Needham-Schroeder authentication protocol and its formal analysis
Needham-Schroeder protocol

- The goal of the protocol is to establish mutual authentication between two parties A and B in the presence of an adversary who can:
 - Intercept messages;
 - Delay messages;
 - Read and copy messages;
 - Generate messages,
 - But who does not know
 - secret keys of principals, which they share with the authentication server S.

- A and B obtain a secret shared key through authentication server S.
- The protocol uses shared keys encryption/decryption.
Needham-Schroeder protocol

The Needham-Schroeder Protocol (with shared keys)
Needham-Schroeder protocol

- Message 1
 \[A \rightarrow S: A, B, N_A \]
- Message 2
 \[S \rightarrow A: \{N_A, B, K_{AB}, \{K_{AB}, A\}^{K_B}\}^{K_A} \]
- Message 3
 \[A \rightarrow B: \{K_{AB}, A\}^{K_B} \]
- Message 4
 \[B \rightarrow A: \{N_B\}^{K_{AB}} \]
- Message 5
 \[A \rightarrow B: \{N_B - 1\}^{K_{AB}} \]

- Here \(K_A \) and \(K_B \) are keys of \(A \) and \(B \) shared with \(S \), respectively.
- \(N_A \) and \(N_B \) are nonces, introduced by \(A \) and \(B \), respectively.
- \(K_{AB} \) is a secret session key for \(A \) and \(B \) provided by \(S \).
How it works

• A makes contact with the authentication server S, sending identities A and B and nonce N_A;
• S responds with a message encrypted with the key of A. The message contains session key K_{AB} (to be used by A and B) and certificate encrypted with B’s key conveying the session key and A’s identity;
• A sends the certificate to B;
• B decrypts the certificates and sends his own nonce encrypted by the session key to A; (nonce handshake);
• A decrypts the last message and sends modified nonce back to B.

By the end of the message exchange both A and B share the secret key and both are assured in the presence of each other.
Formal analysis using BAN logic

- Explicit assumptions:
Authentication goals

• Main: A believes $A \leftrightarrow B$ and B believes $A \leftrightarrow B$

• Subsidiary: A believes B believes $A \leftrightarrow B$ and B believes A believes $A \leftrightarrow B$
Protocol steps formalized

• Transform each message into an idealized message, containing only nonces and statements (implicitly asserted by a sender)
First step of analysis

• Let \(M = (N_A, A \leftrightarrow B, \text{fresh}(A \leftrightarrow B)) \)

• Then we have

 \[\textbf{A believes } A \leftrightarrow S, \ A \text{ sees } \{M\}^{K_A} \]

• Apply message-meaning rule:

\[\textbf{A believes } A \leftrightarrow S, \ A \text{ sees } \{M\}^{K_A} \]

\[\textbf{A believes } (S \text{ said } M) \]
Further steps

• We have

 \[A \text{ believes } \text{fresh}(N_A) \]
 \[N_A \] is a part of

 \[M = (N_A, A \leftrightarrow K_{AB} B, \text{fresh}(A \leftrightarrow K_{AB} B)) \]

(implicit assumption)

By application of second decomposition rule we deduce:

 \[A \text{ believes } \text{fresh}(M) \]
Further steps

• By nonce-verification rule:

\[
A \text{ believes fresh } (M), \ A \text{ believes } (S \text{ said } M) \\
\hline
A \text{ believes } (S \text{ believes } M)
\]

• By the third decomposition rule

\[
A \text{ believes } (S \text{ believes } (N_A, \ A \overset{K_{AB}}{\leftrightarrow} B, \text{ fresh}(A \overset{K_{AB}}{\leftrightarrow} B))) \\
\hline
A \text{ believes } (S \text{ believes } A \overset{K_{AB}}{\leftrightarrow} B)
\]
Final step

• By jurisdiction rule:

\[
\text{\[A\ \text{believes (S controls } A \xleftrightarrow{KAB} B)\]}
\text{\[, A believes (S believes } A \xleftrightarrow{KAB} B)\]}
\text{\[A\ \text{believes } A \xleftrightarrow{KAB} B\]}

• The first authentication goal is achievable!
Remaining authentication goals

• The statement \(B \text{ believes } A \xleftrightarrow{K_{AB}} B \) is not derivable!

• One needs one extra assumption to derive it:

\[B \text{ believes fresh}(A \xleftrightarrow{K_{AB}} B). \]

• Derivation of subsidiary goals is left as an exercise:
Conclusion

• The formal analysis we have just done should not be

• neither underestimated:
 • We have shown that the protocol is correct under explicit assumptions and concrete formalization;

• nor overestimated:
 • The analysis is as good as formal (idealized) model and explicit assumptions are;
 • The adequacy of the model and assumptions may be an issue here.