Automated formal analysis of
security protocols

COMP 522

Automated verification

« Itis not easy and is error-prone itself to do formal
analysis manually;

» Development of methods for automated or semi-
automated (interactive) validation and verification
is important area, especially in the context of
security protocols;

COMP 522

Different directions

« Model checking (state exploration tools);
specific (NRL Protocol Analyser,etc)
general purpose tools (SMV, SPIN, Mocha, etc)
general purpose tools combined with specific translators
(Casper/FDR, etc)
Theorem proving
+ Automated (TAPS, etc)
+ Interactive (Isabell, PVS, etc)
« Combinations of above techniques:
+ Athena, etc
« Others: decision procedures for specific theories, infinite
state model checking,etc

COMP 522

General questions

« How to represent a protocol (system) to be
analysed?

* How to express properties to be verified?

COMP 522

Model checking

A protocol (system executing a protocol) is
represented as a transition system M with finitely
many states;

» A property to be analysed is expressed by a
formula of a logic (temporal, modal, etc) f;

« Then verification amounts to checking whether the
formula f is true in M;

« Model checking is done via efficient state
exploration techniques;

COMP 522

Model checking

Finise stabe sysiem true
o
Properly & fals with comnterezample

Nice properties
* Fully automated procedures;

» Very efficient state exploration;
but

- Finite state abstraction is not always adequate,
especially for protocols with unbounded number
of participants or unbounded number of rounds.

COMP 522

Attack on Needham-Schroeder protocol

A particular success of model checking methods in security
protocol verification was discovery of a flaw in NS protocol
based on public key cryptography (Gavin Lowe, 1995-
1996);

Original protocol Attack

_ Message 1o, A— 1 AL{A Nabpyys
Message 1. A= B ABA Nk Moo 1h, 1o B ABAN
Message 2. B Ar BANyNplexe) Message 2b. B— Lo BANG Nobpiy
Meseage 3. A— B AB{Ng}px . Massage 20, T —A: LA{N4 Npberia

.\|l.':x*--|:.{(‘ 3. A=T: .H..l’.[."u'.l,'} PR
Message 3h. Iy — B ABANp}prom.

Corrupt participant I impersonates A

COMP 522

Theorem Proving

A protocol (a system) to be verified is
described by a formula Fs of a logic (classical
first-order, higher-order, modal, temporal, etc);

A property to be verified is expressed by a
formula P of the same logic;

» Then to establish the required property it is
enough to prove the theorem Fs - P;

COMP 522

Theorem proving

Potential benefits:

+ the systems with unbounded (infinite) number
states can be analysed;

But:

» The problems here are, in general, undecidable;

» Procedures are incomplete and of high complexity.

COMP 522

Theorem proving

What to do?

» Apply automated procedures for fragments of first-
order and higher-order logic
- E.Cohen, TAPS system, Microsoft Research;
+ Use interactive theorem proving

 L.Paulson, Cambridge: using Isabell, higher-order
inductive theorem prover for the verification of security
protocols;

- J.Bryans, S. Schenider, using interactive theorem
prover PVS;

COMP 522

Other interesting approaches

« Bruno Blanchet, INRIA: approach based on ideas from
Logic Programming (ProVerif, available online at
http://www.di.ens.fr/~blanchet/crypto-eng.html):

» A protocol is presented as a set of Horn clauses (like a program in
Prolog), defining capabilities of all participants);

« Verification then amounts to checking whether a security
breaching goal can be reached (derived) from the set of clauses;

- If the system detects the goal is unreachable, then the protocol is
correct;

- Standard operational semantics of Prolog is not very useful here
due to undesirable looping;

» Novel operational semantics (search strategy) is defined;

COMP 522

ProVerif system

Denning-Sacco key distribution protocol
Message 1. A =+ B s {{k} sty b

Message2. B —+A: {sh Its representation in ProVerif system
Computation abilities of the attacker
pencrypt attacker(m,) A attacker(pk) — attacker(penaryptim, pk))
pk attacker(sk] — attacker(pk(sk])
pdecrypt attacker(penarypt(m, pkisk]) A attacker(sk) — attacker(m)
sign attacker(mn) A attacker(sk) — attacker(signim, sk))
fetmess attacker(sign(m, sk)) = attacker(m)
checksign removed since implied by getmess
senarypt attacker(in,) A attacker(k) —+ attacker(senaryptim, kJ)
sdecrypt attacker(sencrypt (m, k1) A attacker(k) — attacker(m)

Initial knowledge of the attacker:
attacker(phisk 41, attacker(pk(skp[)), attacker(a[])
Protocol:
Firstmessage: attacker(pk(xr)) — attacker(pencryptisign(J{pkiz]]. sk al]), pk()))
Second message: attacker| pencryptisign(¥, sk.a[]), p(skp[))) — ateacker(sencrypt (s[], £"))

COMP 522

Developments here at the Department

- Verification based on supercompilation (a program
transformation technique);

« A system (protocol) is encoded as a functional program,
then supercompilation is applied to get a simplified, but
equivalent program for which correctness conditions may
be easily checked;

« It has proved to be very efficient technique for verification
of parameterised systems;

« But, it has not been tried yet for security protocols;

« Possible MSc (and PhD) projects. If interested, please
contact A.Lisitsa.

COMP 522

