocol

• The goal of the protocol is to establish mutual authentication
between two parties A and B in the presence of adversary,
who can
• Intercept messages;
• Delay messages;
• Read and copy messages;
• Generate messages,
But who does not know
• secret keys of principals, which they share with the authentication server

S.
• A and B obtain a secret shared key though authentication

server S.
• The protocol uses shared keys encryption/decryption

Needham-Schroeder protocol

Needham-Schroeder protocol
• Message 1
• Message 2
• Message 3
• Message 4
• Message 5

• Here and are keys of A and B shared with S,
resp.

• and are nonces, introduced by A and B,
resp.

• is a secret session key for A and B provided by
S

How it works
• A makes contact with the authentication server S, sending

identities A and B and nonce NA;
• S responds with a message encrypted with the key of A.

The message contains session key KAB (to be used by A and B)
and certificate encrypted with B’s key conveying the session
key and A’s identity;

• A sends the certificate to B;
• B decrypts the certificates and sends his own nonce encrypted

by the session key to A; (nonce handshake);
• A decrypts the last message and sends modified nonce back to

B.
--
By the end of the message exchange both A and B share the

secret key and both are assured in the presence of each other.

Correctness of protocols
• Are they correct at all?

• How do we establish correctness?

• We have used semi-formal arguments, like

• If a message is encrypted with the public key of Alice, then
only a participant who knows private key of Alice
(presumably Alice herself only) can decrypt it.

• Typically we have considered possible attacks and argued
using the reasoning as above, that attacks are impossible
(under some reasonable assumptions).

• Is that enough? Are we sure that we have considered all
possible situations of use?

Correctness of protocols. II
• Security protocols are designed to succeed even in the

presence of a malicious agent, often called intruder
(adversary);

• Intruder may have complete or partial control over the
communication network and may have different
computational capabilities;

• The correctness of the protocols depends on the
assumptions on capabilities of possible intruder;

• Assumptions are often left implicit;

• Typically in security we have to deal with numerous non-
trivial assumptions.

The power of formal methods
• What should we do about establishing correctness of

security protocols?
• Apply formal methods!

• Make explicit all the assumptions involved in a protocol;
• Make a formal model of the protocol (and its execution);
• Apply formal reasoning, which would establish the correctness of the

protocol.

• Two important aspects:
• The correctness is established only for a particular formal model of the

protocol;
• and under explicit assumptions (about capabilities of participants, etc);

Logical representation

• Formal aspects of reasoning is an important part of logic;

• Logical representation and analysis of the security
protocols is a particular successful approach for the
protocols verification;

• Non-classical modal epistemic logics dealing with such
notions as “belief” and “knowledge” , are more suitable
here than classical logics dealing primarily with “truth”.

Automated verification/analysis

• It is not easy and is error-prone itself to do formal analysis
manually;

• Development of methods for automated or semi-
automated (interactive) validation and verification is
important area, especially in the context of security
protocols;

Different directions
• Model checking (state exploration tools);

• specific (NRL Protocol Analyser,etc)
• general purpose tools (SMV, SPIN, Mocha, etc)
• general purpose tools combined with specific translators

(Casper/FDR, etc)
• Unbounded model checking for crypto protocols (ProVerif, Tamarin,

etc)

• Theorem proving
• Automated (TAPS, etc)
• Interactive (Isabell, PVS, etc)

• Combinations of above techniques:
• Athena, etc

• Others: decision procedures for specific theories, infinite
state model checking,etc

General questions

• How to represent a protocol (system) to be analysed?

• How to express properties to be verified?

Model checking

• A protocol (system executing a protocol) is represented as
a transition system M with finitely many states;

• A property to be analysed is expressed by a formula of a
logic (temporal, modal, etc) f;

• Then verification amounts to checking whether the
formula f is true in M;

• Model checking is done via efficient state exploration
techniques;

Model checking

Model
checker

Nice properties
• Fully automated procedures;
• Very efficient state exploration;

but
• Finite state abstraction is not always adequate,
especially for protocols with unbounded number
of participants or unbounded number of rounds.

Attack on Needham-Schroeder protocol

• A particular success of model checking methods in
security protocol verification was discovery of a flaw in NS
protocol based on public key cryptography (Gavin Lowe,
1995-1996);

Original protocol

Attack on Needham-Schroeder protocol

• A particular success of model checking methods in
security protocol verification was discovery of a flaw in NS
protocol based on public key cryptography (Gavin Lowe,
1995-1996);

• Original protocol Attack

Corrupt participant I impersonates A

Theorem Proving

• A protocol (a system) to be verified is
described by a formula Fs of a logic (classical
first-order, higher-order, modal, temporal, etc);

• A property to be verified is expressed by a
formula P of the same logic;

• Then to establish the required property it is
enough to prove the theorem Fs P;

Theorem proving

• Potential benefits:

• the systems with unbounded (infinite) number

• states can be analysed;

• But:

• The problems here are, in general, undecidable;

• Procedures are incomplete and of high complexity.

Theorem proving

• What to do?

• Apply automated procedures for fragments of first-order
and higher-order logic
• E.Cohen, TAPS system, Microsoft Research;

• Use interactive theorem proving
• L.Paulson, Cambridge: using Isabell, higher-order inductive

theorem prover for the verification of security protocols;

• J.Bryans, S. Schenider, using interactive theorem prover PVS;

Specialized approaches
• Bruno Blanchet, INRIA: approach based on ideas from

Logic Programming (ProVerif, available online at
http://www.di.ens.fr/~blanchet/crypto-eng.html):

• A protocol is presented as a set of Horn clauses (like a program in
Prolog), defining capabilities of all participants);

• Verification then amounts to checking whether a security breaching
goal can be reached (derived) from the set of clauses;

• If the system detects the goal is unreachable, then the protocol is
correct;

• Standard operational semantics of Prolog is not very useful here due
to undesirable looping;

• Novel operational semantics (search strategy) is defined;
• Recent versions use pi-calculus as a language for front-end

ProVerif system
Denning-Sacco key distribution protocol

Its representation in ProVerif system
(old syntax)

